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The joint time-frequency analysis method is adopted to study the nonlinear beh
varying with the instantaneous response for a class of S.D.O.F nonlinear system. A
frequency masking operator, together with the conception of effective time-frequen
gion of the asymptotic signal are defined here. Based on these mathematical found
a so-called skeleton linear model (SLM) is constructed which has similar nonlinear c
acteristics with the nonlinear system. Two skeleton curves are deduced which can in
the stiffness and damping in the nonlinear system. The relationship between the SL
the nonlinear system, both parameters and solutions, is clarified. Based on this w
new identification technique of nonlinear systems using the nonstationary vibration
will be proposed through time-frequency filtering technique and wavelet transform in
following paper. @DOI: 10.1115/1.1545768#
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1 Introduction

The identification of nonlinear systems has received consi
able attention in recent years because most real structures ex
some degree of nonlinearity. Various identification techniqu
have been proposed both in parametric method and nonparam
method. A good summary of the most relevant methods emplo
in dynamic testing is given in reference@1#. However, there is not
a generally applicable one. For example, with the linearizat
method, apart from potential errors, there is a drawback of h
variance in the predictions with different input and output da
With the higher order spectral analysis, there are problems
mathematical complexity, slow convergence rate, large storag
quirements and extreme computation time. With the neural
work which has been significantly advanced recently, in ma
actual cases we cannot obtain enough data to train the netw
The nonlinear modal analysis is less than successful.

The dynamic behavior of a nonlinear system generally va
with the amplitude of its response. And many transient respon
exhibit this variance in an inconspicuous way. The most succ
ful approach to studying this varying dynamic nature is offered
the Hilbert transform. In reference@2,3#, the nonlinear system is
studied using a time-varying linear model called the pseudolin
one. The backbone curve and the instantaneous logarithmic
rement of the system are obtained to describe quantitatively
nonlinear behavior of the system through the Hilbert transfo
the band-pass and low-pass filtering technique. But the bandw
of the band-pass filter and the cut-off value of the low-pass fi
have inexplicit physical interpretations and thus makes it not
facilitative in application. Later several attempts have been m
to study the nonlinearity by using the time-frequency analy
method. The authors in@4,5# used the Wigner-Ville distribution,
those in@6# used the Gabor transform, and those in@7,8# used the
wavelet transform. All these references provide more effec
identification procedures to study the nonlinear nature of ins
taneous vibration characteristics.

In our work @9#, the nonlinear system is studied based on
quadratic time-frequency distribution. The aim of this paper is
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construct a mapping operator in time-frequency domain by wh
the nonlinear system is mapped to a linear model with chang
coefficients. The relationship between the nonlinear system
the simple model, with consideration of their parameters, respo
and dynamic natures, is clarified systemically. This model in
cates the nonlinear nature of the nonlinear system in a rather
plicit way. Moreover, based on this modal, the parameters of
nonlinear system may be estimated from the nonstationary vi
tion data through a time-frequency filtering technique with hi
accuracy.

In section 2, the quadratic time-frequency distribution of t
Cohen class is briefly introduced first. This is the necessary
important foundation for time-frequency analysis, especially
the newcomers in this area. Then a so-called time-freque
masking operator, together with the effective time-frequency
gion of the asymptotic signal are defined. Also two importa
conclusions are deduced. A class of nonlinear system is mapp
a time-varying linear system through the time-frequency mask
operator in section 3. This time-varying linear system, which
called the skeleton linear model~denoted by SLM for a short! in
this paper, has the similar dynamic behavior of the correspond
nonlinear one. The nature of the nonlinearity of the system may
indicated by the relationship between the instantaneous pa
eters and the instantaneous response of the SLM. And the
sponse of the SLM is a sub-component of that of the nonlin
one. To describe the characteristics of the stiffness and dampin
the nonlinear system in visual forms, the frequency skeleton cu
and the damping skeleton curve are defined in section 4.
existence and the main nature of the nonlinearity can be seen
glance of them.

