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A B S T R A C T :  The mode I plane strain crack tip field with strain gradient effects is presented in 
this paper based on a simplified strain gradient theory within the framework proposed by Acharya 
and Bassani. The theory retains the essential structure of the incremental version of the conventional 
J2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions 
beyond the conventional ones are required. The strain gradient effects are considered in the constitutive 
relation only through the instantaneous tangent modulus. The strain gradient measures are included 
into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as 
that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under 
the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field 
for a compact tension specimen. The calculated results clearly show that the stress level near the crack 
tip with strain gradient effects is considerable higher than that in the classical theory. The singularity 
of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity 
of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent 
and increases monotonically as the radius of the calculated circular contour decreases. 
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1 I N T R O D U C T I O N  

Elssner et alfl] estimated the stress level near 

the tip of an interfacial crack between a niobium sin- 

gle crystal and a sapphire single crystal in a series 

of experiments. It is about 10 times the tensile yield 

stress. Hutchinson [2] pointed out, however, that  ac- 

cording to the classical theory of plasticity, that  stress 

level should not have been more than 4~5 times the 

yield stress. In addition, Elssner et al. [1] observed that  

the interface between those two materials remained 

atomistically sharp, i.e., the crack tip was not blunted 

even though there were a large number of dislocations 

in niobium. It is an evident contradiction between the 

experimental results and the classical theory of plas- 

ticity. 

The problem may be solved through strain gradi- 

ent plasticity theories. With the strain gradient men- 
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sures added into the theory of plasticity, the theoret- 

ical stress level may become somewhat higher than 

the classical one. Therefore, there are many studies 

to apply the theories of strain gradient plasticity into 

fracture analyses. 

For CS (couple-stress) theory of strain gradient 
plasticity [3,4], both the asymptotic analysis [5~s] and 

FEM cMculation [7,9] found that  the stress level esti- 

mated near a crack tip is essentially the same as that  

in the classical plasticity. It is because that no effect 

of stretch gradient is considered in CS theory. 

Wei and Hutchinson[ 1~ Chen et al. [11] and Shi 

et al.[12] have used a general phenomenological strain 

gradient plasticity theory[ 13] to study the crack tip 

field. The elevation of stress level is indeed observed 

in their analyses. But as a mode-I crack tip is ap- 

proached, the traction is found to switch to compres- 

sion. It is therefore concluded by Chen et al.[ 11] that  
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the asymptotic crack tip field in this theory has no 
domain of physical validity. 

Based on MSG (mechanism-based strain gradi- 
ent) plasticity theory [14,15], Shi et al. [161 investigated 

the asymptotic crack tip field and concluded that  this 
field in MSG theory is inseparable. Jiang et al f l  71 
presented the crack tip field with FEM of MSG the- 
ory. They observed the stress elevation and found 
that  the stress singularity exceeded or wag equal to 
the square-root singularity. 

In all work mentioned above, third-order stresses 
or couple stresses are considered, which made the 
analysis quite laborious. Retaining the essential 
structure of the conventional plasticity, Acharya and 
Bassani [ls] concluded that  it is thermodynamically 
possible to formulate a flow theory with strain gra- 

dient measures incorporated into the instantaneous 
hardening functions while preserving the linear re- 
lationship between rate quantities. However, they 
didn't  give a systematic way of constructing the tan- 
gent modulus to validate this framework. Following 
their thought, Chen and Wang [19] established a new 

hardening law based on the incremental version of 
classical J2 deformation theory. The effective strain 
gradient is only a parameter  to influence the tangent 
modulus in that  hardening law. Chen and Wang [2~ 

established a new version of the phenomenological 
strain gradient theory for crystMline solids and stretch 
gradients are introduced in a similar way as by Chen 
and Wang [19]. Based on the new theory, both  the 
asymptotic fields [21,22] and the full field solution[ 2a] 

are studied. 

The present work is motivated by Chen and 
Wang [19]. A simplified strain gradient theory based 

on the incremental version of conventional J2 defor- 
mation theory is presented here, in which the strain 
gradient measures are only parameters to influence 
the tangent modulus. In Section 2, the new consti- 
tutive relation is outlined. The FEM formulation is 
introduced in Section 3 and the calculated results are 

discussed in Section 4. 

