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Abstract

This paper presents the mode I stress intensity factors for functionally graded solid cylinders with an
embedded penny-shaped crack or an external circumferential crack. The solid cylinders are assumed
under remote uniform tension. The multiple isoparametric ®nite element method is used. Various types
of functionally graded materials and di�erent gradient compositions for each type are investigated. The
results show that the material property distribution has a quite considerable in¯uence on the stress
intensity factors. The in¯uence for embedded cracks is quite di�erent from that for external
cracks. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Solid cylinders have extensively practical applications in engineering. The problem of a solid
cylinder with a crack, which is embedded or at the surface, has been treated by many
researchers. However, these researches mainly concentrated on homogeneous materials. Recent
years, developments in the space, nuclear, and chemical industries have placed new demands
on materials suitable for unusual conditions of pressure, temperature, and environment. The
concept of so-called Functionally Gradient Materials (FGMs) has been introduced and applied
to the development of structural components. The advantages of FGMs are that the materials
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Fig. 1. (a) Cylinder with an embedded penny-shaped crack and its ®nite element mesh; (b) cylinder with an external
circumferential crack and its ®nite element mesh.
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could resist corrosion, radiation and high temperatures e�ectively and, at the same time, the
residual and thermal stresses in the materials could be relaxed signi®cantly [1]. The interest in
FGMs research is growing rapidly due to these advantages. It is expected that FGMs have
promising applications in aerospace engineering, chemical engineering and nuclear power
plants. From the viewpoints of applied mechanics, FGMs are nonhomogeneous solids. Due to
the complexity of the problem, there are only a few papers that have studied the crack
problems in FGMs. Erdogan and Delale et al. [2±5] studied some problems of
nonhomogeneous elastic materials with cracks. Zou and Wang et al. [6,7] studied some crack
problems in composites with nonhomogeneous interlayer. An important conclusion given by
these researches is that, the nature of the stress singularity at a crack tip in nonhomogeneous
materials would remain to be the standard square-root type as homogeneous solids, provided
that the spatial distribution of the material property is continuous near and at the crack tip.
Hassan [8] treated the torsion of a nonhomogeneous cylinder slackened by a circular cut. He
assumed that the shear modulus was described by a power-law dependence on the radial
distance.
However, the analytical approach used by these literature can only deal with some simple

distribution of material properties, such as an exponential form [2±5] or power form [6±8],
which may be quite di�erent from the real distribution. It is di�cult by using the analytical
methods to investigate the in¯uences of the actual material property distributions on the
fracture mechanics parameters. But, yet these in¯uences are very important knowledge for the
optimal design of FGMs. Therefore, numerical methods have to be developed for the analyses
of a large range of practical problems.
In numerical methods, the most versatile method is the Finite Element Method (FEM) and

it has been extensively used for computational fracture mechanics studies. However, most of
these ®nite element approaches mainly concentrated on homogeneous materials or piecewise
homogeneous materials. The ®nite element formulation suitable for nonhomogeneous materials
with continuously varying properties was proposed recently by Li and Zou [9]. This improved
FEM has been veri®ed to be very e�ective and quite e�cient for the stress analysis of FGMs.
In this paper, we use the improved FEM to analyze solid cylinders with functionally graded

properties. The solid cylinders are assumed to be subjected to remote uniform tension. Two
cases of cracks are considered. One is a circumferentially part-through crack at the outer
surface of a cylinder. The other is a penny-shaped crack at the center of a cylinder. Our main
objective is to investigate the in¯uence of the material property distribution along the cylinder
radius on the stress intensity factors.

2. Material property model

Consider an FGM solid cylinder described in Fig. 1. It is of radius R and length 2H (z-
direction). Assume that the cylinder is fully ceramic at r � R and gradually changes to fully
metal at r � 0, the volume fractions of both phases vary along r-direction and the composition
in any yÿ z cylindrical face is held constant. The local volume fractions in r-direction can be
represented by the equations
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Vc�r� �
�
r

