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A hoteant

Aavsuralt

Using the constitutive equation of a rubber-like materials given by Gao (1997), this paper investigates
the problem of a cone under tension of a concentrated force at its apex Under consideration 1s the axial-

byllllllclly Lasc auu lIlC ldlgc straiii is ldKCH llllU accoumnt l llC Stre¢ss strain 11t:lus near ulc dpcx arc UU[alneu
by both asymptotic analysis and fimte element calculation The two results are consistent well When the

cone angle 1s180°, the solution becomes that of non-linear Boussinesq’s problem for tenston case
Key words large strain, rubber cone, asymptotic analysis, finite element
1. Introduction

A typical problem n nonhnear theory of elasticity 1s the determination of stress and strain m a rubber
cone acted by a concentrated force Gao and Liu (1995) gave a solution to this problem for tension case
based on the elastic law proposed by Gao (1990) When the cone angle 1s 180°, it becomes a rubber half
space, the problem can be called nonlinear Boussinesq's problem, which was analyzed for tension case by
Simmonds and Warne (1994) based on the elastic law used 1n Knowles and Sternberg (1973) As for the
compression case of the problem, there are still no result published

There are tiwo main obstacies i nonjinear elasiic theory, one is the geomeiry description of deformation,
another 1s the constitutive equation that must be as simple as possible but keep reasonable when strain 1s
large Gao (1997) proposed another elastic law that reflected the response of materials to tension and
compression, based on which, the problem of a wedge under compression was soived by Gao (1998)

In the present paper the problem of a cone under tension of a concentrated force 1s analyzed based on
the elastic law of Gao (1997) It 1s found that the cone apex 1s in uniaxial tension state, this 1s similar to that
solution obtamned by Gao and Liu (1995), however some different material behaviors governed by Gao
(1990) and Gao (1997) are revealed 1n this typical problem

2. Basic Formulae
A three-dimensional domain of rubber material 1s considered Let P and @ denote the position

vectors of a material point before and after deformation respectively, x'(1=1,2,3) 1s the Lagrangian
coordinate Two sets of local triads are defined as,

P =P/, Q =/&' )
The displacement gradient tensor 1s,
F=0,®P @

where P’ 1s the conjugate of P,, ® the dyadic symbol The summation rule 1s
mmplhied The right and left Cauchy-Green strain tensors are
D=FT F, d =F FT 3)

n which the superscript T denotes transposition D and 4 possess the same in

invariants

L=D E=d E, 1_1=1r1 E=d' E @)

where E denotes unit tensor, denotes dual product Besides, a common used mvanant ts the volume
ion ratio J,

J=Vo!Vp %)

where Ve =(*,%5,%3) (6)

* Email ycgao@center njtu edu ¢n
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(*1,*3,*;) denotes the mixed product of *;,*;,%;
Gao (1997) proposed a strain energy per unit undeformed volume,
Us=a(l+17%) @)
where a,n are material constants The Kirchhoff stress 1s
au
o=2 >° 2na(I! E-171D72) )
Then the Cauchy stress 15
r=J\F o FT =2naJ=t(rd-171a1) 9
The equilibrium equation can be written as
5 1
;T(VQ"Q )=0 (10)

3. Mapping Functions and Strain

A cone before and after deformation 15 shown m Figl (@), (b) respectively Tw
coordmates are taken such that (R,®,®) 1s spherical coordmate before deformation while (r,6,¢) 15
spherical coordinate after deformation We presume that the deformation near the apex can be described by

the following mapping functions,

[R =r*B £(&)

o
wo Lagrangian

=g, ¢{=677, A4 an
D=9
Where aand S are positive constants to be determuned, f and g are unknown functions Zg 1s the
value of & on the cone surface Let
Pe=Poer, Po-FcReo, Po=Z--Rsmoe, (12)
R 172 op
22 2 _ aQ
Qr=‘[}—=er , Q9=E-’eb’, Q¢=%=’Smge¢ (13)
r,
(?- 0
\ |
& I
|
& d | QS"
F
Fig 1 Coordinates
(a) Spherical coordinate before deformation (b) Spherical coordinate after deformation

evidently, e, (1= R,0,®,r,0,¢) 1s umt vector From (11) and (12) 1t follows

P = 1B+ pYf -0t ler -atRe0)

