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1 Introduction construct a mapping operator in time-frequency domain by which

The identification of nonlinear systems has received considéche nonlinear system is mapped to a linear model with changing

ble attention i i b  real struct ﬁ%ﬁicients. The relationship between the nonlinear system and
abie aftention in recent years because most real structures exq ésimple model, with consideration of their parameters, response

some degree of nonlinee_trity. Variou_s identification techniqu%ﬁld dynamic natures, is clarified systemically. This model indi-
have been proposed both in parametric method and nonparametfitas the nonlinear nature of the nonlinear system in a rather ex-
method. A good summary of the most relevant methods employgfikit way. Moreover, based on this modal, the parameters of the
in dynamic testing is given in referenfg|. However, there is not nonlinear system may be estimated from the nonstationary vibra-
a generally applicable one. For example, with the linearizatiafbn data through a time-frequency filtering technique with high
method, apart from potential errors, there is a drawback of higitcuracy.
variance in the predictions with different input and output data. In section 2, the quadratic time-frequency distribution of the
With the higher order spectral analysis, there are problems @bhen class is briefly introduced first. This is the necessary and
mathematical complexity, slow convergence rate, large storage iportant foundation for time-frequency analysis, especially to
quirements and extreme computation time. With the neural néie newcomers in this area. Then a so-called time-frequency
work which has been significantly advanced recently, in maryiasking operator, together with the effective time-frequency re-
actual cases we cannot obtain enough data to train the netwdtien of the asymptotic signal are defined. Also two important
The nonlinear modal analysis is less than successful. conclusions are deduced. A class of nonlinear system is mapped to
The dynamic behavior of a nonlinear system generally vari@stime-varying linear system through the time-frequency masking
with the amplitude of its response. And many transient respon<2erator in section 3. This time-varying linear system, which is

exhibit this variance in an inconspicuous way. The most succeS&lled the sklfelettr(])n Ii.ne.?r rgodcde.nott)e(:] by SL'}AJ]W a shorin i
ful approach to studying this varying dynamic nature is offered b IS paper, has the similar dynamic behavior of the corresponding

the Hilbert transform. In referend@,3], the nonlinear system is onlinear one. The nature of the nonlinearity of the system may be

. ! ) o .~ indicated by the relationship between the instantaneous param-
studied using a time-varying linear model called the pseudollne@trers and the instantaneous response of the SLM. And the re-
one. The backbone curve and the instantaneous logarithmic d

. ) o fonse of the SLM is a sub-component of that of the nonlinear
rement of the system are obtained to describe quantitatively fige 1o describe the characteristics of the stiffness and damping in

nonlinear behavior of the system through the Hilbert transforye ponlinear system in visual forms, the frequency skeleton curve
the band-pass and low-pass filtering technique. But the bandwidifiy the damping skeleton curve are defined in section 4. The
of the band-pass filter and the cut-off value of the low-pass filteistence and the main nature of the nonlinearity can be seen at a
have inexplicit physical interpretations and thus makes it not gflance of them.
facilitative in application. Later several attempts have been madeThe theory advanced here results in a new identification method
to study the nonlinearity by using the time-frequency analysirough time-frequency filtering for nonlinear systems based on
method. The authors if4,5] used the Wigner-Ville distribution, the measured nonstationary vibration data. The identification pro-
those in[6] used the Gabor transform, and thos¢ (8] used the cedure will be discussed in detail in the subsequent paper.
wavelet transform. All these references provide more effective
identification procedures to study the nonlinear nature of instan-
taneous vibration characteristics. 2 Mathematical Foundation

In our work[9], the nonlinear system is studied based on the
guadratic time-frequency distribution. The aim of this paper is to
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"= X(7)
L =7

7((t)=%PVJ’ dr (1)

wherePV indicates the Cauchy principal value. With this defini-
tion, x(t) andx(t) form a complex conjugate pair, so we can have
an analytic signalX(t), as

