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Abstract

It has been reported recently that single carbon nanotubes were attached to AFM tips to act as nanotweezers. In order to in-

vestigate its stability, a vertical single-walled carbon nanotube (SWCNT) under its own weight is studied in this paper. The lower

end of the carbon nanotube is clamped. Firstly the governing dimensionless numbers are derived by dimensional analysis. Then the

theoretical analysis based on an elastic column model is carried out. Two ratios, i.e., the ratio of half wall thickness to radius (t=R)
and the ratio of gravity to elastic resilience (qgR=E), and their influences on the ratio of critical length to radius are discussed. It is

found that the relationship between the critical ratio of altitude to radius and ratio of half thickness to radius is approximately

linear. As the dimensionless number qgR=E increases, the compressive force per unit length (weight) becomes larger, thus critical

ratio of altitude to radius must become smaller to maintain stability. At last the critical length of SWCNT is calculated. The results

of this paper will be helpful for the stability design of nanotweezers-like nanostructures.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes are made of tiny sheets of graph-

ite, which are the hexagonal lattices of carbon. In this
specific case, carbon nanotubes are thought to be made

by wrapping into tight cylinders. Since the discovery of

carbon nanotubes [1], numerous experimental and the-

oretical investigations have been carried out. It is shown

that carbon nanotube can potentially be used in various

fields because of its superior mechanical, structural and

electronic properties to other known materials [2–5].

These nanotubes would be the preferred building block
for supporting system for the space elevator [6]. The

nanotubes would be woven into long strands and then

these ribbons of nanotubes would be entwined into one

paper-thin and metre-wide ribbon. The commercial

production of carbon nanotubes in the near future will
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turn the space elevator into reality. From the point of

view of materials selection, the resonant performance

index of single-walled carbon nanotube (SWNT) re-

sulting in E=q is one order of magnitude higher than
current materials for MEMS, therefore SWCNT possess

extraordinary performance for resonant applications [7].

The large-scale synthesis of pure carbon nanotubes is

the fundamental requirement for proposed applications

during those investigations. The most prevalent method

to synthesize aligned carbon nanotubes is to make them

grow perpendicularly to the surface of substrate. An

isolated and long carbon nanotube will offer more op-
portunities for both fundamental research and techno-

logical applications. S. Akita et al. [8] attached two

carbon nanotubes on the metal electrodes patterned on

a conventional Si tip to make up a nano-electro-me-

chanical systems (NEMS) tweezers (Fig. 1). The appli-

cation of a dc voltage to the two nanotube arms induces

their movement to approach each other. It is clearly that

the stability of carbon nanotube under various kinds of
loading (electrostatic, weight, van der Waals force, etc.)
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Fig. 2. Schematic of the single-walled carbon nanotube under its

weight, the lower end being clamped.

Fig. 1. SEM of the motion process of nanotube arms in a pair of

nanotweezers as a function of the applied voltage (from [8]).
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plays an important role in the manipulation, and par-

ticularly, a vertical SWCNT can lose its stability due to

its own weight since its weight is linearly proportional to

its length. As a result, the critical length of the arm

(SWCNT) is a crucial parameter for the design of the

NEMS tweezers.

The aim of the present paper is to find the governing
dimensionless parameters and, what is more important,

give the formula of the maximum length for a vertical

SWCNT with its lower end clamped. The analysis is

based on an elastic column model.
2. Dimensional analysis

Consider the stability of a vertical SWCNT under its

own weight, with the lower end clamped, as schemati-

cally shown in Fig. 2. Without loss of generality, we first

take a dimensional analysis for this problem to find the

governing dimensionless parameters. The functional

relationship for the critical stable length of a vertical

SWCNT is

lcr ¼ f ðE;qg;R; tÞ; ð1Þ
where lcr is the critical length of SWCNT, E the Young�s
modulus, q the density of nanotube, g acceleration of

gravity, R the radius of nanotube middle plane, and t the
half wall thickness of SWCNT.

The corresponding dimensions of the quantities in

Eq. (1) are

½lcr� ¼ ½R� ¼ ½t� ¼ L;

½E� ¼ ML�1T�2;

½qg� ¼ ML�2T�2:
Then, the basic dimensions are M , L and T . By Buck-

ingham�s p-theorem, Eq. (1) can be reduced to the di-
mensionless form as follows

lcr
R

¼ f
qgR
E

;
t
R

� �
: ð2Þ

Dimensional analysis gives the general relationships

among the independent dimensionless numbers as in Eq.
(2). Therefore, the governing dimensionless numbers for

lcr=R are qgR=E and t=R. The dimensionless number

qgR=E is the ratio of gravity to elastic resilience. The

dimensional analysis assists our understanding of this

stability problem. However, the relative importance of

each dimensionless number has to be determined by

analytical and numerical studies.
3. Elastic column model

To determine the specific function in Eq. (2), elastic

column model is used. The governing equation is given

by [9] as follows

EIx000 þ qðl� zÞx0 ¼ 0; ð3Þ
where I is the moment of inertia, q the weight of the

nanotube per unit length, l the length of SWCNT and z
is measured from the lower end (See Fig. 3).

