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Abstract. Three adhesion contact models, JKR (Johnson-Kendall-Roberts), DMT (Derjaguin-
Muller-Toporov) and MD (Maugis-Dugdale) are compared with the Hertz model in dealing with the
nano-contact problems. It has been shown that the dimensionless load parameter, P=P/(TIAVR),
and the transition parameter, A, have significant influences on the contact stiffness (contact area)
at micro/nano-scale and should not be ignored in shallow nanoindentation.

1. INTRODUCTION

There has been considerable interestin recent years
in the mechanical characterization of thin film sys-
tems and small volumes of material using depth-
sensing indentation tests, which utilize either
spherical or pyramidal indenters [1, 2]. Usually, to
obtain values for hardness and elastic modulus of
the specimen material from experimental values of
indenter load and depth of penetration is the princi-
pal goal of such testing. The forces involved are
usually in the millinewton (10 N) range and are
measured with a resolution of a few nanonewtons
(10°N), and the depths of penetration are in the
order of nanometers, hence the term ‘nanoinden-
tation (10°°m)’. As the experimental values of in-
denter load and depth of penetration give an indi-
rect measure of the area of contact, from which the
mean contact pressure, and thus hardness, can
be estimated, the relationship between the contact
area and the load is considerably important. Thus
the appropriate use of the corresponding theoreti-
cal model will play a key role in the experimental
investigation.

Nano-contact mechanics refers to the contact
mechanics at nano-scales, which is fundamentally
important to understand the force-distance curves
of various scanning microscopes (AFM, MMF, etc.)

and of nanoindentation, the adhesion (or stiction) of
microelectromechanical systems (MEMS) and
nanoelectromechanical systems (NEMS), nano-tri-
bology and nano-wear. The emphasis of the present
paper is to compare different adhesion contact me-
chanics models in their dimensionless form, and to
discuss the influences of the governing dimension-
less parameters.

The influence of the work of adhesion on nano-
scale plastic deformation has to be considered for a
nanoindentation characterization and modeling. The
classical definition of hardness of material is H=
PIA, and Pis the applied load, A=ma? is the contact
area, and a is the plastic contact area. Considering
the influence of work of adhesion, the relationship
between the hardness and the work of adhesion for
the contact between a semi-sphere and a semi-infi-
nite plane is [3]

P +2nA\R = T°H,,, (1)

where Ris the radius of the semi-sphere, Ay=y, +y,-
y,, is the work of adhesion, y, and y, are the surface
energies per unit area of the spherical surface, re-
spectively, and y,, is the interfacial energy. The von
Mises yield criterion has been used in the derivation
of Eq. (1). Then the nanoindentation hardness con-
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sidering the effect of work of adhesion for fully plas-
tic contact can be expressed as:

H_ = H(1 +£)
a0 5 ) (2)

where P =P/(mAyR) is the dimensionless load pa-
rameter, or the ratio of the applied load and the ad-
hesion force. Eq. (2) shows that the influence of the
dimensionless load parameter, P, on the measured
hardness. In other words, the influence of the work
of adhesion is strong when the applied load is light.

2. MODELS OF CONTINUUM
ADHESION CONTACT MECHANICS

Continuum models that predict the contact area for
various geometries have a long history, dating back
to the pioneering work of Hertz in 1881 [4]. For sim-
plicity, we consider the contact between a rigid in-
denter and the elastic semi-infinite plane.

Hertz found that the radius of the circle of con-
tact a,, was related to the indenter load P, the spheri-
cal indenter radius R, and the elastic properties of
the contacting materials by:

s 3PR(1-V?)

ay . (3)
where E and v are the Young’s modulus and the
Poisson’s ratio of the test sample. In the absence
of adhesion, the Hertz model has been shown to
accurately describe the contact area between elas-
tic bodies. However, a great many experimental and
theoretical results show that the surface-to-bulk ra-
tio becomes significant at small scales [5]. There-
fore, adhesion arising from attractive surface forces
is generally not negligible and must be included in
any description of contact area (contact stiffness).
Actually, with the increasing popularity of nanoscale
technology and the increasing sensitivity of
nanoindentation instruments, experimental results
increasingly show that the contact area of the bod-
ies is much larger than estimated with the Hertz
model; especially, when the load diminishes to zero,
the contact area reaches a constant value. It proves
that the surface forces, especially the adhesion force,
do play an important role in the contact of the in-
denter and the sample at sub-micro/nano scale.

Considering the contact between a rigid sphere
with radius, R, and a rigid semi-infinite plane, the
adhesion force, P,, between them is given by the
Bradley theory [6] as

P, = 2nA\R. (4)
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Derjaguin, Muller, and Toporov [7] counted for the
case of deformable bodies by adding the force given
by Eq.(4) to the Hertz contact equations and the
resulting contact theory is referred to as the ‘DMT’
theory. The DMT model gives the contact radius a,,
related to the work of adhesion, Ay, by:

2 :M(mzm\m (5)
DMT 4E "

It is obvious that upon a negative load, Pc(
given by:

P o =-2TIAVR. (6)

c(DMT

DMT) 1S

the contact radius is zero which means two sur-
faces separate on that point. Therefore, P, . is
the critical force required to separate the two
spheres, i.e., the pull-off force.

