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Abstract

By the semi-inverse method, a variational principle is obtained for the Thomas–

Fermi equation, then the Ritz method is applied to solve an analytical solution, which is

a much simpler and more efficient method.
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Recently, Bender et al. [1] proposed a new perturbation technique based on

an artificial parameter d, the method is often called d-method [1,2]. Consider
the Thomas–Fermi equation [1–4]

u00ðxÞ ¼ x�1=2u3=2; uð0Þ ¼ 1; uð1Þ ¼ 0: ð1Þ

The basic idea of the d-method is to replace the right-hand side of the
Thomas–Fermi equation by one which contains the parameter d, i.e.

u00ðxÞ ¼ u1þdx�d: ð2Þ

The solution is assumed to be expanded in a power series in d

u ¼ u0 þ du1 þ d2u2 þ � � � : ð3Þ
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To solve un for n > 1, we need some unfamiliar functions, so it might meet

some difficulties in promoting this method.
Khuri [4], Adomian [5] and Wazwaz [6,7] applied the decomposition method

to the Thomas–Fermi equation, a review on some new recently developed

nonlinear analytical techniques can be found in detail in Ref. [8]. In this paper,

we will use the Ritz�s method to obtain an analytical solution of the problem.
By the semi-inverse method [9–11], we can easily obtain the following func-

tional:
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Z 1
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whose Euler equation satisfies the Thomas–Fermi equation.

We choose the trial function in the form

u ¼ e�bx; ð5Þ

where b is an unknown constant.
Submitting (5) into (4), the functional turns out to be a function of b
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The stationary condition of the functional (5) can be now approximately

obtained by
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b�3=2 ¼ 0; ð7Þ

which leads to the result

b ¼ 8p
5

� �1=3

: ð8Þ

A highly accurate numerical solution of the Thomas–Fermi equation has been

provided by Kobayashi et al. who give the initial slop

u0exactð0Þ ¼ �1:5880710: ð9Þ

From Eq. (5), we have

uð0Þ ¼ �1:71299: ð10Þ

The 7.8% accuracy of the initial slop is remarkably good in view of the

crudeness of the trial function. We can obtain a much better result by using a

trial function involving few parameters, such as u ¼ e�bxð1þ c1xþ c2x2 þ � � �Þ,
where ci are unknown constants to be further determined by the Ritz method.
Hereby we propose a simple variational approach to the Thomas–Fermi

equation, which reveals much better than Adomian�s decomposition method,
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d-method, and others. The present method has the rapidity of convergence, the
first-order approximation obtained by the present technology is always of high
accuracy.
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