Applied Mathematics and Mechanics Published by SU,
(English Edition, Vol. 19, No. 1, Jan. 1998) Shanghai, China

AN IMPROVEMENT AND PROOF OF OGY METHOD*

Yang Ling (% ¥)"? Liu Zengrong (X| % 3)"?
(Received Aug. 5, 1996, Revised July 15, 1997)

Abstract
OGY method is the most important method of controlling chaos. It stabilizes a
hyperbolic periodic orbit by making small perturbations for a system parameter. This
paper improves the method of choosing parameter, and gives a mathematics proof of
it.
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I. Introduction

Recently controlling chaos becomes an interesting sutiect. In 1990, E. Ott, C. Greogi and
J. A. Yorke! gave a concepiion of controlling chaos, and gave a controlling method known as
OGY method. There were many tesults that showed OGY method is effective. After OGY,
many methods of comrolling chaos were given, most of them were based on OGY®R 4 %67, So
OGY method is the fundament of controlling chaos. To achieve a proof of OGY is an
important task for mathematics theory of controlling chaos. This paper changes the method of
choosing parameter, and proves OGY method in mathematics.

OGY method considers the map X,.1= F,(X,) in R, where p is parameter. When
p=0, system has a hyperbolic fixed point £ =0, and it has stable manifold and unstable
manifold. OGY miethod’s aim is to stabilizie the fixed point. In controlling, for every time n, a
proper parameter p, is chosen, then the iterate X,,, = F(p,, X,) is used with initial value
X = Xo (near £ = 0) so that the sequence {X,} converges to £ =0. Thus & =0 become stable.
The key of method is how the parameter p. is chosen. In OGY, they try to make
X,.1=F(p,,X,) fall on the tangent direction of the stable manifold of £ =0 by adjusting p..
Follow this idea, they gave an approximate formula p, = A,(A, - 1) "1(X,*£,)/(g*f.), where
A, is the unstable eigenvalues of £=0, fu is the unstable direction, * is dot product,
g=38(p)/3pl,.0,8(p) is the fixed point with parameter p. g is the tangent vector of
£(p). Because every X,,,= F(p,,X,) with the above p, is near the direction of stable
manifold, and not fall on the tangent direction strictly, so it can leave £=0 just like the
statement in [1]. In fact, we can change the method of choosing p,, so that there is an invariant
region of X,,; = F(pa,X,). If the initial value X, is in this region, then for every n, X, is in
this region and the sequence { X,} converge to ¢ = 0 with velocity of a"(0< a <1). Thus we
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give an improvement of the choosing of parameter p., and complete the proof of OGY method
in mathematics.

II. Main Results
We study the iterate in R*:
Xo = Fo(X,) (2.1)

where X = (z ,y) » P 1s the system parameter. For (2.1) we assume that:

Hi. F,(X)€ C*  £=0is the hyperbolic fixed point, its stable direction is x axis and its
unstable direction is ¥ axis. In fact, we can realize it by a coordinate transformation. Z. is the
stable eigenvalues and A, is the unstable eigenvalues.

H2. &(p)=(x(p),y(p)) is the hyperbolic fixed point when the system parameter is

pUpl<P).g(p)€Ec? denote 3&(p)/apl,.o=(a,b)7,36(p)/3p*1,.0=(c,d)T.
H3. Without loss of generality, & >0,a=0,4, > 1 are assumed.

When HI1. H2. H3 are satisfied, the following theorem is proved,
Theorem 1 3 K>0,V k> K.3J Uis a neighborhzcd of € =0 denoted, Y Xa€: U, choose
p- that satisfy
an = 7n+ 2_Yu/( "‘V‘n ‘/\ (2'2)

the sequence {X,} generated oy X, . = F(p,.X,)converges to £ =0, and for every n, X,E U .
The proof of the thecrem is given by some Lemmas:
Lemmai Y&, >0,3P">0,for Yp satisfy|pl < P",

. where é,]’ are related to p, and | € | < &y, I] | < &,.