At the clamped end (z ¼ 0) both the displacement and

the rotation angle are zero. At the free end (z ¼ l), the
boundary conditions of zero bending moment and shear

force must be satisfied, and the zero shear force

boundary condition for the free end EIx000ðz ¼ lÞ ¼ 0 can
be automatically satisfied from Eq. (3). Therefore, the

boundary conditions are
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Fig. 3. Schematic of cross-section of SWCNT.
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x0 ¼ 0 when z ¼ 0; ð4Þ

x00 ¼ 0 when z ¼ l; ð5Þ
The moment of inertia for a nanotube with radius of

middle plane, R, and thickness, 2t, is

I ¼ 1

4
p ðR
h

þ tÞ4 � ðR� tÞ4
i
: ð6Þ

The weight of the nanotube per unit length can be de-
scribed as

q ¼ qgp ðR
h

þ tÞ2 � ðR� tÞ2
i
: ð7Þ

Thus Eq. (3) can be rewritten as

2ðR2 þ t2ÞEx000 þ 4qgðl� zÞx0 ¼ 0: ð8Þ
The dimensionless numbers are introduced as

X ¼ x
R
; Z ¼ z

R
; x0 ¼ X 0; x000 ¼ 1

R2
X 000:

Thus Eq. (8) becomes the dimensionless form

2 1

�
þ t

R

� �2
�
X 000 þ 4qgR

E
ðl� zÞ

R
X 0 ¼ 0: ð9Þ

The dimensionless forms of boundary conditions in (4)

and (5) become

X 0 ¼ 0 when Z ¼ 0; ð10Þ

X 00 ¼ 0 when Z ¼ l
R
: ð11Þ

Let X 0 ¼ U , Eq. (9) can be rewritten as

2 1

�
þ t

R

� �2
�
U 00 þ 4qgR

E
ðl� zÞ

R
U ¼ 0: ð12Þ

The corresponding boundary conditions are

U ¼ 0 when Z ¼ 0; ð13Þ

U 0 ¼ 0 when Z ¼ l
R
: ð14Þ

Let t1 ¼ 1þ ðt=RÞ2, P ¼ 4 qgR
E , L ¼ l�z

R , then

2t1U 00 þ PLU ¼ 0: ð15Þ

Let g ¼ 2
3

ffiffiffiffiffiffiffi
TL3

p
, V ¼ UT�1

6L�1
2, Eq. (15) can be rewritten

as Bessel equation
d2V
dg2

þ 1

g
dV
dg

þ 1

�
� 1=32

g2

�
V ¼ 0; ð16Þ

where T ¼ P=2t1.
The Bessel equation of (16) has the general solution

V ¼ AJ1
3
ðgÞ þ BJ�1

3
ðgÞ: ð17Þ

From V ¼ UT�1
6L�1

2, Eq. (17) can be rewritten as

U ¼ T
1
6L

1
2V ¼ T

1
6L

1
2 AJ1

3
ðgÞ

h
þ BJ�1

3
ðgÞ

i
: ð18Þ

Eq. (18) could be divided into two formulae:

T
1
6L

1
2AJ1

3
ðgÞ

¼ T
1
3LA

3
1
3C 4

3

� 	 1

(
þ
X1
k¼1

ð�1ÞkðTL3Þk

k! � 3k � ½4 � 7 � � � ð3k þ 1Þ�

)
:

ð19Þ

T
1
6L

1
2BJ�1

3
ðgÞ

¼ 3
1
3B

C 2
3

� 	 1

(
þ
X1
k¼1

ð�1ÞkðTL3Þk

k! � 3k � ½2 � 5 � 8 � � � ð3k � 1Þ�

)
:

ð20Þ

Using the boundary conditions (14) in the Eqs. (18)–

(20), coefficient A must satisfy the following equation

A ¼ 0: ð21Þ
Substituting (19)–(21) into (13), we obtain

1þ
X1
k¼1

ð�1ÞkðTL3Þk

k! � 3k � ½2 � 5 � 8 � � � ð3k � 1Þ� ¼ 0: ð22Þ

Let k ¼ T ðl=RÞ3, the minimum k satisfying Eq. (22) can
be computed by numerical iteration method as

kmin ¼ 7:84; ð23Þ
then

2
qgR
E

1

1þ t
R

� 	2 lcr
R

� �3

¼ 7:84;

or

lcr
R

� �3

¼ 3:92
E

qgR
1

�
þ t

R

� �2
�
: ð24Þ

The above equation is the required relationship among

the dimensionless numbers in Eq. (2).
4. Examples and discussion

If t=R ¼ 1, the SWCNT is equivalent to a solid rod

with the radius (2t). In this case, Eq. (24) is reduced to

lcr
R

� �3

¼ 7:84
E

qgR
; ð25Þ

which is the same as the result of [9].
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The relationship between lcr=R and t=R is schemati-

cally shown in Fig. 4. The thickness of SWCNT is taken

as 0.34 nm and the Young�s modulus is taken as 1 TPa.