The theory advanced here results in a new identification met
through time-frequency filtering for nonlinear systems based
the measured nonstationary vibration data. The identification p
cedure will be discussed in detail in the subsequent paper.

2 Mathematical Foundation

2.1 The Quadratic Time-frequency Distribution of Non-
stationary Signals. For an arbitrary time series,x(t), we can
always have its Hilbert transform,x̃(t), as

ion
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x̃~ t !5
1

p
PVE

2`

1` x~t!

t2t
dt (1)

wherePV indicates the Cauchy principal value. With this defin
tion, x(t) andx̃(t) form a complex conjugate pair, so we can ha
an analytic signal,X(t), as

X~ t !5x~ t !1 j x̃~ t !5a~ t !eiu~ t ! (2)

in which

a~ t !5Ax2~ t !1 x̃2~ t ! (3)

w~ t !5arctan
x̃~ t !

x~ t !
(4)

and we have

x~ t !5a~ t !cosw~ t ! (5)

x̃~ t !5a~ t !sinw~ t ! (6)

If there is

1

a~ t ! Uda~ t !

dt U!Udw~ t !

dt U (7)

x(t) or X(t) is called an asymptotic signal. In the following pa
we can see that an asymptotic signal is with a narrow-band in
time-frequency plane at any given time. Its instantaneous
quency isv(t)5dw(t)/dt, and its instantaneous band-width
Dv(t)51/a(t)uda(t)/dtu.

For nonstationary signals, the commonly used signal proces
methods based on the Fourier transform are not effective in w
the signal is not expanded in both time and frequency dom
The Fourier spectrum gives only the signal’s total strength a
certain frequency, but no time-localized information. The signa
instantaneous dynamic characters cannot be shown through
Fourier transform even if no information of the signal has be
lost during the processing procedure.

Defined in the time-frequency domain, the joint time-frequen
analysis method represents the one-degree time series with a
degree function in the time-frequency plane. Tiny variance w
time in the signal can be described through this method. In
ticular, the quadratic time-frequency distribution of Cohen cla
provides an effective way to describe the energy density in
time-frequency plane, which is defined as

rx~ t,v!5
1

4p2 E
2`

1`E
2`

1`E
2`

1`

f~u,t!X* S u2
1

2
t D

•X~u1
1
2 t!e2 j ut2 j tv1 j uududtdu (8)
i
s
u

d
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where f~u,t! is the kernel function of the quadratic time
frequency distribution. For more details on the Time-Frequen
analysis, the reader is referred to reference@10#.

The linear superposition principle is not valid for any quadra
time-frequency distributions. According to the definition~8! we
have

rx11x2
~ t,v!5rx1

~ t,v!1rx2
~ t,v!1rx1x2

~ t,v!1rx2x1
~ t,v!

(9)

whererx1x2
(x,t) andrx2x1

(x,t) is called the cross-term.
Apparently the cross-term is without physical meaning. Gen

ally, high time-frequency resolution and low cross-term are
most important factors we expect in constructing a quadratic tim
frequency distribution. The Wigner-Ville distribution is not a goo
choice because the cross-term with it is too significant to be
glected. Here we use an exponential-cone-shaped kernel@11#
which is expressed by

f~ t,t!55
g~t!

A4pt2/s
expF2

t2s

4t2G utu,
utu
a

0 utu>
utu
a

(10)

where g(t) is a weighting function,t and a are adjustable
parameters.

To test the performance of this distribution, we use the follo
ing nonstationary signal:

Fig. 1 Grayscale view of the modulus of quadratic time-
frequency distribution of x „t …
x~ t !55
0 t<100

cos~2pt/4!1cos~2pt/8! 101<t<300

cosF p

2000
~0.5t2301!tG1cosF p

2000
~102420.5t !tG 301<t<1024
de-

ng
otic
vide
Fig. 1 shows that the exponential-cone-shaped kernel distr
tion is excellent with consideration of both time-frequency re
lution and the cross-term. Different from the Fourier spectr
~shown as Fig. 2!, the quadratic time-frequency distribution give
the legible local nature in both time domain and frequency
main. At a glance we see that the signal consists of t
asymptotic components with constant frequency during 101<t
bu-
o-
m
s
o-

wo

<300, and two asymptotic components with increasing and
creasing instantaneous frequency during 301<t<1024 and has
nothing whent<100.