2 N O N L I N E A R  C O N S T I T U T I V E  R E L A -  

T I O N  W I T H  S T R A I N  G R A D I E N T S  

The simplified strain gradient theory used here 
is within the framework proposed by Acharya and 
Bassani [ls]. The essential structure of the classical 
deformation theory is preserved and no extra bound- 
ary conditions beyond the conventional ones are re- 
quired in the simplified strain gradient theory. No 
higher-order stress or higher-order strain rates are in- 

t roduced either. 

The work done on the solid per unit volume is 
equal to the increment of the strain energy 

crkk ~ (2.1) (~W -~ 8 i j~e i j  Af_ __~__Oell 

where aij is the stress, eij is the strain, sij is the de- 
viatoric stress and elj is the deviatoric strain. The 
nonlinear stress-strain relation is 

2o-  e 
aij = 3e---~eij + KSijekk (2.2) 

where 5ij is the Kronecker delta and 

E 
K -- 3(1 - 2 . )  (2.3) 

where E is Young's modulus and v is Poisson's ratio�9 
The incremental version of Eq.(2.3) is 

�9 2cre. 2be 2c% . 
crij = 3r + 3r - 3--~r + KS i j i kk  (2.4) 

where a~ = (3s i js i j /2)  1/2 is the effective stress and 
c~ = (2ei jei j /3)  1/2 is the effective strain. 

In the classical deformation theory, the harden- 
ing relation is 

a~ = aod(ee) (2.5) 

where a0 is the yielding stress and A(e~) is the work 
hardening function. Thus 

&~ = a0d'(r (2.6) 

where A ' (~ )  is the tangent hardening modulus in the 
incremental version of the conventional J2 deforma- 
tion theory. 

According to the Taylor's hardening relation, the 
flow strength a is related to the dislocation density p 

a s  

= Cab  (2.7) 

where C is a constant coefficient, G is the shear mod- 
ulus and b is the magnitude of Burger's vector b. 

As pointed out by Ashby [24], the dislocations 

are stored as two types: the statistically stored dislo- 
cations and the geometrically necessary dislocations. 
Then the flow strength is 

cr = C a b v / ~  + pG = C G b v / ~ , / 1  + P___GG (2.8) 
V PS 

where Ps is the statistically stored dislocation den- 
sity and Pc is the geometrically necessary dislocation 
density. 

The density Ps has been characterized as a func- 
tion of the effective strain measure ee by numerous 
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investigators, where a strain gradient measure is ac- 
commodated by geometrically necessary dislocations. 
Hence, Gao et al. [4] proposed that  the flow strength 
in the presence of strain gradients can be expressed 

aS 

i (2.9) cr = o'oA(e~) 1 + A2(e~--- ~ 

where l is a material length scale and 7/ is a strain 
gradient measure. 

According to Fleck and Hutchinson [13] the ex- 

pression of lr/is 

~ /2  2 2 2 It/ = ll~l 1 +IcsXr (2.10) 

where I = los, ll and los are two constant material 

~//~](41)r/(1) r/(1) is one of the three length scales; rh = V 'qijk ijk, ijk 
mutually orthogonal third-order deviatoric strain gra- 
dient tensors defined by Smyshlyaev and Fleck [25] . 

Since the calculation of r/1 seems somewhat com- 
plex, a simplified strain gradient measure is proposed 

in the present paper 

and 

l~ = 11~ + lcsx~ (2.11) 

lie = v/~e,kge,k Xe = )~i jXij  (2.12) 

where Xij is the curvature tensor. The gradient of 
the effective strain rk was first proposed by Aifantis[ 26] 
and it is accommodated to the stretch gradients while 

the effective curvature Xe represents the rotation gra- 
dients. The expression (2.11) is essentially the same 
as that  of Eq.(2.10) but  more simple from the point 

of view of computation. 
In the present theory, Eqs.(2.1)~(2.4) will be re- 

tained. Only the tangent modulus in Eq.(2.6) will be 
multiplied by a coefficient R. Following the proposal 
by Chen and Wang [21,231, this coefficient can be ex- 

pressed as 
/ + lcsx~ 

R = ~/1 + 
V Ee 

Then Eq.(2.6) can be rewritten as 

= 

(2.13) 