Frequency

X(®)=x(t)+jX(t)=a(t)e'"V @
in which
a(t) = Vx* (1) +X(1) ®3)
X(1) o i0 200 300 400 S0 BOO 700 B0
o(t)= arctanm 4) Time
d h Fig. 1 Grayscale view of the modulus of quadratic time-
and we have frequency distribution of  x(t)
x(t)=a(t)cose(t) (5)
X(t)=a(t)sine(t) (6)
If there is where ¢(6,7) is the kernel function of the quadratic time-
frequency distribution. For more details on the Time-Frequency
_1 |da)] _|de®) (7 @analysis, the reader is referred to refereft@.
a(t)| dt dt The linear superposition principle is not valid for any quadratic

X(1) or X(t) is called an asymptotic signal. In the following partlgféfrequency distributions. According to the definiti¢d) we

we can see that an asymptotic signal is with a narrow-band in the
time-frequency plane at any given time. Its instantaneous fre- _
! A ) . tw)= tw)+ t,w)+ t,w)+ t,
quency isw(t)=de(t)/dt, and its instantaneous band-width is Pr g1 0) = P (L) + s (1 0)F P (1,0) F P (1 0) 9
Aw(t)=1/a(t)|da(t)/dt. ©)
For nonstationary signals, the commonly used signal processj f :
’ L . r n I he cross-term.
methods based on the Fourier transform are not effective in Whl@']:ng )tfgr%ﬂ(ﬂ))(/,tt?]:C? cfsxszx'éé)r(r’rt])islsv;?h:l?t tpr?ygiccz)jlsnthaning Gener
the signal is not expanded in both time and frequency domai ) h - ! . N
The Fgourier spectruFr)n gives only the signal's totgl stre);gth a3y, high time-frequency resolution and low cross-term are the
certain frequency, but no time-localized information. The signalg|OSt |mpo[jt.art1t‘£a(;.tors _\I’_Vﬁ e\x/pect |nV(j,|(|)n3FrltJ(;lt)|n? a quadrt'atlc t'”ée'
instantaneous dynamic characters cannot be shown through ' iuengy Istri ltJhlon.r et rlg1n$vri-thlitei 'f‘ f ui '?}?ﬁ's rr:? ta %oon
Fourier transform even if no information of the signal has beef{!0!c€ because the cross-te L 1S {00 signimcant 1o be ne-
lost during the processing procedure. ge_ctec_i. Here we use an exponential-cone-shaped kéirigl
Defined in the time-frequency domain, the joint time-frequency/nich is expressed by
analysis method represents the one-degree time series with a two-

degree function in the time-frequency plane. Tiny variance with g(7) B t?o 7]
time in the signal can be described through this method. In par- p——y 472 1t
ticular, the quadratic time-frequency distribution of Cohen class o(t,7)= (20)
provides an effective way to describe the energy density in the 0 ltl= 7]
time-frequency plane, which is defined as t|= o
1 + o0 + o + o 1 . . . . H
pu(t,w)= _zf j f ¢(9‘7)X*(u,_7) where g(7) is a weighting function,r and « are adjustable
Am® | ) w ) w 2 parameters.
S To test the performance of this distribution, we use the follow-
X(u+ 3 e 1fiTetitngydrde (8) ing nonstationary signal:
|
0 t<100
® cog 2mt/4)+cog27t/8) 101=t<300
X =
T o
—(0.5— +cos-—— —0. <t<
cos{ 2000(0 5—30Dt 00{2000(1024 0.5)t| 301=t<1024

Fig. 1 shows that the exponential-cone-shaped kernel distribg300, and two asymptotic components with increasing and de-
tion is excellent with consideration of both time-frequency res@reasing instantaneous frequency during 8041024 and has
lution and the cross-term. Different from the Fourier spectrumothing whent<100.