R

� p

, Vm�r� � 1ÿ Vc�r� �1�

where Vm is the volume fraction of metal, Vc is the volume fraction of ceramic and p is called
composition gradient exponent. Using Eq. (1), a great range of FGMs composition pro®les can
be examined by varying the exponent p, as shown in Fig. 2.
Due to the changes in relative proportions of ceramic and metal, the material mechanical

properties vary along the radial direction of the solid cylinder. The elastic modulus E and the
Poisson's ratio n can be considered to vary with volume fraction as following [10]

E�r� �
ÿ
EcEm ÿ E 2

m

�ÿ
1ÿ V 1=3

c � Vc

�� E 2
m

Ec � �Em ÿ Ec�V 1=3
c

�2�

n�r� � nmVm � ncVc �3�
where the subscripts m and c refer to the metal and ceramic, respectively. The Eq. (2) was
found to predict the elastic moduli of two phase composites with a better accuracy than other
models [11]. Some variations of the elastic modulus E with volume fractions are illustrated in
Fig. 3.

3. Finite element model

The displacement ®nite element method is usually applied to stress analysis problems. Its
formulation can be derived by the principle of minimum potential energy [12]. The element
sti�ness matrix �K �e for axisymmetric problem can be derived as

Fig. 2. The composition pro®les of ceramic in FGMs.
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�K�e�
� �

Ae

�B�T�D��B�r dr dz �4�

where [B ] is the strain matrix, [D ] is the stress±strain constitutive matrix. In above
formulation, only the matrix [D ] has relations with the material properties. For elastic
isotropic materials under axisymmetric condition, [D ] may be expressed as:

Fig. 4. m-Node isoparametric element.

Fig. 3. The distribution of the elastic modulus in FGMs.

C. Li et al. / Engineering Fracture Mechanics 63 (1999) 735±749 739



�D� � E�1ÿ n�
�1� n��1ÿ 2n�

26666666664

1 sym:

n
1ÿ n

1

n
1ÿ n

n
1ÿ n

1

0 0 0
1ÿ 2n
2�1ÿ n�

37777777775
�5�

For homogeneous materials, E and n are constants. Now for nonhomogeneous FGMs;
however, E and n are functions of the r coordinate, as expressed in Eqs. (2) and (3). Therefore,
the variations of the material properties must be considered in the ®nite element analysis for
FGMs.
In the paper [9], we adopted the concept of the well-known isoparametric transformation for

properly describing the variations of the material properties and then proposed the multiple
isoparametric ®nite element method. Here, we brie¯y describe it for axisymmetric problems.
Consider a m-node axisymmetric element as shown in Fig. 4. The global coordinates of a

point on the element at (x,Z) are given by

r �
Xm
i�1

Ni�x,Z�ri, z �
Xm
i�1

Ni�x,Z�zi �6�

where Ni are the shape functions corresponding to the node i, whose coordinates are (ri,zi) in
the global system and (xi,Zi) in the local system. As an isoparametric element, the
displacements within the element are interpolated as follows:

u �
Xm
i�1

Ni�x,Z�ui, w �
Xm
i�1

Ni�x,Z�wi �7�

where (ui, wi ) are the nodal displacements in the r and z directions. Now, let the material
properties E and n at the point (x,Z) be expressed as

E �
Xm
i�1

Ni�x,Z�Ei

n �
Xm
i�1

Ni�x,Z�ni �8�

where (Ei,ni) stand for the material properties at the node i of the element. By using Eq. (8),
the actual variations of the material properties in a ®nite element can be approximated by
polynomial forms. The degree of the polynomial depends on the number of nodes in the
element.
Substituting Eq. (8) into Eq. (4), we obtain the elemental elastic matrix �D�e, which becomes

a function of the intrinsic coordinates. Then we can calculate the elemental sti�ness matrix by
the standard Gaussian numerical quadrature in the intrinsic coordinates domain, that is
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�K�e�
�1
ÿ1

�1
ÿ1
�B�T�D�e�B�r det J dx dZ �9�

After the elemental sti�ness matrices �K �e and the contribution of the nodal force vectors are
combined to form a global sti�ness matrix [K ] and a generalized nodal force vector fF g
respectively, the vector of the global nodal displacements can be obtained by solving the
following global sti�ness equations:

�K��Q	 � fFg �10�
where fQg is the vector of the global nodal displacements. The stresses at any point on a
speci®ed element can be obtained by the following equation:

fsg � �D�efeg � �D�e�B�fqg �11�
where {q } stands for the nodal displacements of the speci®ed element.