2.2 The Time-frequency Masking Operator and the Basic
Properties. In this section, we define a time-frequency maski
operator and the effective time-frequency region of the asympt
signal. And two important theorems are deduced. These pro
APRIL 2003, Vol. 125 Õ 171
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the mathematical foundation for the time-frequency analysis
nonlinear dynamic systems discussed in the next parts.

Definition 1:
Supposerx(t,w) is the quadratic time-frequency distribution o

a continuous signalx(t), and V is a close region on the time
frequency plane

Let

rx
V~ t,v!5H rx~ t,v! ~ t,v!PV

0 ~ t,v!¹V
(11)

If the quadratic time-frequency distribution of a signaly(t),
ry(t,v), approximatesrx

V(t,v) best, we cally(t) the projection
of x(t) on V, and the mapping fromx(t) to y(t) the time-
frequency masking operator on regionV, denoted by

M ~•,V!:x~ t !→y~ t ! (12)

Obviously M (•,V) acts like a time-frequency filtering proce
dure with pass regionV.

Definition 2:
The effective time-frequency region of the asymptotic sig

x(t)5a(t)cosw(t) is defined as

Vx5Fv~ t !2
Dv~ t !

2
, v~x!1

Dv~ t !

2 G (13)

where

v~ t !5ẇ~ t ! (14)

Dv~ t !5Uȧ~ t !

a~ t !U (15)

From the definition of the asymptotic signal, Eq.~7!, we have

Dv~ t !!v~ t ! (16)

which means that the asymptotic signal is a narrow-band on
the time-frequency domain. The value of its instantaneous
quency changes from point to point in time.

Theorem 1:
Supposex(t) is an asymptotic signal with effective time

frequency regionVx . The projection of its continual function
f (x(t)) on Vx can be approximated as

M @ f ~x~ t !!,Vx#'
1

p F E
0

2p

f ~a cosw!coswdw•cosw

1E
0

2p

f ~a cosw!sinwdw•sinwG (17)

Proof:
f (x(t))5 f (a(t)cosw(t)) is a function of timet. Becausea var-

ies slowly compared with cosw, it may be considered as a var
able independent ofw. And we may take it for a constant within

Fig. 2 The Fourier spectrum of x „t …
172 Õ Vol. 125, APRIL 2003
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any period of cosw. Thusf may be considered as the function
two independent variables,a and w. Besides, it is a pseudo
periodic function ofw with a slowly varying parametera. Taking
its Fourier series expansion aboutw

f @x~ t !#5 f @a~ t !cosw~ t !#

5
C0~ t !

2
1(

n51

1`

@Ck~ t !coskw~ t !1Dk~ t !sinkw~ t !#

(18)

C0~ t !5
1

p E
0

2p

f ~a~ t !cosw!dw

Ck~ t !5
1

p E
0

2p

f ~a~ t !cosw!•coskwdw (19)

Dk~ t !5
1

p E
0

2p

f ~a~ t !cosw!•coskwdw

In the above integrals, we takea(t) for a variable independent o
w. Divide the time-frequency plane into pieces as follows:

Vk~ t,v!5H @0,1
2 v~ t !# k50

F2k21

2
v~ t !,

2k11

2
v~ t !G k51,2,3, . . .