2 ~ 2
ep + bp” + ép
£(0) =(

bp + cp2 +}’p2
Proof 1It's obvious. Q. E. D.
Lemma 2 VY &,,63>0,3N,MER,Je>0. such that if Xo is in the g-neighborhood
of £(0) =0, then

mi=ax+alab+y8), 712200+ B(aF+y3)  (N2<a,B< M)
Specifically. if 1 xo/y01> 85, then (1= 83)A, < 1z/x51 < (1 + 83)4, .

if 1yo/x0! > 8, then (1= 83)2, < ly;/yol < (1 +83)4,.
And 3Py <P* whentpl < Py, if Xuis in the e/2-neighborhood of £(p). then

(1-8372) i ALz - 2(p)] 1+ N <l xy— 2(p) 1 < (1 483/2) 1 A,lz0 - x(p)] 1+ M2,
(1 =82 1 A, Lyo—y(P) I+ N2 <1y = y(p) 1< (1 +83/2) 1 A 0y0 - y(p)1 1+ M2,

where 2= {[xp - x(p) 1+ [y~ y(p) 1*].
Specifically. if 1(xg-%(p))/(yo- y(p))! > 8;. then

(1 _83)'{.‘ < |(x1‘x(P))/(x0"x(P))| < (1+63)Asv
it | (yo - ¥(p))/(x0 - 2(p)) I > &,. then

(1 -83)A, <! (30 - y(p))/(x0 - y(p)) 1 < (1+3y)a,

where (z,y,) = X, = F,(Xo).
Proof The results are proved easily. Q E. D.
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Denote [, = bp/( A, 0,) where k>1,8,>0

can be determined later. and curves ef’) y = y(po)
!
x=x(p)+ 1,2
r+ : L2
v=y(p)
P_:{x=x(p)—lp/2 r- oo
y=y(p)
U(po) is defined as the region enclosed by
r*,I'".and y=y(py), see Fig. 1.
Lemma 3 For Y &,,68,,83>0, ¢ and
P{ are determined by Lemma 1, Lemma 2, /
then ¥V #7>0,k>1,30< Py < Py, such that
Fig. 1

I, <es2,in U(Py).andV¥0< p1,ps < P;
(a-p)pr=pal <tx(py) - x(pl<{a + y)ip - pal

(b- ) Ipr—pal <ly(pii = y(p) 1<+ 5)ips - pal

Proof The results are naiural. Q. E. D.

Lemma 4 Y0<&, di<i, k>3, 9>0,0<8<(b-7)/5(a+ y)’then30<
Py < Py, such that ¥ X, =(x,,y,)E U(P5 )satisfies | (y, —y(p,))/(x, - x(p,))| > 8,
therefore (1 - 5304, <1y = ¥(Pu))/(xa - y(p)) | < (1 + 83)A,, and 1.5y,/R, < | (y, -
y(pa)! <2.5y,/R,. Specifically. y,.; >0, where p, is determined by (2.2).

Proof See Fig. 2, choose a horizontal line §(p)E . 1£(p)El=1,, EF is perpendicular
line, the slope of E(p) F is - 8,. Denote hp=|EF|.

When p < P;. from Lemma 3, I, <€/2.1It’s easy to check that h,/bp =1/},

Now we prove that 3 P35 < P; ,¥ X.€ U(P5),¥. is situated down £(p)F. For the
same reason y, is situated down &(p) F”.(See Fig. 3.) It's to say that |(y, - y(p,))/(%, -

I(Pn))l > a2.

G0

M /S N

F F F' F

*n

Fig. 2 Fig. 3
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Firstly. yn is in U(P; ), from (2.2) bp, =y, +2y,/(K,), p.is determined. Then the
following relations are considered

y(pa) = bpn+ (d + f)p}
y(pa) = ¥ =25/Ra, + (d+ (1 +2/R,) y, 1/ b2

therefore, 3 P3' < Py such that 1.5y,/&, < 1(y, - y(p,)) 1 <2.5y,/M,.
Specifically,

Yae1> ¥ (Pn) = 1 o1 =y 1> y(po) = 1 (yn = y(pa)) 1 (1 + 85)A,
> y(pa) - [1.5y,/7k,1(1 + 85)A,
As k>3, ¥au1> y(pa) =0.5y,(1-83) > 5, - 0.5, (1 + 85) >0.
While
yr = =Lyr = y(pa) 1+ [y (ps) - y,]
> -h, +1.5y,/k4,
> by, /KA, +1.5y,/%,
—(1+2/7R) /0, 4§ .5y, KA, >0

andyr - y,>0.

The remain problem is ¢ orove ls,| < lxel | thatis Ix, - x(p,) | < [

l2, = 200 )1 <2, - 5(p)1 + 12(p) - z(p,) | where p satisfy y(p) =y,
Because _
tx(p) - x(p )l <(a+ pip-pl <(a+ )y, = y(p )1 /(b - 3)

<2.5y.(a+q)/(b-niA,

from X,€ U(P3 ) and /, is monotonic increasing with p, the following result is obtained

P = 2 (P < Lp2< 12

s0 V2, = 2(p) | < [n/2+42.5y,(a+ 7)/(b-p)kA,

<bn/24 [(a+7)/(b - 7))(1,/2)(2%2.58,y,/bp,)

Because y,/bp, < 1,
I %, = x(pa) 1 < Ln/2+58,[(a + 7)/(b - 7 1(4,,72)

from the hypothesis about &, in Lemma,

Voo = 2(pa)l < L /2 + In2=1,

So lx,| < lx¢l. For the same reason. | x,| < 1xf I.