4. Stress intensity factors computation

The studies of the literature [2±7] have shown that in nonhomogeneous materials with
continuously varying properties, the nature of the stress singularity at a crack tip would remain
to be identical to that in homogeneous solids. Jin and Noda [13] have given that the singular
terms of the stresses near the crack tip are of the form:

sij � KI�������
2pr
p �s I

ij
�y� � KII�������

2pr
p �s II

ij
�y� � KIII�������

2pr
p �s III

ij
�y� �12�

where i,j � 1,2,3 stand for the three directions of the spatial coordinate system; r and y are the
polar coordinates at crack tip. The dimensionless angular functions �s I

ij�y�, �s II
ij �y� and �s III

ij �y� are
the same as those for homogeneous materials. It has been con®rmed (detailed discussion can
be found in Gu and Asaro [14]) that the result is independent of the form for material
properties and the orientation of the crack. The stress intensity factors KI, KII and KIII are
functions of the material gradients, external loading and geometry. Material gradients do not
a�ect the order of the singularity and the angular functions, but do a�ect the stress intensity
factors.
The importance of the above results lies in the fact that in FGMs one can now use the crack

tip ®nite element modeling developed for the ordinary square-root singularity and the
computational methods for the SIFs in homogeneous solids can be adopted for that in
nonhomogeneous solids with a few modi®cations.
There are many ways of evaluating the SIFs from ®nite element solution. These include the

extrapolation of displacement and/or stress ®elds to the crack tip; Rice's contour integral J; the
strain energy approach; the virtual crack extension technique, and so on. In this paper, we use
the displacement extrapolation technique.
The so-called triangular quarter-point elements [15,16] are used as crack tip elements. It has

been veri®ed that this kind of element results in a 1=
��
r
p

strain singularity within the elements
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as well as on the element edges. The SIFs are obtained by two-point formula. The procedure is
brie¯y described as following:
Consider a crack tip region shown in Fig. 5. The displacement ®elds on the crack surfaces

can be written as

w�y � p� ÿ w�y � ÿp� � k� 1

m
KI

������
r

2p

r

u�y � p� ÿ u�y � ÿp� � k� 1

m
KII

������
r

2p

r
�13�

where k � �3ÿ 4n� for plane strain and k � �3ÿ n�=�1� n� for plane stress, m � E=2�1� n� is
the shear modulus. For the points d and e with r � L, we obtain

KI�L� �
������
2p
L

r
m�L�

k�L� � 1
�wd ÿ we�

KII�L� �
������
2p
L

r
m�L�

k�L� � 1
�ud ÿ ue� �14�

For the points b and c with r � L=4, we obtain

KI�L=4� �
������
2p
L

r
2m�L=4�

k�L=4� � 1
�wb ÿ wc�

Fig. 5. Triangular quarter-point elements around the crack-tip.
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KII�L=4� �
������
2p
L

r
2m�L=4�

k�L=4� � 1
�ub ÿ uc� �15�

Then, the values of KI and KII at the tip o are obtained by linear extrapolation as following
[17]:

KI � 2KI�L=4� ÿ KI�L�

KII � 2KII�L=4� ÿ KII�L� �16�
It should be emphasized that the values of the material properties in the above equations are
the values of the corresponding points.

5. Numerical results and discussion

As shown in Fig. 1, the crack plane is a plane of symmetry and the crack problem is one of
mode I. Because of the symmetry, we only consider the z > 0 part of the cylinder. The ®nite
element division in the axisymmetric face is shown in Fig. 1. The crack tip elements are six-
node triangular quarter-point elements. Other elements are eight-node quadrilateral elements.
The lengths of all element sides emanating from the crack tip are selected as 1/10 of the crack
length for a=tR0:7, and 1/20 for a=t � 0:8. This selection is made from the error analyses of
the computed results for edge cracked plate, which has been given analytical solution by
Erdogan [5]. In that case, the relative errors for all crack-depths and all values of Ec=Em were
less than23%.
It should be mentioned that the mid-side nodes on the crack tip elements remain at the mid-

side position for simulating the variations of the material properties in the crack tip elements.

