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ANALYSIS OF THERMAL INTERNAL FORCES FOR CURVED
SUBMERGED FLOATING TUNNELS

"DONG Man-sheng , GE Fei , HONG You-shi

(State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)

Abstract: Using mixed method, temperature induced internal forces of a curved submerged-floating tunnel
(SFT) supported by tension legs were investigated. The analysis indicated that axial forces were far smaller than
radial forces, which were produced by temperature changes, and bending moment and torsional moment of SFT
were produced by thermal forces of tension legs. Numerical test for the Qian-dao Lake case gave the relation that
the radial force of tension legs varied with spring constant of tension legs, flexural rigidity, curvature radius and
central angle of SFT. The results showed that one of temperature induced internal forces of two groups of tension
legs were increasing, but the other were decreasing when one of foregoing factors changed. In the design of

curved SFT, the influence of internal forces by temperature changes needs to be considered.
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Fig.4 Temperature induced deformation of curved SFT
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Fig.5 Temperature induced internal forces of tension legs of
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