(2.14) 

Since 

2era. 2era . 
~e = 3e----Tern = 3e---7-em 

~ k  = 5ktgm 

1 
ei j  ~--- i i j  -- ~ S i j e k k  ~- 5 i kS j l i k l  -- 5 i jSklgkl  

Eq.(2.15) can be rewrit ten as 

3K B 
grij = ( B S i k S j l  ~- 3 

where 

5ijSm + Ceijem)&r (2.16) 

20- e 
B -  

3~'e 
(2.17) 

2 ( 2 a o A ' ( r 1 6 2  

If the exponent hardening relation is used, we have 

2p ~e < cro 
A @ e )  = i'Ce'~ n (2 .18)  

~ }\~00 / O'e >_ O" 0 

and 

0 cre < (7 0 

A'(er = n s  - 1  (2.19) 

where n is the hardening exponent, ~0 is the reference 
strain and 

2(1 + u)Cro ao 
~ 0 - -  

3 E  3# 

D}~)l  = SikSj l  

D}~.)l ~-- Si jgkl  

D(3) i jk l  = e i j  ekl 

Let 

(2.20) 

(2.21) 

and then 

3 ijkl] kl 
. gre  < O" 0 

o-ij = (BD}))k~ + 3 K -  B/_}(2) CD}3~l)~kl "~ ~m + 

(7 e > 0- 0 
(2.22) 

where p = E/[2(1 + u)] is the shear modulus, E is 
Young's modulus and u is Poisson's ratio. 

Substitute Eq.(2.14) into Eq.(2.4), we get 

2ere . 2aoA'  (ee)R . 
crij --~ 3C----7 e i j  q- 3ge Ceei j - -  

20" e . 
3e~ eeei~ + K&j~ak (2.15) 

3 F E M  S I M U L A T I O N  

For a solid in the present strain gradient theory, 

the principle of virtual work is 

/ v  (si55ei5 T ~ - ~ 5 e u ) d V -  f t~ = 0  (3.1) 
d Sr 
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where t o is the prescribed traction on the boundary 
and Sr is the surface portion of the solid where tra- 

tions are prescribed. 
For the FEM formulation of a plane-strain prob- 

lem, suppose that  the z-axis is identical with the crack 
front, the y-axis perpendicular to the crack surface 
and the positive half of the x-axis lying ahead of the 
crack (as shown in Fig.l). Equation (2.22) can be 
rewritten as 

(2#D(1) + K -  2#D(2) - - s -  

O" e ~ 0" 0 

& =  (BD(I )  + K__ B_D(2 ) + CD(3))  k (3.2) 
3 

G e > O" 0 

where 

= . .~ T & (/r=~ Cryy ~y) (3.3) 

. , T 

~ =  (@~ syy "/~y) (3.4) 

Ii ~ ~ D (~) = 1 (3.5) 

0 1/2 

D (2) = 1 

0 

r e ~  e=~eyy 
2 D(3) = /eyyexx eyy 

L exyex~: exyevy 

exxexy] 
eyyexy | 

] 

(3.6) 

(3.7) 

3 K  - 2~ ( ixx  + iyy)  ~e < Go 
5 

3 K  - B 
a ( ~  + ~yy) + Cezz.  

(3.s) 
The non-vanishing displacement components in 

a plane-strMn problem are 

u= = u=(x,y) u v = uv(x,y ) (3,9) 

The J-integral of a plane-strain mode-I crack is 

J1 = /F(wn l  - naG~uz,1)dr (3.10) 

and 

{ G z z  -~- _ _  

where F is a contour starting from the lower surface of 
the crack and ending at the upper one; n~is the nor- 
mal of F; a ,/3 = 1, 2; w is the strain energy density 

and 
/ / ~ 7 k k .  (3.11) W = sijdeij + --~--(lgtl 

Two typical crack problems are studied here. 
First the crack tip field under the small scale yielding 
condition is investigated. 