Therefore, X, is situated down £(p) F, and situated down £(p) F'and!y, - y(pa))/(x, -
%(pa)) | > 82. Further. from Lemma 3.(1 - 83)4, < 1 (3, = y(pa))/ (20 = y(pu))1 < (1 + 83)4,
1s given. Q. E.D.

d1,85and n are chosen by the following conditions: 8, < 1,83 <min{(1/12a,1 - D2,(4, -
/A, + D] i e 13, 1(14283) <1,4,(1-83)>(1+8,). and[ (b + 7)/(b=-9)1(1 + )<
/1A 1(1+233)] then 3K >0, whenk < K.(1 +2.5/k3,)/[1+1.5/ka, -2.5(1 +83)/k]<
1+ 7. For this k. &, is chosen as follows 82 < 14,1720, and
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{[1 +58,(a+ 9)7(b- ) N1, 101+ 83) +53,8,(1 + 83)(a + ) /(b - )} -
<12,1(1+28;) (%)

Lemma 5 V91,082,903, k, 7 satisfy (%), then 3P <Py, VX, €U(P;), for p.
determined by (2.2), Xas1= F(p,, X,)E U(P; ).

Proof p satisfies equation y(p)=y,,p satisfies equation ¥(P)=7¥ss1 Obviously
P >1;> p. It is sufficient that |z, - 2(p)| < I5/2 is proved. First from Lemma4: 1.5y,/KR <
1(ys - y(pa))1 <2.57./R, , and | (y, - y(pa))/ (20 = 2(p,)) | > &, , therefore (1 - 33)A,<
|(7. - y(p,.))/ (y,. - y(p,.))l <(1+ 83)A,. Now two different cases are discussed:

D If1 (2, - 2(p.) I/ . - ¥(p,) ] 158, From Lemma 2, the following relation is obtained

1x(pp) = %ne1! < |z, - 2(p) 1(1+83)14,1
while, by the proof of Lemma 4, it is given

120 = 2(pp) | < [n/2+58,[(a + 7)/(h- N I(L.2)
hence
12(pa) = Zus1! < (Lu2){11458,((a + ) 7(b - ) (14 63) 12,1
On the other hand,

lx(m) - x(E)i<(a+ p)ip,-pl
<t(a+9)/(b-)1y(pa) = yaur!
<[(a+7)/(b-7)1(1+8:)Ay. - y(pa)
<[(a+7)/(b-9)1(1+83)2,2.5p,/k,
<[Ca+n)/(b-7)I(1483)4,58:(1n72)

Therefore
%01 =2(p) 1 < 12(p,) - x(pl + 12(p,) - 2,411
<(La2){[14+58,(a+ 7)7(b - 7)1(1483)12,1
+[(a+9)7(b-9)](1+85)2,58,}

It’s easy to check by (3)

{[1 +58,(a+7)/(b-IA+&)A1+[(a+9)/(b=9))(1+85)2,52,8,}

<14,1(1+2683)

[ %501 = 2(p) < (5072)12,1(1 +283)
Now, the estimation of [, is studied

b = (/U3 ) 1z = [ (B = 0)/(15 -0) 15 < [(5 4+ )y (pa) /(b = P yasr)i;
where

Yn+i > }’(Pn) = "u(l + SS)I(yn - y(Pn))I
> 1.5y,/R, - A,(1 + 8,)2.5y,/a,
y(p,) < (1 +2.5/KR,)y,

Therefore L, <[ (b + 7)/(b - ) I[(1+2.5/,) ya/11.5y,/[ R, - 4,(1 + 83)2.5y,/&, ]} 11;
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while from the hypothesis about k, it can be derived

L(1+2.5/i0.) y./11.5y,/[ R, = 3,(1 + 83)2.5y./k, ]} 1 <1+ 7
Therefore Ln <[Ch+ 7)7(b - )11+ 9) 15 <[1/12,1(1 +285) 115
Hence

l2n 1= 2(P)1 < (5n/2)12,1(1 +285) < 1572

Xn+l€ U(P:)
2) Ii[x,~2(p) /Ny, - y(p,) 11 <8, The formula

(1-83/2)12,[ 2, - x(p) 11 + N[, - 2(p) P+ (5, - y(p.) PP} < I %n1 = 2(py)1
<(1+83/2)12,[ 2, - 2(p) I+ M{[ %, - 2(p,) 2+ [y, - y(pa) PP}
is used to study this case.
F2(pn) = 2pe1! < (14 83/2) 12,[ 2, - 2(p,) 11 + M{[ 2, — 2(p) P+ [y - 7(pa) I}