(20)

From ~13!, ~16! and ~20!, it is obviously seen that
Vx(t,v),V1(t,v). And the central line of the two regions coin
cides with each other. The k-th order components,Ck coskw and
Dk sinkw, are localized in a narrow zone at the central line
Vk(t,v) in the time-frequency plane. Therefore only the firs
order components,C1 cosw and D1 sinw, are located on
Vx(t,v). Thus for the projection off @x(t)# on Vx(t,v), we have

M @ f @x~ t !#,Vx#'M @ f @x~ t !#,V1#

'C1~ t !cosw~ t !1D1~ t !sinw~ t !

5
1

p F E
0

2p

f ~a cosw!coswdw

•cosw1E
0

2p

f ~a cosw!sinwdw•sinwG
(21)

A continuous nonlinear function defined in a close region m
be approximated with a polynomial at any required precision.
the power series is of very important value in the analysis
nonlinear dynamic systems. Consider the projection of the s
metric power series of an asymptotic signal on its effective tim
frequency region, there is

M @ uxun
•sign~x!,Vx#'

1

p F E
0

2p

anucoswunsign~cosw!coswdw

•cosw1E
0

2p

anucoswunsign~cosw!

3sinwdw•sinwG (22)

Because
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E
0

2p

anucoswun
•sign~cosw!coswdw

5anE
0

2p

ucoswun11dw52Ap

GS n

2
11D

GS n11

2
11D an

(23)

E
0

2p

anucoswun
•sign~cosw!sinwdw50 (24)

We have

M @ uxun
•sign~x!,Vx#'

2

Ap

GS n

2
11D

GS n11

2
11D an cosw

5
2

Ap

GS n

2
11D

GS n11

2
11D an21x (25)

Rewrite ~25! as follows

M ~ uxun
•sign~x!,Vx!'m~n!an21x (26)

Where the definition of functionG~•! may be found in reference
@12#. m(n)52/Ap @G(n/211)/G((n11)/211)#, is a constant de-
pendent onn. Several terms that will be used commonly are list
as follows:

m~0!5
4

p
, m~1!51, m~2!5

8

3p
, m~3!5

3

4
,

m~4!5
32

15p
, m~5!5

5

8
, . . .

Theorem 2:
Supposex(t) is an asymptotic signal with effective time

frequency regionVx . The projections of its first two order deriva
tives onVx are

M @ ẋ~ t !,Vx#' ẋ~ t !
(27)

M @ ẍ~ t !,Vx#' ẍ~ t !

Proof:

Ẋ~ t !5@ ȧ~ t !1 ja~ t !v~ t !#ej w~ t ! (28)

Ẍ~ t !5@ ä~ t !2a~ t !v2~ t !12 j v~ t !a~ t !1 ja~ t !v̇~ t !#ej w~ t !

(29)

If a(t) andw(t) are smooth nonoscillating signals, the variab
in the brackets are slow signals compared withej w(t). So the in-
stantaneous frequencies ofẋ(t) and ẍ(t) equal tov(t). And they
are all located withinVx in the time-frequency plane. The desire
result is established.

3 Time-Frequency Filtering and the Skeleton Linear
Model „SLM …

Consider the following S.D.O.F. autonomous nonlinear syst

mÿ1F~y,ẏ!50 (30)

The response is an asymptotic signal with a changeless ins
taneous frequency when the system is a linear one. Generally
response is no longer an asymptotic signal but a multi-compo
one if there is nonlinearity in the system. But for weak nonline
systems and some special systems such as many piecewise
Journal of Vibration and Acoustics
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systems, there is one asymptotic component being dominant
call this asymptotic signal the principal component in this pap
and express it as

x~ t !5a~ t !cos@w~ t !# (31)

whose instantaneous amplitude,a(t), and instantaneous fre
quency,v(t)5dw(t)/dt, can be calculated as follows

a~ t !5Ax2~ t !1 x̃2~ t ! (32)

v~ t !5
x~ t !x8 ~ t !2 x̃~ t !ẋ~ t !

x2~ t !1 x̃2~ t !
(33)

where x̃(t) is the Hilbert transform ofx(t). a(t) and v(t) are
variables varying slowly with time.