The calculated domain is a circular domain cen- 
tered at the crack tip as shown in Fig.l(a).  The radius 
of the circular domain is a. The classical mode-I K-  
field is imposed on the outer boundary of this domain 
(as shown in Fig.l(a)).  The crack surface is supposed 
to be traction-free and the elastic stress intensity fac- 
tor, KI , of the remotely applied field increases mono- 

tonically. 

crack 
field 

(a) The crack tip field under the small scale 
yielding condition induced by a linear 
elastic mode-I K-field 

P 

Ir 

p' 

y 

c r a c  

W=lOcm 
v 

X 

(b) The complete field for a compact ten- 
sion specimen 

Fig.1 The calculated domain 

Second the complete field of a compact tension 
specimen as shown in Fig.l(b) is studied. The speci- 
men width is W and crack length is a. The value of 
a is usually 0.45 ~ 0.55W in a compact tension spec- 
imen. Here it is taken as 0.5W. The applied load is 

P.  

An eight-node isoparametric element is chosen 
and each node has two degrees of freedom. For the 
first problem shown in Fig.l(a) (Problem A), the ra- 
tio of ll/a is about 10 -7 to 10 -3 and the size of the 
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smallest elements is less t han  10-3/z.  For the second 

problem shown in F ig . l (b)  (Problem B), the value of 

l l / W  is about  10 . 6  to 10 -5.  The  rat io of the length 

to  the  wid th  of the  elements is made  to  be approxi- 

ma te ly  equal to a value of unity. In  bo th  problems, 

only the upper  half  of the domain  is calculated due 

to  the  symmetr ic  condition. The  half  domain  is di- 

vided circumferentially into 12 por t ions  and radial ly 

into N~ port ions,  respectively. In  order to investigate 

the  influence of the mesh, the  value of N~ is taken as 

30, 50, 100 and 200, respectively for Problem A. The  

calculated results are shown in Fig.2. It  is evident 

t ha t  when N~ = 30, the calculated results deviated 

f rom the other  results obviously. Since the results for 

N~ = 50, 100 and 200 are ahnost  identical, we will 

take N~ = 50 for P rob lem A and N~ = 80 for Prob-  

lem B in the following calculations. 

g 

0.1 

\ ,  
\ 

cr0/E=0.2% t,=0.3 

lo/a=lO -3 n=0.2 

/~'i-= 20a0 (/0)1/2 

conventional theory 
- -  present results 

�9 Chen and Wang[ 23] 

\ 
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Fig.3 Comparison with Chen and Wang [2a], 
without strain gradient effects, l0 is a 
reference length 
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Fig.2 Calculated effective stress ae with dif- 
ferent meshes 

4 C A L C U L A T E D  R E S U L T S  

In  order to verify the reliability of tl~e present 

program,  we first investigate the case of the classi- 

cal deformat ion theory. Wi th  ll = 0, our calculation 
is compared  with the result of Chen and Wang  [23] for 

P rob lem A. Bo th  results are p lo t ted  in Fig.3. The  pa- 

rameters  are the same as those by Chen and Wang  [23]: 

cro/E = 0.2%, ~ = 0.3, n = 0.2, KI  = 20ao(11) 1/2. 
The two results are almost  identical, which means 

tha t  our p rogram is reliable. 

The  calculated results for Problem A are shown 

in F i g s . 4 ~ l l .  

The  effect of the material  length scale ll on the 

effective stress cre near the crack t ip is shown in Fig.4. 

The  mater ia l  parameters  are: c%/E = 0.2%, ~ = 0.3, 

n -= 0.2, K I -~- cr0(a) 1/2 and los = 2/1. One can see 

from Fig.4 tha t  there is a domain domina ted  by the 

s t ra in  gradient near the crack tip. The  singularities of 

the near- t ip stress field are almost  the same for diff- 

Fig.4 Normalized effective stress (re/or0 ver- 
sus normalized distance r/a with var- 
ious values of lz/a for both the strain 
gradient theory and classical theory 
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Fig.5 Normalized stress components cr~.~./a0 
and ao0/cr0 versus normalized distance 
r/ll  for both the strain gradient theory 
and classical theory 



Vol.20, No.3 

100 

o 10 
b 

b 

1 

0.1 

Xia S e t  al.: Crack T ip  Field and J- in tegra l  w i th  Stra in Gradient  Effect 

-. o~,n (strain gradient theory) 

- -  4r~ (strain gradient theory) 
. \  ..... Crrn (classical theory)  ::eo 
/CS=2/1 