(14)
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Eq (14) can be inverted to obtain
Pr=r-fyl(fglep - feo)

PO =raFly N adfg'eg +[(1+ B)f - aéf leo) (1s)
P? =r P (fsmg)lep
v=»1+p)f2g' (16)

Using (13)-(15), (2) and (3) we obtain
d=r28v2{ue, e, +r*[atu—(1+B)ff (e, Deg +eg Be,)
+r¥[@2E2u+(1+ B)? f2 - 21+ Bradff 'les ®eo} an
+r2““zﬁz“2e¢, ®e,
d! =r28-22 ey @eg —r*[abu—(1+B) ff ' Ye, ®eg +eg Oe,)
+r28[a2e 2+ (14 B)2 £2 =201+ Plaff le, ®e,) (18)

2f-2a,2
+r2h-2a; ey, De,

in which

u=f'2+f2g'2, z=fElsmg 19
From(4) - (6), (17), (18), (13) and (14) we have

L=r2fv2y, I =r22emy.2y, J= ra-3fy-1,-1 (20)

4. Coordinate Transformation

In order to simphfy the expression of d and d~! we mtroduce a new coordinate system (77,£,9) m
the vicimity of @ =0, on the cross section ¢ = const, the coordinate lines are shown 1n Fig 2 Then

2 3
a a a
=rl+=02 +—0%+=—065+ 21
n=rl+= 5 5 ) (1)

The inverse expression of (21) and (11) can be written as

= _Z ay2
r=nll 2(577 )]

(22)
6 =4¢n"
According to (22) and neglecting the high order terms, the base vectors in (,£,¢) system become
0 -2 e ratnies . Qs =2 =ni(es-atne,)
on 2 23)
Qo = % = fﬂlﬂzew
then
Q7 =e, +alney, 0° =77 (eg -aéne,) 24)
Qv =¢lyiae, "
The unit vectors along 7 and & lmes are
e, =e, +abeg, e; =—abe, +eg 25)
the inverse of (25) 1s
e, =e,—atnes, eg =es +atne, (26)
Substituting (22) and (26) wnto (17), (18) and (20), 1t 1s obtained :
d=r,‘2/’[ue,, ®e, —n*(1+p)ff (e, Oes +eg Vey) @n
+n2 1+ )2 fles ®eg1+n2* 272, Be,

d71 =2 2P ue; @e; +n% (1+ ) [ (e, Oeg +es ®ey)
+n22 1+ B)? fle, ®ey1+n2F 2 22e, ®e,

Substituting (27), (28) nto (9), if we require that both ¢ and d -1 make contribution to the coefficient of

(28) Fig 2 (&,7) coordinate
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eg ®e;, , then the following condition 1s obtained,
a=2nB/(n+l)
Further, the resultant force of r must balance the external load, so we have
r2(1+a)  ~1
therefore
2 4n
f4=——
2n-3’ (2n-3)n+1)
finally 7 can be written as

/j_

1=2nan"*[Te, ®e, +n*S(e, ®es +e; Ve,)
+72% (we; ®es +Ye, ®egy)]

ch
i=2(l+a)
[T:v"z"zu"
S =—vI2zy (14 B) £
w=v2ly 211+ )2 f2 - (u+22)" N u)
lY =y 2 2ry =2 _ (4 22yl 52

qul quation ution
In order to use equation (10), the following relations for dominant terms are needed,
[ﬁ:a(pa)ﬁa-le. ﬂ:(Ha\pae .&—”:{l.l.a\/‘nae
5,7 [ & X iRE ap N 75 e
o 1, % ol
=-a(l+a)n® —=—(1+a)17 ey, ——=¢€p
an R
e & e
y—£=0, L =0, —L=-e;
L % 244
Besides, Eqs (23) and (6) give
v, 0= n2+2a ;
Substituting (32)-(36) and (24) mto (10) and negiecting the tugh order terms, 1t 1s obtained,
.50
dé ¢&
d—w+ —w-+a(l+a)T+(1+2a)S=0
a ¢
Let &, denote the value of & on the cone surface, @ the half angle of the cone apex, then we have
2(&0) =6
At the surface of the cone, traction free condition must be satisfied, so that at & =&, 1t 1s required,
S|, =0, Wy, =0
From the first of (37) and the first of (39), 1t is concluded that
§=0