(shown as Fig. R the quadratic time-frequency distribution gives
the legible local nature in both time domain and frequency do- 2.2 The Time-frequency Masking Operator and the Basic
main. At a glance we see that the signal consists of wwroperties.  In this section, we define a time-frequency masking

) . : operator and the effective time-frequency region of the asymptotic
asymptotic components with constant frequency during<ii01 signal. And two important theorems are deduced. These provide
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e " any period of cog. Thusf may be considered as the function of
two independent variableg and ¢. Besides, it is a pseudo-

1 periodic function ofe with a slowly varying parametea. Taking
0 its Fourier series expansion abapit
f[x(t)]=f[a(t)cose(t)]
3 +o0
5 Co(t
© = 02( ) +E [Cy(t)coske(t)+ D (t)sinke(t)]
* n=1
L i‘ 1 (18)
' i .. kg i
00 D.IIJS 01 015 Il‘2 0.25 .0.3 035 U.A‘ 045 05 1 2m
Froquency Co()=— | f(a(t)cosg)de
0
Fig. 2 The Fourier spectrum of  x(t)
1 2w
Cy(t)= p f f(a(t)cose) - coskede (29)
0

the mathematical foundation for the time-frequency analysis of

nonlinear dynamic systems discussed in the next parts. 1 (2n
Definition 1: ) o o ) Dk(t): _J f(a(t)COS(p)~COS|(QquD
Suppose,(t,w) is the quadratic time-frequency distribution of T Jo

a continuous signak(t), and () is a close region on the time-

frequency plane In the above integrals, we talkdt) for a variable independent of

Let ¢. Divide the time-frequency plane into pieces as follows:

AT P k [0w(®)] k=
I T . Qf(t,w)=9 [2k—1 2k+1

If the quadratic time-frequency distribution of a signglt), w(t), o) k=123...
py(t,w), approximatesp‘}(t,w) best, we cally(t) the projection 2 2
of x(t) on Q, and the mapping fronx(t) to y(t) the time- (20)
frequency masking operator on regity denoted by From (13), (16) and (20), it is obviously seen that

M(-,Q):x(t)—y(t) (12) O (t,w)COY(t,w). And the central line of the two regions coin-

cides with each other. The k-th order componefscoske and

Vi lyM(-,Q lik ime-fr ncy filtering proce- ; . . .
Obviously M(-,(2) acts like a time-frequency filtering proce D\ sinke, are localized in a narrow zone at the central line of

dure with pass regiofi.

Definition 2: QK(t,w) in the time-frequency plane. Therefore only the first-
The effective time-frequency region of the asymptotic sign§lder components,C, cose and D, sing, are located on
x(t)=a(t)cose(t) is defined as «(t,w). Thus for the projection of[ x(t)] on Q,(t,»), we have
Qx_[w(t)_ Aa;(t) w0+ Aw(t) (13) MIf[x(1)],Qy]~M[f[x(1)],Q]
~Cy(t)cose(t)+ D, (t)sine(t)
where 10 (2=
w(t)=e(t) (14) =— fo f(a cosg)cosede
a(t
Awt)= % (19) -COSep + fzwf(a cosep)singde-sine
From the definition of the asymptotic signal, E@), we have 0
Aw(t)<ow(t) (16) (21)

which means that the asymptotic signal is a narrow-band one inA continuous nonlinear function defined in a close region may

the time-frequency domain. The value of its instantaneous frée approximated with a polynomial at any required precision. So

quency changes from point to point in time. the power series is of very important value in the analysis of
Theorem 1: nonlinear dynamic systems. Consider the projection of the sym-
Supposex(t) is an asymptotic Signal with effective time- metric power _Serles of a.n asymptotlc Slgna| on its effective time-

frequency region(,. The projection of its continual function frequency region, there is

f(x(t)) on Q, can be approximated as

1 27
M[|x|“~sigr(x),Qx]%; f a"|cose|"sign(cose)cosede
0

1 2m
MLF(x(1)),Q,]~ ;[ J:) f(acosp)cosede- cose

2m
o -cos +J' a"|cose|"sign(cos
+J f(acose)singde-sing|  (17) 7, |cose|"sign(cose)
0