0.01 0.1 1 10 100  1 0 0 0  

rill 

Fig.6 Normal ized  m e a n  s t ress  a.,~/G0 and 
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ized d i s tance  r / l t  for b o t h  the  s t ra in  

gradient  theory  and classical p las t ic i ty  
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Fig.7 Hydros ta t i c  s t ra in  ~,~ and  effective 

s t ra in  ee versus normal ized  d is tance  

r/l l  for b o t h  the  s t ra in  gradient  the-  

ory and classical plast ic i ty  theory  
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Fig.8 Normal ized  effective stress ae/Cr0 ver- 

SUS normal ized  dis tance  r/ l l  with  vari- 

ous values of Ics/ll  
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F i g . l l  Normal ized  J - in t eg ra l  JE l l ( l - u~ )K~]  
versus normal ized  d is tance  r/ l l  

erent material length scales 11. Outside of the strain- 

gradient-dominated domain, it is observed that all the 

results are almost identical where the strain gradient 

effects can be neglected. Away from the crack tip, 

there are an HRR type field and an elastic K-field. 
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The domain dominated by the HRR type field will di- 

minish as the material  length scale ll increases. When 

the value of Ilia is larger than  10 -3, the H R R  type 

field seems to disappear.  

Figures 5~7  show the distribution of stresses 

and strains ahead of the crack tip (at polar angle 

0 = 3.18~ The parameters  used here are: ~r0/E = 

0.2%, u = 0.3, n = 0.2, KI = 20~r0(ll) 1/2, /cs = 211, 

Ix/a = 10 -3.  The relation between /cs and ll may 

be changed and this issue will be discussed later. The 

results for the classical deformation theory are also 

plotted in these figures for comparison. 

Figure 5 shows the normalized stress compo- 

nents errs/or0 and cr00/cr0 versus the normalized dis- 
tance to the crack tip r/ll ahead of the crack tip (at 

polar angle 0 = 3.18~ The normalized mean stress 

~ / c r 0  and normalized effective stress ~e/cr0 versus 
the normalized distance to the crack tip r/ll are plot- 

ted in Fig.6. The plastic zone size is a bit greater 

than 10ll, as seen from the domain where ~e/cr 0 > i in 

Fig.6. It  can be seen from these figures tha t  the stress 

field at the outside domain tends to be the elastic K -  

field. Both the simplified strain gradient theory and 

the classical theory give the same straight tine of sIope 

- 1 / 2  in this domain. There is usually a domain dom- 

inated by the HRR type field between the crack tip 

field 'dominated by the strain gradients and the out- 
side elastic K-field. However, such a domain is found 

from Fig.5 and Fig.6 to be very small in compari- 
son with some others'  calculated results [17,23]. This 

is due to a relatively large value of ll/a. Once the 

distance to the crack tip is less than 10ll, the stress 

level predicted by the simplified strain gradient the- 

ory increases much quicker than its counterpart  in 

the classical theory. Therefore, it is obvious tha t  the 
stress level near the crack tip in the simplified strain 

gradient theory is much higher than that  in the clas- 

sical deformation theory. In addition, it is shown in 

Fig.6 that  near the crack tip the mean stress seems 

to have the square-root singularity while the singu- 

larity of the effective stress is slightly higher than  the 

square-root singularity. Therefore the singularity of 

the stress components in Fig.5 is also slightly higher 

than the square-root one. 

Figure 7 shows the hydrostatic strain e~  and ef- 

fective strain ee versus the normalized distance to the 

crack tip rill ahead of the crack tip (at polar angle 
0 = 3.18~ It  is found that  e~  is very close to e~ and 
they both  seem to have the square-root singularity. 

Since the stresses have the singularity slightly higher 
than the square-root one, we can see from Eq.(3A1) 

that the strain energy w should have a singularity 

slightly higher than r -I. 