The response signal of~30! can be expressed as

y~ t !5x~ t !1z~ t ! (34)

Wherez(t) is the residual signal including the sub-harmonic a
super-harmonic components ofx(t). z(t) and its derivatives are
of much lower energy compared withx(t) and its derivatives.

We use the following Duffing equation to illustrate the tim
frequency behavior of the response signal.

ÿ10.05ẏ1p2
•~0.2y18y3!50

y~0!52, ẏ~0!50, ÿ~0!50

The nonlinearity in this system is rather significant. The Four
Spectrum and modulus of the quadratic time-frequency distri
tion of y(t) at t50;204.8 are plotted in Figs. 3 and 4. Th
Fourier Spectrum shows thaty(t) is a signal with a broad band
But through the quadratic time-frequency distribution we see t
in fact y(t) is a quite simple asymptotic signal with an instant
neous frequency decreasing with time.

Now consider the projection of Eq.~30! on Vx , there is

M ~mẍ1mz̈1F~x1z,ẋ1 ż!,Vx!50 (35)

Fig. 3 The Fourier spectrum

Fig. 4 The quadratic time-frequency distribution
APRIL 2003, Vol. 125 Õ 173
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M ~z,Vx!5M ~ ż,Vx!5M ~ z̈,Vx!50 (36)

For the projection ofF(x1z,ẋ1 ż) on Vx , except from those
terms derived fromx(t), only a very little fraction of the nonlin-
ear terms associated withz(t) and its derivatives have the poss
bility to be nonzero. Ifz(t) is the infinitesimal ofx(t), these terms
are also the infinitesimal ofx(t), or the infinitesimal with high
orders. Neglecting the contributions ofz(t) and its derivatives in
M (F(x1z,ẋ1 ż),Vx), one has

M ~mẍ1F~x,ẋ!,Vx!50 (37)

Substituting~21!, ~27! to ~37!, it is deduced that the principa
component x(t) satisfies the following differential equatio
approximately

ẍ12h0ẋ1v0
2x50 (38)

where

v05F 1

pmaE0

2p

F~a cosw,2av sinw!coswdwG1/2

(39)

h052
1

2pmav E
0

2p

F~a cosw,2av sinw!sinwdw (40)

This is a linear system with coefficientsv0 and h0 varying
slowly with time. Its response is the principal component of th
of system~30!. And its instantaneous coefficients versus its inst
taneous response indicate the nonlinear behavior of system~30! in
a rather distinct way. So we call this time-varying linear syst
the skeleton linear model of system~30! and denote it by SLM for
a short.v0 andh0 are called the instantaneous undamped inhe
frequency and the instantaneous decay coefficient of SL
respectively.

For a S.D.O.F. nonlinear nonautonomous systems excited b
asymptotic signal, if the harmonic component is dominant in
response signal, its SLM has the same expression as~38!–~40!. It
should be noted that~38!–~40! is usually no longer valid if the
harmonic component is not dominant in the response.

The model proposed here is of the same form with the qu
linear system used in reference@2#, @3#. In @2,3#, the quasi-linear
system is used for the parameter identification of nonlinear s
tems with no illumination about the relationship between the t
systems. And the identification procedure is based on the Hil
transform and the classical filtering technique. In this paper
SLM is deduced directly from the nonlinear system through
time-frequency masking operator based on the quadratic ti
frequency distribution. The relationship between SLM and
corresponding nonlinear system, both about their parameters
their instantaneous response, is clarified systemically. Furt
more, the theory proposed here results in a time-frequency fi
ing technique for the parameter identification of nonlinear s
tems. The response signal of SLM may be accurately extra
from that of the corresponding nonlinear system by using
time-frequency filtering technique. Because response data of
the SLM and the nonlinear system are nonstationary signals
extracted result is not accurate if we use the classical proces
techniques based on the Fourier transform.

