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Flows with Inertia in a Three-Dimensional
Random Fiber Network

XIAOYING RONG,1� GUOWEI HE,2 AND DEWEI QI1

1Department of Paper Engineering, Chemical Engineering and Imaging,
Western Michigan University, Kalamazoo, Michigan
2Laboratory for Nonlinear Mechanics, Institute of Mechanics,
China Academy of Science, Beijing, China

A fiber web is modeled as a three-dimensional random cylindrical fiber network.
Nonlinear behavior of fluid flowing through the fiber network is numerically simu-
lated by using the lattice Boltzmann (LB) method. A nonlinear relationship between
the friction factor and the modified Reynolds number is clearly observed and
analyzed by using the Fochheimer equation, which includes the quadratic term of
velocity. We obtain a transition from linear to nonlinear region when the Reynolds
numbers are sufficiently high, reflecting the inertial effect of the flows. The simu-
lated permeability of such fiber network has relatively good agreement with the
experimental results and finite element simulations.

Keywords Fiber network; Flow; Fochheimer equation; Three-dimensional
lattice Boltzmann method

Introduction

The permeability of porous media is of interest in many areas, such as paper
industries, petroleum industries, environmental studies, biological processes, and
physiological systems. Permeability as a parameter for understanding the migration
of fluid into porous media has been studied theoretically and experimentally for
many years. The fundamental aspect that has brought the most interest is the
relation of the applied pressure gradient and the resulting flow rate. For the flow
at near zero Reynolds number, the pressure gradient and the flow rate have a linear
relation, known as Darcy’s law. For small but nonzero Reynolds numbers, the press-
ure gradient is a nonlinear function of the flow rate. The experimentation that
proved this nonlinear relation was carried out by Forchheimer (1930), who indicated
that there exists a quadratic term of flow rate when the Reynolds number is suffi-
ciently high. Modeling and simulating this nonlinear relation and the inertial effect
of porous materials have brought more attention to this area.

The inertial effect in periodic and random arrays has been the focus of a large
number of studies. Koch and Ladd (Koch and Ladd, 1997; Hill et al., 2001)
simulated moderate Reynolds number flows through periodic and random arrays

�Xiaoyong Rong’s current address is Department of Graphic Communication, California
Polytechnic State University, San Luis Opispo, CA 93407.

Address correspondence to Dewei Qi, Rm. A227, Parkview Campus, Department of
Paper Engineering, Chemical Engineering and Imaging, Western Michigan University,
Kalamazoo, MI 49009. E-mail: dewei.qi@wmich.edu

Chem. Eng. Comm., 194:398–406, 2007
Copyright # Taylor & Francis Group, LLC
ISSN: 0098-6445 print/1563-5201 online
DOI: 10.1080/00986440600899963

398

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
] 

at
 2

2:
50

 1
2 

N
ov

em
be

r 
20

13
 



of aligned cylinders and spheres in two dimensions. The study showed that the
inertial term made the transition from linear to quadratic in the random arrays.
The inertial effect became smaller at the volume fraction approaching close packing.
Two-dimensional simulation considering inertia was also studied by Andrade et al.
(1999). The porous medium was created by using square plaquettes as obstacles for
fluid flow. They showed the departure from Darcy’s law in flow through high porosity
percolation structures and that at sufficiently high Reynolds numbers inertia became
relevant. The Forchheimer equation was proved to be valid for low and also a limited
range of high Reynolds numbers. Clauge and Phillips (1997) investigated the hydro-
dynamics permeability in a three-dimensional array. The disordered fibrous media
was modeled as non-overlapped cylindrical fibers for pure collagen and proteoglycan
fibers. They obtained a nonlinear region at very diluted fiber volume fraction.