The physical background of the length scales is 

still uncertain now. Gao et al. [27] has given an ex- 

pression which relates the length scales to some other 

material parameters, such as the Burger's vector, the 

shear modulus and the flow strength, but this expres- 

sion still has to be verified. In most cases, it is sup- 

posed that a certain relation exists among the length 

scales, in order to reduce the number of independent 

parameters. Here we investigate a few cases: Its = 0, 

l c s =  11, lcs = 211 and los = 10ll, as shown in Fig.8. 
The other parameters  are: ~ro/E = 0.2%, u = 0.3, 

n = 0.2, KI  = 20~r0(/1) 1/2, ll/a = 10 .3  �9 It  is seen 

that  the larger the rotat ion gradient length sca le /cs  

is, the higher the stress level is. This means that  in 

the present theory, the rotat ion gradients also have an 

important  effect on the stress level besides the stretch 

gradients. This conclusion is different from that  in 

a strain gradient theory with couple stress proposed 
by Chen and Wang [21]. In that  theory, as long as the 

couple stresses keep being zero on all boundaries, they 

will be zero in the whole body and, as a result, the 
rotat ion gradients will have no effect at  all. Further 

more, the near-tip slopes of the lines in Fig.8 are al- 

most the same, therefore, the singularities in the four 
cases are the same. The domain dominated by the 

H R R  type field is quite small. The larger lcs is, the 
smaller the domain is. 

The effect of the hardening exponent n on the 

stress field is shown in Fig.9. The cases of r~ = 0.1, 

0.2, 0.3, 0.4 and 0.5 are calculated. The other param- 
eters are: ~o/E = 0.2~,  u = 0.3, KI  = 20~0(ll) 1/2, 

lcs = 2ll, l l /a= 10 -3. It  is found tha t  the greater n 

is, the greater the absolute value of the slope is, i.e., 

the greater the stress singularity is. In fact, it can be 

seen from Eq.(2.13) tha t  the singularity of coefficient 
R is v -1/2 and, as mentioned before, the singularity of 

the effective strain is also r -1/2. Hence it can be con- 

eluded from Eq.(2.14) that  the singularity of the ef- 
fective stress is r -(~+1)/2. In contrast,  Jiang et al.[lS] 

s ta ted that  the crack tip singularity in MSG plastic- 

ity is essentially independent of the plastic harden- 

ing exponent n. They at t r ibute  this to the fact tha t  

the density of geometrically necessary dislocations is 

much higher than  that  of statistically stored disloca- 

tions near a crack tip. In a similar way, we should 

say that  according to our simplified strain gradient 
theory, statistically stored dislocations seem to play 

an important  role as well as geometrically necessary 

dislocations near  the crack tip. Again the domain 
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dominated by the HRR type field is small. The larger 

n is, the smaller the domain is. 

The results under different load levels are shown 

in Fig.10. The parameters  are: cro/E = 0.2%, u = 
0.3, n = 0 .2 , /cs  = 2ll, l l / a  = 10 -3. The domain out- 

side of the plastic zone is also the elastic K-field, as 

evidenced by the straight lines with the slope of - 1 / 2  

for larger r. At a smaller distance r to the crack tip, 

all curves approach to another set of straight lines, 
with the absolute value of the slope being slightly 

larger than  1/2. This means tha t  in our simplified 

strain gradient theory the singularity of stress near 

the crack tip is slightly higher than the square-root 

singularity in the elastic K-field. It  is also observed 

from Fig.10 that  the plastic zone size increases with 

the applied loading. Since the domain of the HRR 

type field is small, which is equivalent to say that  the 

size of the domain dominated by the strain gradients 

increases with the applied loading. 

The normalized J-integral  dE~l(1 - u2)K 2] ver- 

sus the normalized distance to the crack tip r / l l  ahead 

of the crack tip (at polar angle 0 = 3.18 ~ is shown in 

Fig.11. The material  parameters  are: r  = 0.2%, 

= 0.3, n = 0.2, KI  = 20r 1/2, los = 211, 
l l /a  = 10 -3. The calculated contour F is a cir- 

cle centered at the crack tip. There are totally 100 

such circles with different radii calculated here. It  is 

observed from Fig . l l  tha t  the J-integral  is pa th  in- 

dependent when the contour is in a remote domain 

(r > 10/1). The domain in which the J-integral  is 

pa th  independent is consistent with the domain of the 

elastic K-field and the H R R  type field, if there is any. 

However, in the domain dominated by the strain gra- 

dients (about r < 10/1 in this case), the J-integral  is 

no longer pa th  independent. The J- integral  increases 

monotonically as the radius r of the calculated circu- 
lar contour /~  decreases. In fact, since the singularity 

of the energy density w is slightly larger than  r -1, the 

J- integral  must monotonically increase as the radius 

r decreases. 