4 The Skeleton Curves
Equation~39! describes the main nature of the stiffness ver

the response, while~40! describes that of the damping. Equatio
~39! and~40! represent two surfaces. With a measured experim
tal data, we could obtain two curves located on the two surfa
respectively. We call themthe frequency skeleton curve and th
damping skeleton curveof system~30!, respectively. They give
quantitative information about the existence and main nature
the nonlinearity in the system in visual forms.

For some systems,~39! and ~40! have more compact expres
sions. Consider a system with the following form
174 Õ Vol. 125, APRIL 2003
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mÿ1P~y!1Q~ ẏ!50 (41)

whereP(y) andQ( ẏ) are real-valued odd functions ofy and ẏ,
respectively. The instantaneous parameters of the SLM are

v0~a,v!5v0~a!5F 1

pamE
0

2p

P~a cosw!coswdwG1/2

(42)

h0~a,v!5h0~av!52
1

2pavm E
0

2p

Q~2av sinw!sinwdw

(43)

In this case the two skeleton curves have only one indepen
variable, a or av. Obviously, they are both horizontal straigh
lines for a linear system. The stiffness nonlinearity or the damp
nonlinearity exists whenever the corresponding skeleton curv
not a horizontal straight line.

Suppose thatP(•) andQ(•) are polynomials, Eq.~30! becomes

mÿ1(
j 51

n

ci u ẏu j
•sign~ ẏ!1(

i 51

m

ki uyu i
•sign~y!50 (44)

according to~25!, the skeleton curves are

v0~a!5F(
i 51

m
2

Apm

GS i

2
11D

GS i 11

2
11D ki•ai 21~ t !G 1/2

5F(
i 51

m
m~ i !ki

m
•ai 21~ t !G 1/2

(45)

h0~av!5(
j 51

n
1

Apm

GS j

2
11D

GS j 11

2
11D cj•@a~ t !v~ t !# j 21

5(
j 51

n
m~ j !

2m
cj•@a~ t !v~ t !# j 21 (46)

Now we discuss the skeleton curves of some typical nonlin
systems.

„1… System with Nonlinear Spring
A spring is called a hard one if the stiffness coefficient increa

with the displacement, and a soft one if the stiffness coeffici
decreases when the displacement increases. Neglecting the h
esis during the load and unload process, the relationship betw
the elastic force and displacement can be expressed as

P~y!5k1y1k2uyuy1 . . . knuyun21y (47)

the frequency skeleton curve is

v05
1

Am
@m~1!k11m~2!k2a1m~3!k3a21 . . .

1m~n!knan21#1/2

5
1

Am
Fk11

8

3p
k2a1

3

4
k3a21 . . . 1m~n!knan21G1/2

(48)

Wherem~•! is defined in section 2. For systems with a soft sprin
there iski,0,i 52, . . . ,n. The instantaneous undamped inhere
frequency of SLM is a monotone decreasing function ofa. For
systems with hard spring, there iski.0,i 52, . . . ,n, So the in-
stantaneous undamped inherent frequency of SLM is a mono
increasing function ofa.

Consider the following system as an example:
Transactions of the ASME
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Fig. 5 The quadratic time-frequency distribution of y „t … „a… aÄ200 „b… aÄ0 „c… aÄÀ200
-

t
i

ÿ10.5ẏ1~2p!23~900y1ay3!50

y~0!52, ẏ~0!50, ÿ~0!50

Figure 5 shows the quadratic time-frequency distribution
y(t) at a5200, 0,2200. For a linear spring witha50, the in-
stantaneous frequency of responsey(t) is a constant. For a non
linear system with a hard spring, the instantaneous frequenc
y(t) decreases with time due to the amplitude decay, shown
Fig. 5~b!. And for a soft spring, it takes the contrary. Figure
shows the elastic force versus the displacement. And the
quency skeleton curve is plotted in Fig. 7.
„2… System with Liquid Damping
When an object moves in liquid at large Reynolds number,

resistance is usually in direct proportion to the n-th power of
velocity. The model with a square damping, shown as Fig. 8,
widely used one.