Fig. 6. The e�ect of Ec=Em on the normalized stress intensity factors (for embedded penny-shaped crack).
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The normalized mode I stress intensity factor is de®ned by

FI � KI

s
������
pa
p �17�

In this study, we mainly investigate the in¯uences of E�r� on the normalized SIFs. The
Poisson's ratio is assumed to be constant (n � 0:3). The ratio of Ec=Em is assumed as 0.2, 0.4,
0.6, 0.8, 1.2, 2.0, 5.0 and 10.0, respectively. The material gradient exponent p is selected as 0.1,
0.25, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0 and 10.0, respectively. The ratio H/R is taken as 5.0.

Fig. 7. The e�ect of compositional gradient on the normalized stress intensity factors (for embedded penny-shaped
crack).
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5.1. Embedded penny-shaped cracks

Some normalized SIFs for embedded penny-shaped cracks are shown in Figs. 6,7 and
Table 1.

Fig. 6 shows the e�ect of di�erent couple of FGM phases on the normalized SIFs when the

Table 1
The normalized stress intensity factors for FGM solid cylinders with a penny-shaped crack

a=R p

0.10 0.25 0.50 1.00 1.50 2.00 4.00 6.00 10.00

Ec=Em � 0:4
0.1 0.5368 0.4512 0.3843 0.3569 0.3691 0.3880 0.4489 0.4856 0.5267

0.2 0.5669 0.4964 0.4294 0.3836 0.3824 0.3946 0.4511 0.4882 0.5302
0.3 0.5999 0.5418 0.4791 0.4226 0.4091 0.4127 0.4604 0.4986 0.5425
0.4 0.6295 0.5828 0.5270 0.4665 0.4429 0.4376 0.4698 0.5070 0.5536

0.5 0.6661 0.6294 0.5817 0.5220 0.4912 0.4773 0.4880 0.5208 0.5695
0.6 0.7112 0.6826 0.6425 0.5867 0.5531 0.5328 0.5201 0.5428 0.5902
0.7 0.7970 0.7761 0.7455 0.6974 0.6628 0.6379 0.5976 0.6009 0.6368

0.8 0.9519 0.9387 0.9183 0.8814 0.8529 0.8260 0.7645 0.7388 0.7398
Ec=Em � 0:6
0.1 0.5775 0.5252 0.4811 0.4617 0.4704 0.4838 0.5254 0.5490 0.5740
0.2 0.5969 0.5552 0.5131 0.4827 0.4820 0.4903 0.5284 0.5524 0.5778

0.3 0.6228 0.5892 0.5511 0.5153 0.5064 0.5089 0.5406 0.5650 0.5918
0.4 0.6469 0.6203 0.5875 0.5505 0.5356 0.5322 0.5532 0.5770 0.6053
0.5 0.6793 0.6585 0.6314 0.5958 0.5771 0.5686 0.5753 0.5959 0.6255

0.6 0.7216 0.7053 0.6829 0.6508 0.6308 0.6186 0.6112 0.6251 0.6540
0.7 0.8038 0.7925 0.7753 0.7487 0.7288 0.7144 0.6902 0.6919 0.7144
0.8 0.9551 0.9483 0.9368 0.9177 0.9013 0.8876 0.8520 0.8366 0.8366

Ec=Em � 2:0
0.1 0.7218 0.8138 0.8916 0.9188 0.8932 0.8606 0.7737 0.7335 0.6965
0.2 0.6996 0.7698 0.8387 0.8830 0.8775 0.8569 0.7802 0.7394 0.7016
0.3 0.6992 0.7543 0.8141 0.8651 0.8728 0.8639 0.8021 0.7608 0.7210

0.4 0.7043 0.7472 0.7974 0.8487 0.8657 0.8660 0.8245 0.7856 0.7429
0.5 0.7217 0.7548 0.7957 0.8439 0.8658 0.8742 0.8555 0.8228 0.7788
0.6 0.7541 0.7798 0.8136 0.8577 0.8819 0.8944 0.8957 0.8734 0.8309