The calculated results for Problem B are shown 

in Figs.12(a) and (b). Two cases are investigated: 

l~ = l p m  (Case I) and l~ = 0 .1#m (Case II). The 

other parameters  in bo th  cases are: Cro/E = 0.2%, 

= 0.3, n = 0.2, croW/P = 500, /cs = 2/1, 
W = 10 cm. It  can be seen from Fig.12 that  in both  

cases the plastic zone size is about  2 •  Out- 

side of the plastic zone, the material  is linear-elastic, 

therefore the results in the simplified theory is almost 

identical with the classical results, represented by a 
straight line with the slope of - 1 / 2 .  In fact, the re- 

suits in Case I and Case I I  are also identical in the 

elastic zone. In both  cases, as long as the material  

yields, the strain gradients make the stress level much 

higher than  tha t  in the classical deformation theory. 

No domain of the HRR type field is observed. The sin- 

gularity of mean stress cr,~ is almost the square-root 

singularity while the singularity of effective stress ~ 

is higher than  the square-root singularity. In the do- 

main dominated by the strain gradients, the effective 

stress in Case I is much higher than  its counterpart  in 

Case I I  while the mean stress in Case I is only a little 
higher than  that  in Case II. Therefore, the change of It 

seems to influence the effective stress more than  it in- 

fluences the mean stress. As the value of length scale 

11 increases, the effective stress increases remarkably 

while the mean stress increases only a little. 
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the strain gradient theory and classical 
plasticity theory. W ~ 10 cm 
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5 C O N C L U S I O N  

A simplified strain gradient theory is reviewed 

in this paper. The essential structure of the classi- 

cal deformation theory is retained. No higher-order 

stresses are introduced into the simplified strain gra- 

dient theory. Strain gradient measures are incorpo- 

rated as internal variables to increase the tangent 

modulus. In this way, the FEM formulation of the 

plane-strain mode-I cracks is developed. Two typi- 

cal crack problems are studied, one is the crack tip 

field under the small scale yielding condition induced 

by a linear elastic mode-I K-field and the other is 

the complete field for a compact tension specimen. 

The numerical results show the elevation of the stress 

level, which may explain the experimental results of 

Elssner et al. [1]. It is observed that near the crack 

tip the singularity of the mean stress seems to be the 

square-root singularity while the singularity of the ef- 

fective stress is slightly higher than the square-root 

singularity. Therefore the singularity of the stress 

components is also higher than the square-root sin- 

gularity. In addition, both the hydrostatic strain and 

effective strain are of square-root singularity. As a re- 

sult, the J-integral is path dependent in the domain 

dominated by the strain gradients. The hardening 

exponent n is found to have some effects on the sin- 

gularity of stresses, while some other parameters, such 

as the length scales and the stress density factor, seem 

to have no such effects. 

R E F E R E N C E S  

1 Elssner G, Korn D, Ruehle M. The influence of in- 
terface impurities on fracture energy of UHV diffu- 
sion bonded metal-ceramic bicrystals. Scripta Metall 
Mater, 1994, 31:1037 

2 Hutchinson JW. Linking scales in mechanics. In: Kar- 
ihaloo BL, Mai YW, Ripley MI, et M. eds. Advances 
in Fracture Research. New York: Pergamon Press, 
1997. 1 

3 Fleck NA, Hutchinson JW. A phenomenological the- 
ory for strain gradient effects in plasticity. J Mech 
Phys Solids, 1993, 41:1825 

4 Fleck NA, Muller GM, Ashby MF, et al. Strain gra- 
dient plasticity: theory and experiment. Acta Metall 
Mater, 1994, 42:475 

5 Huang Y, Zhang L, Guo TF, et al. Near-tip fields 
for cracks in materials with strain-gradient effects. In: 
Willis JR ed. Proceeding of IUTAM Symposium on 
Nonlinear Analysis of Fracture. Cambridge, England: 
Kluwer Academic Publishers, 1995. 231 