Proof: _ _ _ Xsinede-sing (22)
f(x(t))=f(a(t)cose(t)) is a function of timet. Because var-

ies slowly compared with cas, it may be considered as a vari-

able independent of. And we may take it for a constant within Because
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2w 30
f a"|cose|"- sign(cose)cosede
0 =}
N .
o r ( E +1 3 x
:a”f |cose|" ldp=2\7r ————a" &
0 Ty 1)
2 €0 L e
(23) J }
27 )
f a"|cosg|"- sign(cose)sinede=0 (24) o i
0 0 05 1 qumyu 2 25
We have ) )
’ Fig. 3 The Fourier spectrum
n
F(E + 1)
M |x|"-sign(x), 0]~ —= Ta” Cose systems, there is one asymptotic component being dominant. We
N rl—=+1 call this asymptotic signal the principal component in this paper,
2 and express it as
(D x(t)=a(t)cog ¢(1)] (31)
_ 2 2 an-iy (25) whose instantaneous amplituda(t), and instantaneous fre-
N \/; r n+1 quency,w(t) =de(t)/dt, can be calculated as follows
——+1
2 a(t)=Vx3(t) +X2(t) (32)
Rewrite (25) as follows X(DE(1) —X(D)X(1)
M([x|"sign(x), 2,0~ u(n)a"1x (26) o= (33)

Where the definition of functiol’'(-) may be found in reference where(t) is the Hilbert transform oik(t). a(t) and o(t) are
[12]. w(n)=2/Jm [T'(n/2+1)/T'((n+1)/2+1)], is a constant de- variables varying slowly with time.
pendent om. Several terms that will be used commonly are listed The response signal ¢80) can be expressed as

as follows:
4 8 3 y(t) =x(t) +z(t) (34)
n(0)=—, wl)=1, w2)==—, wuB)=-, Wherez(t) is the residual signal including the sub-harmonic and
77 3m 4 super-harmonic components xft). z(t) and its derivatives are
32 5 of much lower energy compared wig{t) and its derivatives.
pnld)=—, wuB)=5,... We use the following Duffing equation to illustrate the time-
157 8 frequency behavior of the response signal.
Theorem 2: g Y 2. 3y
Supposex(t) is an asymptotic signal with effective time- y+0.0y+7%(0.y+8y")=0
frequency regiof), . The projections of its first two order deriva- y(0)=2, y(0)=0, y(0)=0

tives on(}, are . L . - .
X The nonlinearity in this system is rather significant. The Fourier

M[X(t),Q,]~x(t) Spectrum and modulus of the quadratic time-frequency distribu-

. . @7 tion of y(t) att=0~204.8 are plotted in Figs. 3 and 4. The
MIX(1), 2, ]~=x(t) Fourier Spectrum shows thgft) is a signal with a broad band.
Proof: But through the quadratic time-frequency distribution we see that
. . _ in fact y(t) is a quite simple asymptotic signal with an instanta-
X(t)=[a(t) +ja(t)w(t)]el*V (28)  neous frequency decreasing with time.

Now consider the projection of E¢30) on ,, there is
(29) M(mX+mz+F(x+2z,x+2),0Q,)=0 (35)
If a(t) and ¢(t) are smooth nonoscillating signals, the variables
in the brackets are slow signals compared veiti(V. So the in-
stantaneous frequenciesx(ft) andXx(t) equal tow(t). And they

are all located withir), in the time-frequency plane. The desired
result is established.

X(t)=[a(t)—a(t) w?(t) + 2j (ta(t) +ja(t)i(t) Jel eV

3 Time-Frequency Filtering and the Skeleton Linear

Model (SLM) :
Consider the following S.D.O.F. autonomous nonlinear system =
my+F(y,y)=0 (30)
The response is an asymptotic signal with a changeless instan-
taneous frequency when the system is a linear one. Generally, the .
response is no longer an asymptotic signal but a multi-component T

one if there is nonlinearity in the system. But for weak nonlinear
systems and some special systems such as many piecewise linear Fig. 4 The quadratic time-frequency distribution
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M(z,Q,)=M(z,Q,)=M(z,Q,)=0 (36) my+P(y)+Q(y)=0 (41)