Because the permeability in porous media is directly related to the pore geometry,
complex structures of porous media have brought more difficulty for modeling and
simulation. In most studies, the porous media are modeled either in two dimensions
with random arranged cylinders or spheres (Martin et al., 1998; Lee and Yang, 1997;
Ghadder, 1995) or as a three-dimensional structure using ordered cubic, body-
centered cubic, or face-centered cubic lattices (Hingdon and Ford, 1996). Koch and Hill
(2001) reviewed recent research of inertial effects on porous media. The microstructure
was found to be more important at finite Reynolds numbers than at zero Reynolds
number. To enhance the understanding of inertial effect, the simulation must be con-
sidered in three dimensions. In numerical simulation, the lattice Boltzmann (LB)
method has been employed to investigate flows in complex geometries, especially in
three-dimensional modeling and simulation. Succi et al. (1989) and Cancelliere et al.
(1990) used the LB method to simulate the flow through porous media at pore scale
and studied the microscopic behaviors of the flow. Koponen et al. (1998) employed
the LB method in a three-dimensional simulation of flow through a fiber web, the fibers
being laid in either x direction or y direction. They applied a gravitational body force to
the fluid to simulate creeping flow. Although the LB method is employed to study flow
in three-dimensional porous media, most of the simulations are focused on creeping
flow, which eliminates the inertial effect. Recently, studies have began to focus on
the nonlinear relation in porous media using the LB method. For example, Inamuro
et al. (1999) applied the LB method to simulate the isothermal flows in three-
dimensional sphere packed porous media at single porosity. The calculated pressure
drops fit with the Ergun equation for high Reynolds numbers.

Despite the numerous simulation studies, it seems that the simulation of flow
through three-dimensional random fibrous porous media with medium porosity
has not been well simulated with consideration of the quadratic term of velocity
by the lattice Boltzmann method. In this article, we use the lattice Boltzmann
method to model and simulate fluid flows through a random fiber network at
medium porosities. The fiber network is modeled with equal-sized and randomly
distributed cylinders in three dimensions. Fibers can be overlapped. This geometry
is believed to be close to that of many fibrous materials, such as paper, filters,
and textile. The correlation of pressure drop versus velocity is studied to further
prove the existence of a quadratic term of velocity in three-dimensional fibrous
materials. The effect of inertia is focused on at a porosity range of 48% to 72%.
A nonlinear behavior between the friction factor and the modified Reynolds number
is clearly observed. The simulated permeability is compared with the experimental
results (Lindsay and Brady, 1993).
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Permeability of Porous Media

A single-phase fluid flowing through microscopically disordered porous media at
low Reynolds numbers is described by Darcy’s law (Bear, 1972). The superficial flow
rate hui of a viscous fluid through a porous medium of length L is proportional to
the applied pressure difference DP and inversely proportional to the dynamic
viscosity l:

hui ¼ k

l
DP

L
ð1Þ

At low Reynolds numbers where the flow is laminar, viscous forces are predo-
minantly linear. Darcy’s law is valid. The symbol k is the permeability with the unit
of length squared. However, as Reynolds number increases, the inertial force has to
be considered, which describes the transition from viscous force predominated by
creeping flow to another inertial force governed laminar region, which gradually
passes to turbulent flow.

In order to always satisfy Darcy’s law in the creeping flow region and to
correctly capture the influence of inertia at high Reynolds numbers, the well-known
Forchheimer equation (Perry, 1984) is used. This equation consists of a linear term
of the viscous component and a power term of the inertial component:

�DP

L
¼ alhui þ bqhui2 ð2Þ

where a is the viscous coefficient, b is the inertial coefficient; they are both resistance
coefficients describing the physical properties of the porous material. At low Rey-
nolds numbers, the quadratic term of velocity is close to zero, and therefore can
be ignored, which turns the Forchheimer equation to Darcy’s law. The symbol a�1

is defined as the permeability of porous media.
The Forchheimer equation can be modified as friction factor and Reynolds

number correlation (Andrade et al., 1999):

f ¼ 1

Re0
þ 1 ð3Þ

where

f ¼ � DP

Lbqhui2
ð4Þ

Re0 ¼ bqhui
al

ð5Þ

The formula can be used for calculating the friction factor of porous media with
various geometries and porosities. The universal factors give a good comparison of
different porous materials and flow conditions. We use the Forchheimer equation to
analyze the numerical results in this study.