6 Huang Y, Zhang L, Guo TF, et al. Mixed mode 
near-tip fields for cracks for cracks in materials with 

strain-gradient effects. J Mech Phys Solids, 1997, 45: 
439,--,465 

7 Xia ZC, Hutchinson JW. Crack tip fields in strain 
gradient plasticity. J Mech Phys Solids, 1996, 44: 
1621~1648 

8 Chen JY, Huang Y, Hwang KC. Mode I and mode II 
plane-stress near-tip fields for cracks in materials with 
strain gradient effects. Key Engng Mater, 1998, 145: 
19~28 

9 Huang Y, Zhang L, Gno TF, et al. Fracture of ma- 
terials with strain gradient effects. In: Karihaloo BL, 
Mai YW, Ripley MI, et M. eds. Advances in Frac- 
ture Research. Amsterdam: Pergamon Press, 1997. 
2275~2286 

10 Wei Y, Hutchinson JW. Steady-state crack growth 
and work of fracture for solids characterized by strain 
gradient plasticity. Y Mech Phys Solids, 1997, 45: 
1253~1273 

11 Chen JY, Wei Y, Huang Y, et al. The crack tip fields in 
strain gradient plasticity: the asymptotic and numer- 
ical analyses. Engng Fract Mech, 1999, 64:625~648 

12 Shi MX., Huang Y, Hwang KC. Fracture in the higher- 
order elastic continuum. J Mech Phys Solids, 2000, 48: 
2513~2538 

13 Fleck NA, Hutchinson JW. Strain gradient plasticity. 
In: Hutchinson JW, Wu TY eds. Advances in Applied 
Mechanics, vol. 33. New York: Academic Press, 1997. 
295 

14 Gao H, Huang Y, Nix WD, et al. Mechanism-based 
strain gradient plasticity I. Theory. J Mech Phys 
Solids, 1999, 47:1239 

15 Huang Y, Gao H, Nix WD, et al. Mechanism-based 
strain gradient plasticity II. Analysis. J Mech 
Phys Solids, 2000, 48:99 

16 Shi MX, Huang Y, Gao H, et al. Non-existence of sep- 
arable crack tip field in mechanism-based strain gradi- 
ent plasticity. Int J Solids Struct, 2000, 37:5995~6010 

17 Jiang H, Huang Y, Zhuang Z, et al. Fracture in 
mechanism-based strain gradient plasticity. J Mech 
Phys Solids, 2001, 49:979~993 

18 Acharya A, Bassani JL. On non-locM flow theories 
that preserve the classical structure of incremental 
boundary value problems. In: Pieau A, Zaoui A eds. 
IUTAM Symposium on Micromechanics of Plasticity 
and Damage of Multiphase Materials, Paris, 1995-8- 
29,-~9-1. Netherlands: Kluwer Academic Publisher, 
1996. 3,,~9 

19 Chen SH, Wang TC. A new hardening law for strain 
gradient plasticity. Acta Mater, 2000, 48:3997~4005 

20 Chen SH, Wang TC. A new deformation theory for 
strain gradient effects. Int J Plasticity, 2002, 18: 
971~995 

21 Chen SH, Wang TC. Strain gradient theory with cou- 
ple stress for crystalline solids. Eur J Mech A / Solids, 
2001, 20:739~756 

22 Chen SH, Wang TC. Mode I crack tip field with strain 



Vol.20, No.3 Xia Set al.: Crack Tip Field and J-integral with Strain Gradient Effect 237 

gradient effects. Acta Mechanica Solida Sinica, 2000, 
13(4): 290~298 

23 Chen SH, Wang TC. Finite element solutions for 
plane-strain mode I crack with strain gradient effects. 
Int J Solids Struct, 2002, 39(5): 1241~1257 

24 Ashby MF. The deformation of plastically non- 
homogeneous alloys. Philosophical Magazine, 1970, 
21:399 

25 Smyshlyaev VP, Fleck NA. The role of strain gradients 

in the grain size effect for polycrystals. J Mech Phys 
Solids, 1996, 44:465 

26 Aifantis EC. On the microstructural origin of certain 
inelastic models. Trans ASME J Engng Mater Tech, 
1984, 106:326~330 

27 Gao H, Huang Y, Nix WD. Modeling plasticity at 
the micrometer scale. Naturewissenschaften, 1999, 86: 
507~515 