The adhesion contact between a solid rigid
sphere and an elastic half space has been treated
by Johnson, Kendall and Roberts (JKR), which leads
to the famous JKR theory [8]. They found that the
contact radius, a, ., for a rigid sphere in contact
with a compliant elastic half space, was related to
the work of adhesion, Ay, as:

s _BR(-V)
JKR 4E
2 12 (7)
{P +3MAR +[6 TARP +(3 TR’ }
According to the JKR theory, upon application of a
negative load, separation of the surfaces would oc-

cur when the external force, P sukry Was applied such
that

3
R:(JKR) = _ET[A\R' (8)

It should be noted that the pull-off force Pc( KR) is
independent of the elastic modulus and depends
only on the radius of sphere and work of adhesion.
So Eq.(8) should apply equally well to a rigid sphere,
but this would be contradictory to Eq.(4). The ap-
parent discrepancy led to a heated debate and later,
following the analysis of Tabor [9], Muller et al. [10]
pointed out that the two theories represented the
opposite extremes of a dimensionless parameter
given by

_(Ray*(1-v*)\"
u_( E2€3 j ’ (9)
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Table 1. Comparison of the various contact theories .
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Theory Assumptions Limitations
Hertz No surface forces. Not appropriate for low loads if surface forces presents.
JKR Short-ranged surface forces May underestimate loading due to surface forces.
act only inside contact area. Applies to high A systems only.
Contact geometry allowed
to deform.
DMT Long-ranged surface forcesact May underestimate contact area due to restricted

only outside contact area.
Geometry constrained to be
Hertz.

geometry. Applies to low A systems only.

Maugis-Dugdale Periphery of tip-sample interface Solution analytical, but parametric equations.
modeled as a crack that failed  Applies to all values of A.

at its theoretical strength.

where ¢ is the equilibrium spacing in the Lennard-
Jones potential. The significance of the Tabor num-
ber p in the contact theory, especially at the
nanoscale, has attracted attention by many re-
searchers (e.g. [9]). € can be interpreted as the ra-
tio of elastic deformation resulting from adhesion to
the effective range of surface forces. Another dimen-
sionless number, called transition parameter A, was
introduced by Maugis [11], and the transition pa-
rameter is related to p by A=157. For an appropri-
ate use of the adhesion models, an adhesion map
has been constructed by Johnson and Greenwood
[12] using the Dugdale force-separation law with two
parameters: |1 (or A) and P, where the dimension-
less load parameter P is the ratio of the applied
load to the adhesion force. The JKR theory is appli-
cable to large radius compliant solids (i > 5) and
the DMT theory applies to small radius rigid solids
(1 <0.1). Physically, the JKR theory accounts for
adhesion forces only within the expanded area of
contact, whereas the DMT theory accounts for ad-
hesion forces only just outside the contact circle.
Table 1 represents the major assumptions and limi-
tations inherent to each theory.

3. COMPRAISON OF THE CONTACT
STIFFNESS OF VARIOUS MODELS

To compare the JKR model with the Hertz model,
especially the influence of the adhesion force on the
contact stiffness, S, itis convenient to make Eq. (7)
dimensionless as

12 V3

3 |6 (3)2
. a, P |P \P

(10)

which is always larger than (or equal to) unity as
expected. The dimensionless load parameter P
dominates the change in the contact radius (con-
tact stiffness) in the JKR model. The radius a .
increases with the work of adhesion Ay and with
decreasing applied load. This has been discussed
in'Yang’s work [13]. However, there is no such analy-
sis about the DMT model. Division of Eq. (5) by Eq.
(3) yields

1/3
ﬁ :M :(1.'.2)
S a P

H H

(11)

From Eq. (11), we know that the contact stiffness
(contact radius) also increases with the work of
adhesion and with decreasing applied load, as in
the JKR model.

Fig. 1a shows that the indentation radius is con-
trolled by the work of adhesion when the load is
less than 10 mN. For a nanoindentation tip radius
1 um, and the work of adhesion between the tip and
film, 100 mJ/m?, the ratio a, ./a,, in the JKR model
decreases from 12.4 at the applied load 1 nNto 1.5
at load of 1 pN, and in the DMT model, the ratio
a,/a, decreases too from 8.6 at the load of 1 nN
to 1.2 at the load of 1 uN. Gradually, the ratios for
both models reach the value of 1 as the load ap-
proaches 1 mN. At small loads, the radius increases
sharply with the work of adhesion. It proves that
under small loads, the contact radius is dominated
by the work of adhesion and the tip radius R. Under
large loads, the work of adhesion is negligible com-
pared to the strain energy, which controls the defor-
mation of the specimen surface. In conclusion, both
in JKR and DMT models, for a small load and a



Effect of work of adhesion on nanoindentation

14

- AyR=100(nJ/m)
12 \

[ i - - - DMT |
10} \ —JKR | -
8
X
R
s 6f
4k
2k
0 1 L 1 1 1
-7 -6 -5 -4 3 2 -1

log(P(mN))

large indenter size, the change in work of adhesion
controls the contact radius between the indenter
and the substrate. On the contrary, for a large load
and small size of the indenter, the elastic deforma-
tion dominates.