0.7 0.8262 0.8447 0.8696 0.9064 0.9308 0.9476 0.9699 0.9634 0.9325
0.8 0.9685 0.9782 0.9953 1.0222 1.0442 1.0603 1.0984 1.1124 1.1087
Ec=Em � 10:0
0.1 1.1931 1.5510 1.7041 1.6114 1.4474 1.3074 1.0042 0.8845 0.7852
0.2 1.0338 1.3127 1.4683 1.4632 1.3702 1.2731 1.0140 0.8934 0.7921
0.3 0.9495 1.1740 1.3207 1.3605 1.3139 1.2514 1.0419 0.9237 0.8163

0.4 0.8937 1.0748 1.2080 1.2724 1.2580 1.2223 1.0667 0.9587 0.8460
0.5 0.8643 1.0095 1.1280 1.2057 1.2143 1.2010 1.0993 1.0083 0.8950
0.6 0.8647 0.9848 1.0926 1.1779 1.2018 1.2025 1.1434 1.0730 0.9670
0.7 0.9044 0.9964 1.0879 1.1768 1.2131 1.2294 1.2201 1.1796 1.0969

0.8 1.0159 1.0778 1.1481 1.2327 1.2791 1.3072 1.3469 1.3447 1.3070
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composition gradients are linear. It can be seen that the parameter Ec=Em has quite
considerable in¯uence on the SIFs. The normalized SIFs increase with the increase of Ec=Em

value. The less the ratio of a/R, the greater the increasing velocity of the normalized SIF with
Ec=Em.
Fig. 7(a)±(d) show the in¯uences of the compositional gradient on the normalized SIFs. It

can be seen that the variations of the gradient exponent p have quite obvious in¯uences on the
SIFs when the di�erences between the values of Em and Ec are relatively greater. However, the
in¯uences of p decrease with the reduction of the di�erences between Em and Ec. Especially,
for a=RR0:5, when Ec=Em<1, the normalized SIFs for ®xed a=R tend the lowest at about
p � 1; when Ec=Em > 1, the normalized SIFs for ®xed a=R tend the largest at about p � 1. The
same conclusions can also be obtained from Table 1.
Thus, if on the viewpoint of fracture mechanics, we can say that the optimal composition

depends on the couple of FGM phases. No sole optimal composition exists for di�erent
FGMs.

5.2. External circumferential cracks

Figs. 8 and 9 show some results of the normalized SIFs for external circumferential cracks.
Additional results are stipulated in Table 2.
Fig. 8 shows the e�ect of the value of Ec=Em on the normalized SIFs when the FGM phases

are mixed linearly. It can be seen that the parameter Ec=Em also has considerable in¯uence on
the SIFs. However, the in¯uence is di�erent from that of a penny-shaped crack. The
normalized SIFs decrease with the increase of Ec=Em value.
Fig. 9(a)±(d) show the in¯uences of the compositional gradient on the normalized SIFs. It

can be seen that the variations of the gradient exponent p also have obvious in¯uences on the
SIFs when the di�erences between the values of Em and Ec are relatively greater. But the

Fig. 8. The e�ect of Ec=Em on the normalized stress intensity factors (for external circumferential crack).

C. Li et al. / Engineering Fracture Mechanics 63 (1999) 735±749746



in¯uence in this case is weaker than that in the case of a penny-shaped crack. Similarly, the
in¯uences of p decrease with the reduction of the di�erences between Em and Ec. When the
value of Ec=Em is between 0.8 and 1.2, the in¯uence of p can be negligible. Also, the optimal
composition depends on the couple of FGM phases.

6. Conclusion

The FGM solid cylinders with an external circumferential crack or an embedded penny-

Fig. 9. The e�ect of compositional gradient on the normalized stress intensity factors (for external circumferential

crack).
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shaped crack are studied by using the improved FEM. It is revealed that the material property
distribution has quite considerable in¯uence on the SIFs. The di�erences in stress intensity
factors for di�erent FGMs are obvious. The composition of FGMs in¯uences the stress
intensity factors only when the di�erence between the elastic modulus of metal and that of
ceramic is relatively larger. The in¯uence of composition gradient for an embedded penny-
shaped crack is stronger than that for an external circumferential crack. On the viewpoint of