<(1+83/2) 12,02, - x(p) 11 + MI83[ 3, - y(pa) 1 4 [yn = ¥ p ) P}
<(L+ 8321, % - 2(p) ]l + M8, ¢ 1)y = y(p) 12
<(1+83/2) 10850 ya = 5{p) 11+ M(3: % Ul - y(p,) PP
<(1+8/2) iy, - y(p) 1AL, + M(8,+ Dy - y(p) 1}
< {14 83/2)(2.5y,/R) {38, + M(8,+1)(2.5y,/R,) |
<(1+483/2)(2.57./R) 128, + M(8, +1)(2.5v./R,)}
< (1+8372)(Ln/2)(58,) {28, + M(8, +1)(2.5y,/,)}

3P <Py, when X,=(x,,y, )€ U(PS), then y,<kA,/[2.5M(8,+1)], Further when
M(8,+1)<(2.5y,/k,)
1x(pn) = %1 < (14 83/2) (14,,/2)(582) {28, + 1}
< (1+83/2)(1,,/2)(568,)2
< (1+83/2)(1,,/2)108,
< (2,72)(1 + 83/2)(1,a/2)

Just like 1), the following estimation is given

12(pa) = Znat) < (5p/2) (14 83)12,1{1 +58,[ (a + 7) /(b - )]}
While, from 1), other estimations are derived
1x(p,) - z(p)1 <[(a+7) /(b= 7)]1(1+83)2,52,8:(1,,/2)
l2ne1 = 2(P)1 < 1x(py) - 2(p)l + 12(p,) - %011 < 152

Therefore X,.1€ U(Ps ). Q. E. D.
Lemma 6 Under the hypothesis (%).3 Ps < P¢, ¥ Xo€ U(Ps ),{X,}is generated by
(2.2), then X,—0.
Proof

As ¥ (pa) = ya = 2ya/Bu + (d+ DL +2/B3,) 5,
JPS <P, VX, =(2,,7,)EU(Ps)
(2= 83/2)yu/ KA, < 1¥(py) =y < (24 82/2)y,/ KA,
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Therefore
Yae1 <¥(pa) = 2(1-83)1y(p,) - 72!
<y(p,) - 2,(1-83)(2-8:2)y, /R,

Further, from condition (% )and 4,(1 - &;) > (1 + 83) the estimation of ¥a+1 can be derived
Therefore Yae1 <y(pa) = (14 83)(2-83/2) ya /02,

<1424 8372) /R, ]y, - (14 83) (2 - 8:2) 5,/ A,

<{1+[2+8:/2-(1+83)(2-8:/2) 1/} y,

<1+ [2+872-(148:)(2-8,2) 1/ Ly,

<{1+[2+68:2-(2+1.58;-832)1/R,} y,

<{1+[ -8+ 8121/} y. <[1-(8:22)/R, ]y,

Hence, ¥» monotonicly converge to 0, obviously x, converge to 0, then X, corverge to 0.

Proof of Theorem 1

In Theorem 1, taking neighborhood U= U(Ps ), by the six lemmas, the proof of
Theorem 1 can be finished.

Remark When the H3. can not be satisfied, but #3540, the result 1s still correct. If HI,
H2. were satisfied, the follow theorem can be proved by similar method.

Theorem 1 If b#0. 3K>0,Vk>K,3 U 1s a region of §=0, VY X,€U, and
parameter p, is determined by the fcliowing equation

bpn = yu + 20/ (RA,)

{ X,} generaizd by X, ., = F(p,,X,) converge to £ =0, and for every n, X, € U.
III. Example

Generally speaking, it is eary to check the condition of Theorem 1. Now we study
Lauwerier attractor? as an example. The Lauwerier map is:

{x“l = %, (1 =29y,)72 + .
Yne1 = 47, (1 = 32)
Denote X, .1 = F,(X,)as

xn(l - 2yn)/2 + Yn
4(1 - p)ya(1 - 5,)

{xn+l
Yn+l
When p=0, it has the fixed point (3/5, 3/4), and A, = - 2,4, = 172.

x axes is the direction of stable manifold of the fixed pointed and Y axis is the direction of
unstable manifold of the fixed pointed.

When p #0, the fixed point is £(p) = (x(p),y{(p)), where y(p) = (3-4p)/(4-4p)
b=3y(p)/apl, o= ~ 1/450

And obviously £(p) € C*, F,(X)€ C*.
Therefore it can be controlled by this method. .
We will report our results about chaotic controlling in higher-dimensional systems in

elsewhere.
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