The Lattice Boltzmann Method

The lattice Bolzmann method has been successfully applied for simulating the inter-
action between fluid and solid particles. The kinetic nature of the lattice Boltzmann
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method enables it to simulate complex geometry such as fluid flow in porous media
(Ladd, 1994; Ladd and Verberg, 2001; Qi, 1999; Ding and Aidun, 2000; Qian, 1990;
Qian et al., 1992; Chen and Doolen, 1998; Guo et al., 2002; He and Luo, 1997a,b).

In the lattice Boltzmann (LB) method, fluid particles reside on the lattice nodes
and move to their nearest neighbors along the links with unit spacing in each unit
time step. The lattice Boltzmann equation with Bhatanaga-Gross-Krook (BGK)
single relaxation time is given by

frð~xxi þ~eer; tþ 1Þ ¼ frð~xxi; tÞ �
1

s
½ frð~xxi; tÞ � f eq

r ð~xxi; tÞ� ð6Þ

where frð~xx; tÞ is the fluid particle distribution function for the particles with velocity
~eer at position x and time t, f eq

r ð~xx; tÞ is the equilibrium distribution function, and s is
the single relaxation time.

The simulations described in this article were performed by using the D3Q15
model. It possesses a rest particle state, six links with the nearest neighbors, and eight
links with the next nearest neighbors. Periodic boundary conditions in the flow direc-
tion with bounce back on the solid nodes were used. The equilibrium distribution
function f eq

r ð~xx; tÞ is taken as

f eq
r ð~xx; tÞ ¼ xrqf 1þ 3ð~eer �~uuÞ þ

9

2
ð~eer �~uuÞ2 �

3

2
ð~eer �~eerÞ

� �
ð7Þ

where qf is the density of the fluid, ~uu is the velocity, r ¼ 1 represents the particles
moving to the nearest neighbors, r ¼ 2 represents the particles moving to the second
nearest neighbors, and r ¼ 0 represents the particles resting at the nodes. The weight
coefficient xr depends on the discrete velocity set~eer and the dimensions of space. In
the D3Q15 model, the discrete velocity set is

~eer ¼
ð0; 0; 0Þ; r ¼ 0
ð�1; 0; 0Þ ð0;�1; 0Þ ð0; 0;�1Þ; r ¼ 1
ð�1;�1;�1Þ; r ¼ 2

8<
: ð8Þ

and the weight coefficient is

xr ¼

2
9 ; r ¼ 0

1
9 ; r ¼ 1

1
72 ; r ¼ 2

8>><
>>:

ð9Þ

The mass density qf and the momentum density qf~uu are given by

qf ¼
X

r

fr; qf~uu ¼
X

r

fr~eer ð10Þ

In a widely used class of models, the kinematic viscosity n related to the relax-
ation time s for convergence is given by:

n ¼ 1

3
s� 1

2

� �
ð11Þ

In order to drive the flow, a pressure difference is imposed between the two faces
normal to the axis of the superficial flow by applying a uniform body force to the
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fluid. The LB method is modified to account for the applied external body force,
which adds a fixed amount of momentum on the fluid points at every time step
(Ladd and Verberg, 2001; Guo et al., 2002):

frð~xxþ~eerDt; tþ DtÞ ¼ frð~xx; tÞ �
1

s
½ frðx; tÞ � f eq

r ðx; tÞ� þ Fr ð12Þ

The forcing term in the present work is written as

~FFr ¼ qf xr½3ð~eer � ~GGÞ� ð13Þ

where xr is determined by Equation (9) and G
!

is a pressure gradient parameter. For
a spatially uniform force, the higher order variation can be neglected (Ladd and
Verberg, 2001) and is not considered here.

Simulation Results and Discussions

Cylindrical fibers are used to simulate the random network structure of fibrous
media. The structure is generated by randomly placing every fiber into the simula-
tion box. With this growth method, the orientation of each fiber is random on the
x-y plane. In z direction, the fibers are randomly laid with an angle less than
�15 degrees. If a fiber meets the nodes occupied by the other fibers, these fibers
occupy the same nodes. The porosity is calculated by dividing the number of nodes
occupied by the fibers by the total number of lattice nodes. Fiber in this simulation is
25 mm in diameterand 1 mm in length. The fibrous web is simulated at 0.1 mm in
thickness or the z direction. Three different grid resolutions have been tested
(64� 64� 64, 128� 128� 64, 160� 160� 80). The maximum errors are less than
4.9%, therefore the size effect can be ignored. To reduce computational load, the
data reported are based on the simulation box with lattices at 128� 128� 64. The
geometry is illustrated in Figure 1.