Table 2
The normalized stress intensity factors for FGM solid cylinders with an external circumferential crack

a=R p

0.10 0.25 0.50 1.00 1.50 2.00 4.00 6.00 10.00

Ec=Em � 0:4
0.1 1.2033 1.2657 1.3547 1.4838 1.5793 1.6396 1.7296 1.7171 1.6048
0.2 1.3065 1.3668 1.4496 1.5592 1.6218 1.6544 1.6405 1.5647 1.4437
0.3 1.4533 1.5128 1.5865 1.6705 1.7037 1.7083 1.6313 1.5539 1.4809

0.4 1.6737 1.7318 1.7987 1.8608 1.8670 1.8516 1.7517 1.6961 1.6595
0.5 2.0305 2.0901 2.1516 2.1893 2.1728 2.1418 2.0443 2.0121 1.9970
0.6 2.6101 2.6785 2.7397 2.7589 2.7232 2.6779 2.5855 2.5643 2.5569
0.7 3.7701 3.8496 3.9079 3.8903 3.8286 3.7790 3.7053 3.6950 3.6922

0.8 6.5459 6.6546 6.7057 6.6141 6.5223 6.4685 6.4262 6.4222 6.4220
Ec=Em � 0:6
0.1 1.1845 1.2186 1.2652 1.3326 1.3810 1.4142 1.4648 1.4540 1.3978

0.2 1.2855 1.3190 1.3625 1.4221 1.4575 1.4740 1.4693 1.4311 1.3650
0.3 1.4324 1.4643 1.5049 1.5529 1.5712 1.5746 1.5341 1.4916 1.4496
0.4 1.6523 1.6836 1.7213 1.7564 1.7623 1.7544 1.6996 1.6666 1.6447

0.5 2.0075 2.0400 2.0754 2.0983 2.0908 2.0745 2.0179 1.9977 1.9876
0.6 2.5814 2.6196 2.6550 2.6658 2.6479 2.6247 2.5710 2.5568 2.5518
0.7 3.7322 3.7784 3.8126 3.8044 3.7695 3.7413 3.6982 3.6913 3.6909

0.8 6.4890 6.5514 6.5764 6.5339 6.4832 6.4511 6.4236 6.4224 6.4225
Ec=Em � 2:0
0.1 1.1165 1.0664 1.0037 0.9278 0.8861 0.8618 0.8357 0.8497 0.9013
0.2 1.2184 1.1696 1.1130 1.0481 1.0189 1.0071 1.0238 1.0638 1.1322

0.3 1.3645 1.3169 1.2656 1.2161 1.2003 1.2014 1.2469 1.2936 1.3491
0.4 1.5819 1.5364 1.4895 1.4534 1.4509 1.4617 1.5227 1.5660 1.6000
0.5 1.9320 1.8856 1.8439 1.8224 1.8317 1.8507 1.9178 1.9482 1.9659

0.6 2.4911 2.4400 2.4014 2.3915 2.4137 2.4392 2.5075 2.5303 2.5404
0.7 3.6158 3.5584 3.5229 3.5355 3.5731 3.6057 3.6670 3.6781 3.6823
0.8 6.3162 6.2409 6.2161 6.2677 6.3258 6.3663 6.4133 6.4181 6.4179

Ec=Em � 10:0
0.1 0.9102 0.7220 0.5768 0.4711 0.4373 0.4276 0.4559 0.5082 0.6150
0.2 1.0169 0.8430 0.7188 0.6445 0.6345 0.6438 0.7302 0.8195 0.9585
0.3 1.1690 1.0115 0.9107 0.8668 0.8791 0.9057 1.0316 1.1336 1.2585

0.4 1.3893 1.2475 1.1683 1.1536 1.1840 1.2242 1.3720 1.4675 1.5557
0.5 1.7344 1.6061 1.5476 1.5613 1.6095 1.6614 1.8159 1.8934 1.9455
0.6 2.2704 2.1491 2.1080 2.1497 2.2159 2.2780 2.4359 2.4973 2.5282

0.7 3.3586 3.2440 3.2283 3.3105 3.4006 3.4742 3.6265 3.6644 3.6781
0.8 5.9693 5.8605 5.8919 6.0448 6.1737 6.2641 6.3956 6.4152 6.4182
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fracture mechanics, the optimization of FGM composition is necessary and the optimal
composition gradient depends on the type of FGMs.
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