The value of t=R is physically confined to 0.05–0.85,

corresponding to R ¼ 3:4 and R ¼ 0:2 nm, respectively.
The curve only in this range is shown up. It is noted that

the ratio lcr=R increases monotonically with the ratio

t=R. The relationship between lcr=R and t=R is approx-

imately linear except for the beginning part of curve.

The beginning of the curve is steeper than the rest. It

means that lcr=R decreases dramatically as t=R (<0.1)

reduces, i.e., R (>1.7 nm) increases. Fig. 5 shows that the
Table 1

The critical lengths calculated by Eq. (24) according to different radii of mid

R (nm) 0.2 [10] 0.35 [11] 0.45 [12]

lcr1 (mm) 0.2745 0.3569 0.4111

lcr2 (mm) 0.3956 0.5706 0.6738

The density q of SWCNT is 1.33� 103 Kg/m3.

lcr1: 2t ¼ 0:34 nm and E ¼ 1 TPA

lcr2 : 2t ¼ 0:07 nm and E ¼ 5 TPa.
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Fig. 5. The relationship between qgR=E and lcr=R.
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Fig. 4. The relationship between t=R and lcr=R.
ratio lcr=R decreases monotonically with the increase

of the dimensionless number qgR=E. The ratio qgR=E
in Fig. 5 is physically confined to 2.6068� 10�18–

4.43156� 10�17 according to the value of R. It is noted
that the ratio t=R is taken as the same range for both
Figs. 4 and 5.

It is found that the magnitude of critical ratio of al-

titude to radius of middle plane of SWCNT is about 106

in Figs. 4 and 5 because of the high Young�s modulus

and the low density.

Let us consider several actual examples. Eq. (24) can

be rewritten as

lcr ¼ 1:576

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
qg

ðR2 þ t2Þ3

s
: ð26Þ

Eq. (26) can be used to calculate the theoretical critical

length of SWCNT. The density q of 1.33� 103 Kg/m3,

the Young�s modulus E of 1 TPa, the thickness of

SWCNT 2t of 0.34 nm are used which are responsible

for the SWCNTs. The different radii of middle plane are

used during the computation. Sawada and Hamada [16]

predicted a critical tube diameter of 0.4 nm by using
Tersoff�s potential method to the calculate cohesive en-

ergies of carbon nanotubes. Thus the radius of middle

plane, less than 0.2 nm, is disregarded. These material

parameters are substituted into Eq. (26) and the critical
dle plane of SWCNT

0.7 [13] 0.8 [14] 1.5 [15] 2.8 [15]

0.5381 0.5857 0.8813 1.332

0.9035 0.9875 1.5008 2.275
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Fig. 6. The schematic of the radius of middle plane of SWCNT versus

the critical length of SWCNT. The squares and dots from left to right

present the calculating results of 0.2, 0.35, 0.45, 0.7, 0.8, 1.5 and 2.8

nm, respectively.
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lengths of pure SWCNT are found. The different radii of

middle plane and the critical lengths lcr1 of SWCNT are

showed in Table 1 and Fig. 6.

Although most researchers have adopted the size of

0.34 nm as the wall thickness of SWCNT combined with
Young�s modulus of about 1 TPa [17], Yakobson et al.

[18], Zhou et al. [19] and Vodenitcharova et al. [20] have

suggested a much smaller thickness (about 0.07 nm)

combined with Young�s modulus of about 5 TPa. These

parameters are used to calculate the critical length lcr2,
which is also showed in Table 1 and Fig. 6. It is found

that lcr2 is about 50% larger than lcr1.
5. Conclusion

The stability of pure SWCNT under its own weight is

studied based on elastic column model, the application

background is the NEMS nanotweezers. Dimensional

analysis is applied to derive the governing dimensionless

numbers for this problem. The theoretical analysis pre-
sents the relationship among the dimensionless num-

bers: lcr=R, t=R and qgR=E. It is found that the ratio

lcr=R, which increases almost linearly with t=R, is very

large because of the high Young�s modulus and low

density. The influence of the dimensionless number

qgR=E on the vertical stability of SWCNT is also dis-

cussed, and this dimensionless number is the ratio of

gravity to elastic resilience. The analytical result shows
that as the dimensionless number qgR=E increases,

which physically means that the compression (weight)

per unit length becomes larger (with E being fixed), the

critical ratio lcr=R must decrease to maintain its stability

of the vertical SWCNT. The formula for calculating the

critical length of SWCNT is presented and several actual

examples are calculated with different wall thickness and

Young�s modulus. It is believed that this analysis will
assist the design for a NEMS tweezer with SWCNT as

its arms.
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