Fig. 6 The elastic force versus displacement
ration and Acoustics

08 to 159.226.231.70. Redistribution subject to ASME l
of

y of
as

6
fre-

the
he
s a

mÿ1ky1hu ẏu ẏ50 (49)

the damping skeleton curve is

h0~av!5
4h

3pm
av (50)

which is a straight line shown as Fig. 9.

Fig. 7 The frequency skeleton curve

Fig. 8 Damping versus velocity in a system with square
damping
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The nonlinear damping affects the instantaneous bandwidth o
response. It has no effect on the instantaneous frequency.

„3… Piecewise Linear System

Although a piecewise linear system is usually considered as
with a high degree of nonlinearity, its instantaneous respons
always an asymptotic signal. So the SLM constructed here is v
for these systems. The skeleton curves of some typical piece
linear systems deduced from Eq.~39! or ~40! are listed here.

„A… Spring with a Backlash

P~y!5H k~y2sign~y!y0! uyu.y0

0 uyu<y0
(51)

where y0 is the backlash in the spring. The frequency skele
curve is

v0~a!5HAk

m
2

2k

pm
F sin21

y0

a
1

y0

a
A12S y0

a
D 2G a.y0

0 a<y0
(52)

Fig. 9 Damping skeleton curve of a system with square
damping
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Apparently there is

lim
a→`

v0~a!5Ak

m

„B… Pre-Compressed Spring

P~y!5H ky1F0•sign~y! uyuÞ0

0 uyu50
(53)

whereF0 is the pre-compressive stress. The frequency skele
curve is

v0~a!5Ak

m
1

4F0

pam
(54)

Apparently there is:

lim
a→`

v0~a!5Ak

m

lim
a→0

v0~a!5`

„C… Bi-Linear Spring

P~y!5H k1y uyu<y0

k2y1sign~y!•~k12k2!y0 uyu.y0
(55)

The frequency skeleton curve is
v0~a!55A
k2

m
1

2~k12k2!

pm
S sin21S y0

a
D 1

y0

a
A12

y0
2

a2D a>y0

Ak1

m
a,y0

(56)
d

Apparently there is:

lim
a→`

v0~a!5Ak2

m

„D… Elasticity Saturation

P~y!5H ky uyu<y0

sign~y!•ky0 uyu.y0
(57)

The frequency skeleton curve is

v0~a!55A
2k

pm
S sin21S y0

a
D 1

y0

a
A12

y0
2

a2D a>y0

Ak

m
a,y0

(58)

Apparently there is:
lim
a→`

v0~a!50

„E… Spring and Rigid Boundary

P~y!5H 1` y.y0

ky uyu<y0

2` y,2y0

(59)

The frequency skeleton curve is

v0~a!5H 1` a>y0

Ak

m
a,y0

(60)

„F… Coulomb Friction

Q~ ẏ!5mT•sign~ ẏ! (61)

wherem is the friction coefficient.T is the normal pressure acte
on the contact interface. The damping skeleton curve is

h0~av!5
2

pm
mT•@av#21 (62)
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5 Conclusions
Based on the joint time-frequency analysis method, the skele

linear model~SLM! is constructed for a class of nonlinear syste
Solution of the SLM is the dominant sub-component in that of
nonlinear system. It may be extracted from the response da
the nonlinear system through the time-frequency masking op
tor defined in this paper. The relationship between the SLM
coefficients and the parameters in the corresponding nonli
system is deduced, as shown as Eqs.~39! and ~40!. The SLM
remains the main nonlinear behavior of the nonlinear syst
Characteristics of the stiffness and damping of the nonlinear
tem may be described quantificationally with the frequency sk
eton curve and damping skeleton curve.

The analysis advanced in this paper results in a new identifi
tion method based on the nonstationary vibration data. The id
tification procedure will be discussed in detail in the subsequ
paper.
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