Also, from Egs. (10) and (11), it can be seen that
the dimensionless load parameter, P=P/(TIAR),
independently controls the influence of the work of
adhesion. In Fig. 1b, when the value of AyR/P is
less than 0.1, the influence of the work of adhesion
is still insignificant. With the value increasing to 102,
the corresponding value is so large that the work of
adhesion must not be ignored and would play the
main role in the process of contact.

It should be noted that, in Figs. 1a and 1b, with
the same parameter AyR, the values denoted by
the dashed curve is always larger than that of the
solid curve at most sites, which means that the in-
fluence of work of adhesion in JKR model is more
prominent than the DMT model. Actually, dividing
Eq.(7) by Eq.(5), the ratio between a , .and a,, . is
given as:

SJKR - aJKR -
SDMT aDMT
_ _ 2 V3
1+3/P +[6/P +(3/P)’] (12)

1+2/P

From Eq. (12) and Fig. 2, we know that with in-
creasing work of adhesion, the JKR model has more
influence on the contact stiffness (contact radius).
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Fig. 1. (a). Influence of work of adhesion Ay, and applied load P on nanoindentation tip radius ratio in both
JKR and DMT models; (b) Influence of dimensionless number AyR/P on nanoindentation tip radius ratio in
both JKR and DMT models.

Also, an ultimate value, /3 , can be deduced with
the decrease of applied load.

4. COMPRAISON OF THE MD MODEL
WITH THE HERTZ MODEL

By using the Dugdale model, Maugis proposed the
MD model [11] and described the adhesion force
between the tip and the sample by a pair-wise sum-
mation of the molecules via a Lennard-Jones po-
tential. In the MD model, itis found that such model
is the general case in describing the contact and
both the JKR and DMT models were special cases.
The transition between the JKR and DMT models
was investigated by Maugis and Gauthier-Manuel
[14], who used the ‘Dugdale’ (square well) potential
to describe attractive forces between contacting
spheres and obtained the following equations:

1
EAé[\/mz —1+(m?* -2)arccos(1/ m)] +

4 (13)
g)\za_z[\/m2 —1arccos(1/ m) -m +1] =1,

P=2a’ —Aéz[\/mz -1+m’ arccos(1/m)], (14)

— 13 _ 1/3
where a/a=(K/MaR®) , cle=(KITMAR?) , m=
c/a, P = P/(T[A\Rz)m, and c is the outer radius
given as c=a+0.97¢.

It is difficult in the MD model to obtain the ex-
plicit expression relating a and P as was the case
in JKR and DMT models, because there is another
parameter that varies with A. It is necessary to use
numerical calculations to obtain the solution. From
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Fig. 2. The ratio of a . to a,,,; vs the dimension-
less number AyR/P. When the value of increases,
the ratio would increases from the lower critical
value to the upper one. The lower critical value, 1.0,
shows that when surface energy can be ignored,
the contact radii in both JKR and DMT models are
similar. Actually they are similar to what the Hertz
model predicted. The upper critical value, 3", how-
ever, shows the difference of contact radius between
the JKR and the DMT models.

Fig. 3 for A = 1.5, the MD curve is in between the
JKR and DMT curves. The conclusion about the tran-
sition between the JKR model and the DMT model
can be verified numerically. When A = 0.1, the curve
for the MD model approaches the curve due to the
DMT model and in the case A = 5, the curve for the
MD model approximately coincides with that for the
JKR model. So, the JKR and the DMT models are
two special cases of the MD model.

5. CONCLUSION

The influences of the dimensionless load parameter,
P =P/(TtAVR), and the transition parameter, A, on
the nanoscale contact area (contact stiffness) have
been analyzed and the importance of the work of
adhesion for shallow nanoindentation has been vali-
dated through comparison of the JKR, DMT and MD
models with the Hertz model. With a small applied
load, the work of adhesion does play a key role in
the contacting and is sure indispensable. The differ-
ence between the JKR and DMT models is also dis-
cussed and the essence of the difference is brought
forward. The numerical examples show that both the
JKR and DMT models are, respectively, the upper
and lower limits of the MD model. So the MD model
is the general case and can deal with most materi-
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Fig. 3. Effect of applied load P on nanoindentation

tip radius ratio in JKR, DMT and MD models when
A=1.5and AyR=100 nJ/m.

als in contact. A large body of experiment results
[15] showed that, in general, the atomic force mi-
croscopy (AFM) measurements were mostly lo-
cated in the regime of the MD model. So consider-
ing the accuracy of the experiments, it is more suit-
able to use the MD model to deal with the problem.

There is no doubt that as the scale of mecha-
nisms becomes smaller, interest in mechanical prop-
erties on a nanometer scale and smaller, and the
effect of surface forces and adhesion, will continue
to increase [1]. The so-called ‘pico-indenter’ with
combination of the nanoindenter and the AFM would
be the case that adhesion and surface forces play
more important role.
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