For the projection of(x+z,x+2) on {,, except from those whereP(y) and Q(y) are real-valued odd functions gfandy,
terms derived fronx(t), only a very little fraction of the nonlin- respectively. The instantaneous parameters of the SLM are
ear terms associated witt{t) and its derivatives have the possi-
bility to be nonzero. Iz(t) is the infinitesimal ok(t), these terms
are also the infinitesimal of(t), or the infinitesimal with high
orders. Neglecting the contributions pft) and its derivatives in
M(F(x+2z,x+2),Q,), one has 1 2w _ .

. . ho(a,w)=hg(aw)=— ——— Q(—awsing)sinede
M (mX+F(x,X),0,)=0 (37) 2mawm J,
Substituting(21), (27) to (37), it is deduced that the principal (43)
component x(t) satisfies the following differential equation In this case the two skeleton curves have only one independent
approximately variable,a or aw. Obviously, they are both horizontal straight
. . 2 lines for a linear system. The stiffness nonlinearity or the damping
X+2hox+ wox=0 (38)  nonlinearity exists whenever the corresponding skeleton curve is
where not a horizontal straight line.
Suppose thaP(-) andQ(-) are polynomials, Eq.30) becomes

1 27 1/2
— J P(acose)cosede (42)
0

wola,0)=wg(@)=| ——

1 27 1/2
wg= —J F(acose,—aw sing)cosede (39)

n m
mmaJo m"y+_21 cil'yl"-sigrr'y>+_21 kly|"-signy)=0  (44)
i= i=

1

ho= = 5 maw

2w
fo F(acosp,—awsing)singde (40) according to(25), the skeleton curves are

i 112
This is a linear system with coefficients, and hy varying '_+1

slowly with time. Its response is the principal component of that 2

m r
2
of system(30). And its instantaneous coefficients versus its instan- @o(a)= 2 Jm (i+1 '
r

taneous response indicate the nonlinear behavior of sy&enn =t
a rather distinct way. So we call this time-varying linear system -
the skeleton linear model of systgB0) and denote it by SLM for w(ik: 172
a short.wy andhg are called the instantaneous undamped inherent = Z by ail(t)} (45)
frequency and the instantaneous decay coefficient of SLM, [i=2 m
respectively.

For a S.D.O.F. nonlinear nonautonomous systems excited by an r
asymptotic signal, if the harmonic component is dominant in the 1 1

o(aw)=2 ——)cj-[amw(ml

response signal, its SLM has the same expressid8&s(40). It
should be noted tha38)—(40) is usually no longer valid if the —+1
harmonic component is not dominant in the response.

The model proposed here is of the same form with the quasi- ()
linear system used in referenf2], [3]. In [2,3], the quasi-linear :E ﬂc..[a(t)w(t)]ifl (46)
system is used for the parameter identification of nonlinear sys- =1 2m
tems with no illumination about the relationship between the two . . .
systems. And the identification procedure is based on the HilbertNOW we discuss the skeleton curves of some typical nonlinear
transform and the classical filtering technique. In this paper e Sems. ith i .

SLM is deduced directly from the nonlinear system through the '(A\l) System V\ﬂt Nohn Inear S.?”k?g i ficient i

time-frequency masking operator based on the quadratic times spring Is ca ed a hard one if the sti ness coefficient increases

frequency distribution. The relationship between SLM and th ith the dlsplacementl, and a soft one if the stn‘fnesg coefficient
greases when the displacement increases. Neglecting the hyster-

corresponding nonlinear system, both about their parameters SIS during the load and unload process, the relationship between
their instantaneous response, is clarified systemically. Furth % elastic force and displacement can be expressed as

more, the theory proposed here results in a time-frequency filter-
ing technique for the parameter identification of nonlinear sys- P(y)=kyy+kolyly+ ... koly|" Yy (47)
tems. The response signal of SLM may be accurately extracted .

from that of the corresponding nonlinear system by using tiBe frequency skeleton curve is

time-frequency filtering technique. Because response data of both

the SLM and the nonlinear system are nonstationary signals, the - 2

extracted result is not accurate if we use the classical processing @o \/E[M(l)k1+ﬂ(2)k2a+ﬂ(3)k3a e

techniques based on the Fourier transform.