Notice that the porosity depends on fiber length, the diameter of cylindrical
fiber, and the orientation of fibers. It is evident that this structure is close to the
fibrous web, e.g., paper handsheet. In this work, to achieve a porosity of 72%
requires 18 fibers in random arrangement and 29 fibers for a porosity of 63%.

Fluid flows through the fiber network in z direction in order to simulate the
transversal permeability. The x and y directions of the simulation box are periodical.
The non-slip boundary condition is used at the fluid and fiber interfaces. The flow is
induced by applying a body force on fluid particles. For a given porosity, the
geometry of the fiber network is the same. There is no change of fiber positions
and orientations for every different velocity. As pressure gradient increases, the velo-
city of flow increases.

At a certain porosity, the simulation data fit to Equation (2), and the coefficients
a and b are estimated thereafter. The modified Reynolds number Re0 and the friction
factor f are calculated by using Equations (3) and (4).

The simulated pressure gradient versus velocity is plotted in Figure 2. As shown
in the figure, curves with quadratic term of velocity fit the simulation data very well.

The curves obtained by using the LB method captured the expected tendency
and the important transitions. The curve-fitting parameters a and b used in Equa-
tions (3) and (4) are given in Table I.
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As shown in the simulation results, pressure gradients versus superficial velocity
curves are nonlinear after the superficial velocity reaches higher than 25 cm=s at 72%
and 63% porosities. The curve of 48% porosity is more linear in that range, which

Figure 2. Quadratic curves fit the simulation data of pressure gradient versus superficial
velocity.

Figure 1. The geometry of simulated fiber network with 18 fibers.
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proved that inertial force has less effect in the fiber network with low porosity (Koch
and Ladd, 1997).

By plotting the modified friction factor f versus modified Reynolds number Re0,
we observed the transition zone from linear to nonlinear in terms of modified f and
Re0. The curves shown in Figure 3 agree with experimental data (Bear, 1972). It is
clear that the linear-to-nonlinear transition starts at Re0 around 10�1, which is also
agrees well with the results of Andrade et al. (1999).

Forchheimer equation, dashed line is the fit to Darcy’ law at low Re0.
The calculated permeability a�1 for a random fiber network is compared with the

experimental results of transversal permeability for hardwood. The comparison is
given in Figure 4. The simulation results showed good agreement with those obtained
by Lindsay and Brady (1993) at porosity over 60%. A slight discrepancy may reflect
the geometrical difference between the real paper and our fiber network model.

Table I. Curve-fit parameters obtained from Equations (3) and (4) for
random cylindrical fiber network

Porosity (%) al bq

48 2.028 E10 2.740 E8
63 4.926 E9 6.782 E7
72 2.680 E9 4.176 E7

Figure 3. Modified friction factor and Reynolds number show the transaction zone from lin-
ear to nonlinear of random fiber network. Solid lines are the fit to the Forchheimer equation,
dashed line is the fit to Darcy’s law at low Re0.
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The further conclusion to be drawn from the data in Figure 4 is that the per-
meability calculated with the quadratic velocity term has reasonable accuracy in pre-
dicting the permeability of a paper fiber network. The fiber network model we built
estimated well the fluid transportation of hardwood sheets.

Conclusions

In this article, we report the numerical study of the nonlinear behavior of fluid flow-
ing through a three-dimensional random fiber network in the porosity range from
48% to 72% by the LB method. We found that the curves of pressure gradient versus
superficial velocity are nonlinear after the superficial velocity reaches higher than
25 cm=s at 72% and 63% porosities. The curve at 48% porosity is more linear. It
is shown that the inertial effect is important at relatively high Reynolds numbers.
The relation between the modified Reynolds number and the friction factor are in
excellent agreement with the Forchheimer equation. The results of permeability in
the fiber network have good agreement with the experimental data.
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