(40) results 1n

f = fo =const
Then

u=flg, v=0+P)fig, z=/fo&smg
Substituting (34) and (42) nto the second of (37), 1t foliows

9

(30)

G

(32

(33

G4

(35)

(36)

(38)
(39
(40)
41

42)
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g"smg{l-(1+ B2 flng 4 Bn2[(2n+1)g'? +342])

~g2(cosg ‘%*%“'S‘" g1-(1+ p)22 fing 3 B2 49 @3)

—gScosg+(2n-1g'24%(4-g'cosg)]=0
n which

A=¢"lsmg, B=g?+ 42 (44)
At £=0 wehave

g(0)=0 (45)
(38) and the second of (39) can be combined to give,

g 4Bml =1+ gy 2n fyin when g =6, (46)

(45) and (46) are the two boundary conditions for Eq (43) so that 1t can be solved numerically Eqs (43)-
(46) show that if f; - g(&) 15 a set of solution, then kfy — g(&k~2/#) 1s also a set of solution Therefore 1t
1s sufficient to give the numerical calculation only for f3 =1 For

n=2, fo=1, @y=x/6, n/4, x/2, the curves of g(£) are o8 %
shown in Fig 3 It can be seen that the curves of g(¢) are nearly oss b L’
straight lines e
Now, we should determine the relation of f; and the load F at the oy

a0

apex Let n denote the normal of the cross section r =const then by o

integral we have

F=2m%[t nsmedd @ o1 1 ng;:;g
=4mal§0T &dg = 4ma(l+ B)-2" 13721 (1 - cos Bp) , _ Bo=7/2
[ 03 05 09 12 15
or , P
So= [——F————“]_? i-p)+F (48) Fig 3Curvesof &~g

4mna(l - cos @)

6. Finite Element Calculation

The incremental theory of total Lagrangian approach 1s adopted in the finite element calculation
Under consideration 1s the axial symmetry case The mesh division 1n the vertical cross section of the cone
1s shown 1n Fig 4 Inthe R direction the cone 1s divided into 50 layers and the size ratio of neighboring
elements is 1 2 In @ direction 1t 1s equally divided into 8 layers The generatrix length 1s taken tobe 1 5
The material parameters are taken as n=25, a=150000, F=30, @, =x/6 The calculated curve of

R(r) and the theoretical curve from (11) for @ =0 are plotted in Fig 5 The curves of r~z" for ©=0
are shown in Fig 6 The shape of the vertical cross section near the apex after deformation 1s shown n
Fig 7 It 1s shown that when » 1s small enough, the numerical results are consistent with the asymptotic
analysis For other parameters, for examples »=20, a=150000, F=30, &g=xr/6 or &g=r/4,
the curves are very similar to Fig 5 and Fig 6 so they are not plotted

7. Conclusion and Discussion
® The asymptotic analysis and finite element calculation revealed that when a cone is tensioned by a

concentrated force, the stress state near the apex 1s in uniaxial tension The stress component ™
possesses a constant angular distribution This 1s simuilar to that obtained by Gao and Liu (1995)

®  With the solution of Eq (43), the minor components of stress (7% and 7% ) can be determined

However for the same problem but based on another elastic law, Gao (1990), the minor stress

component ro‘q, 7%? cannot be determined near the apex Therefore, we conclude that the new

elastic law, Gao (1997), can reflect the material behavior more exactly than the old elastic law, Gao
(1990)

® Eq (31)shows that n>15 1s the precondition for the materials to endure a concentrated force This 1s
consistent with the analysis given by Gao and Gao (1999)
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