+p(n)kya )2

4 The Skeleton Curves 1 8 3., LM
] ) ] ) =—|ki+ z—koa+ —kza*+ ... +u(n)k,a"
Equation(39) describes the main nature of the stiffness versus Jm 3 4
the response, while40) describes that of the damping. Equations 48
(39 and(40) represent two surfaces. With a measured experimen- (48)

tal data, we could obtain two curves located on the two surfac®¢herep(-) is defined in section 2. For systems with a soft spring,

respectively. We call therthe frequency skeleton curve and thehere isk;<0,i=2, ... n. The instantaneous undamped inherent

damping skeleton curvef system(30), respectively. They give frequency of SLM is a monotone decreasing functionaofor

quantitative information about the existence and main nature ®fstems with hard spring, there ks>0,j=2,... n, So the in-

the nonlinearity in the system in visual forms. stantaneous undamped inherent frequency of SLM is a monotone
For some systemg39) and (40) have more compact expres-increasing function of.

sions. Consider a system with the following form Consider the following system as an example:
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Figure 5 shows the quadratic time-frequency distribution of ho(aw)= 34777
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Fig. 5 The quadratic time-frequency distribution of
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(b)
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my+Ky+ nlyly=0

the damping skeleton curve is

y(t) at «=200, 0,—200. For a linear spring witlw=0, the in-

stantaneous frequency of respoygé) is a constant. For a non- which is a straight line shown as Fig. 9.

linear system with a hard spring, the instantaneous frequency of

y(t) decreases with time due to the amplitude decay, shown as »
Fig. 5b). And for a soft spring, it takes the contrary. Figure 6
shows the elastic force versus the displacement. And the fre-
quency skeleton curve is plotted in Fig. 7.

(2) System with Liquid Damping

When an object moves in liquid at large Reynolds number, the
resistance is usually in direct proportion to the n-th power of the
velocity. The model with a square damping, shown as Fig. 8, is a

widely used one.

Ply)

Fig. 6 The elastic force versus displacement

Journal of Vibration and Acoustics

y(1) (& @=200 (b) @=0 (c) a=—200

»
g
S e
- —— -
« W
€ T
2
2
€
s
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§ 150}
2
=3
W87 04 o6 o6

Fig. 7 The frequency skeleton curve

A

o(?)

1 .
Amplitude

v

Fig. 8 Damping versus velocity in a system with square

damping

(49)

(50)
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A Apparently there is

k
lim wo(a)= \/%

a—ow

(B) Pre-Compressed Spring

> aw
_ _ _ ky+Fo-signly) [y[#0
Fig. 9 Damping skeleton curve of a system with square P(y)= -~ (53)
damping 0 ly[=0
whereF, is the pre-compressive stress. The frequency skeleton
curve is
The nonlinear damping affects the instantaneous bandwidth of the
response. It has no effect on the instantaneous frequency. k 4F,
(3) Piecewise Linear System wo(@)= m 7am (54)

Although a piecewise linear system is usually considered as one

with a high degree of nonlinearity, its instantaneous responseApparently there is:
always an asymptotic signal. So the SLM constructed here is valid

for these systems. The skeleton curves of some typical piecewise

linear systems deduced from E®9) or (40) are listed here. lim wo(a)= \/:

(A) Spring with a Backlash a—e m
k(y—signy)yo) |yl>Yo :
P( )=[ 51 lim wo(a) =
o Iyl=ye G a-0
wherey, is the backlash in the spring. The frequency skeleton
curve is (C) Bi-Linear Spring
k 2k Yo Y Yo|? <
B \/__ it 20 1—(—0 a>y, P(y)— kiy [yl<yo (55)
wo@=1 ¥m am a a a kay+sign(y)- (ki—kz)o  y|>Yo
0 asyg
(52) The frequency skeleton curve is
|
K, Z(kl_kz)( N yo) Yo yg)
—t————|sin | |+T=\/1-=3| a=yo
m Tm a a a
wo(a)= (56)
2
— a<
m a<yo
[
Apparently there is: lim wo(a)=0
a—w
lim wo(a)= E (E) Spring and Rigid Boundary
a—o m +oo y>yo
(D) Elasticity Saturation P(y)=1 ky ly|<Yo (59)
ky lyl<Yo —®  y<—Yo
)= signy)-kyo  |Y|>Yo G7)  The frequency skeleton curve is

+o azy,

= k 60
+_

The frequency skeleton curve is

2k L[ Yo
— | — -—= =
@) e a ! a2 ¥ (F) Coulomb Friction
wo(a)= . L.
° K Q(y)=uT-signy) (61)
— a<yp whereu is the friction coefficientT is the normal pressure acted
m (58) on the contact interface. The damping skeleton curve is
2
Apparently there is: ho(aw)= ——uT: [aw] ™! (62)
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5 Conclusions [3] Feldman, M., 1994, “Non-linear System Vibration Analysis Using Hilbert
L ) Transformll. Forced Vibration Analysis Method ‘Forcevib’,” Mech. Syst. Sig-
Based on the joint time-frequency analysis method, the skeleton nal Process8(3), pp. 309-318. - )

linear model(SLM) is constructed for a class of nonlinear system. [4] Feldman, M., and Braun, S., 1995, “Identification of Non-linear System Pa-
: : . ~ : rameters Via the Instantaneous Frequency: Application of the Hilbert Trans-

SO|U.tI0n of the SLM is the dominant sub componentin that of the form and Wigner-Ville Techniques,Proc., of 13th IMAC Nashville, TN, pp.

nonlinear system. It may be extracted from the response data of g37-642.

the nonlinear system through the time-frequency masking operafs] Brancaleoni, F., Spina, D., and Valente, C., 1993, “Damage Assessment from

tor defined in this paper. The relationship between the SLM's the Dynamic Response of Deteriorating StructureZafety Evaluation Based

coefficients and the parameters in the corresponding nonlinear g’;ﬁtg'sccﬁwgigppm“hewatke H. G., Tomlinson G. R, and Yao J. T. P., eds.,

SySIe_m is deduc_ed, aS_Shown as E(@Q) and (40). The SLM [6] Spina, D., Valente, C., and Tomlinson, G. R., 1996, “A New Procedure for
remains the main nonlinear behavior of the nonlinear system. Detecting Non-Linearity From Transient Data Using Gabor Transform,” Non-
Characteristics of the stiffness and damping of the nonlinear sys- _ linear Dyn.,11, pp. 235-254.

: s : ; 7] Robertson, A. N., Park, K. C., and Alvin, K. F., 1995, “Extraction of Impulse
tem may be described quantlﬁcatlona”y with the frequenCy skel Response Data Via Wavelet Transform for Structural System Identification,”

eton curve and damping s.kele.ton curve. . . . Proceedings of The Design Engineering Technical Confereh8#IE, 84(1),
The analysis advanced in this paper results in a new identifica- pp. 1335-1344.
tion method based on the nonstationary vibration data. The iden8] Hyang, S. Y., Qi, G. Z., and Yang, J. C., 1994, “Wavelets for System Identi-

i . . A . ) fication,” Proc., of 12th IMAC Honolulu, HI, pp. 1162-1166.
tification procedure will be discussed in detail in the subsequen%g] Wang, L., 1999, “The Time-frequency Analysis of Dynamic Systems and its

paper. Applications in Non-linear Modelling,” Ph.D. thesis, Xi'an Jiaotong Univ. P.R.
China.
[10] Cohen, L., 1995Time-Frequency Analysis: Theory and ApplicatioRsentice
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