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Abstract
Damage evolution of heterogeneous brittle media involves a wide range of
length scales. The coupling between these length scales is the underlying
mechanism of damage evolution and rupture. However, few of previous
numerical algorithms consider the effects of the trans-scale coupling effectively.
In this paper, an adaptive mesh refinement finite element method (FEM)
algorithm is developed to simulate this trans-scale coupling. The adaptive
serendipity element is implemented in this algorithm, and several special
discontinuous base functions are created to avoid the incompatible displacement
between the elements. Both the benchmark and a typical numerical example
under quasi-static loading are given to justify the effectiveness of this model.
The numerical results reproduce a series of characteristics of damage and
rupture in heterogeneous brittle media.

1. Introduction

Heterogeneous brittle media, such as rock, concrete, etc, are used widely as structural
components in infrastructure and engineering. The increasing demands require an adequate
damage evolution modelling and the appropriate prediction of overall rupture. Currently,
researchers have indicated that damage evolution, especially the rupture of heterogeneous
brittle media, has two characteristics, i.e. catastrophe and sample-specificity. It is difficult to
predict the catastrophe owing to the sample-specificity.

Previous works have shown that the failure process involves many coupled spatial scales
[14–16]. In particular, with increasing load, some disordered details at small scales may
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be amplified strongly due to strong and sensitive trans-scale coupling and become significant
effects on the global rupture resulting in sample-specificity. In order to reveal the characteristics
and the underlying mechanism of the damage and rupture, it is necessary to simulate the trans-
scale coupling effect on the whole damage evolution process.

However, generally speaking, few of the previous numerical algorithms consider the
effects of the trans-scale coupling on the damage evolution of heterogeneous media effectively.
Traditionally, researchers in computational analysis concentrated on bringing more details
into their structural system models, but ignored the multi-spatial scales inherent in physical
problems. To obtain proper resolution of damage effects, finite element meshes consisting of
several million continuum elements are necessary. These often require hours of computation
time on even the latest supercomputer and make the analysis of damage evolution almost
impossible. This severely limits the usefulness of computation. Therefore, the concept of
multiscale algorithm has been induced to solve this dilemma. Many multiscale finite element
methods (FEM) have been developed recently. These are, mainly:

(1) h-version and p-version [3]; in the h-version FEM convergence is achieved by mesh
refinement; in the p-version, it is achieved by increasing polynomial degree.

(2) hp-d version and s-version [3, 4]; the hp-d version FEM has a combination of h- and
p-extensions in a hierarchical domain decomposition. The s-version FEM accomplishes
the idea, which is proposed by Belytschko et al [13], by overlaying arbitrary local mesh
on the global mesh.

(3) Generalized FEM [5–7]; the generalized finite element method (GFEM) was first
introduced by Melenk [6] and Babuska [7]. It combines the desirable features of the
standard FEM and meshless methods. The key difference in the GFEM when compared
with the traditional FEM, is the construction of the ansatz space. Each node of the
finite element mesh carries a number of ansatz functions expressed in terms of the global
coordinate system. These ansatz functions are multiplied by a partition of unity and serve
as element ansatz functions in the patch constituted by the elements incident at the node.

The problem concerned in this paper is physically ‘multiscale’ due to heterogeneities and
microdamage. Usually, the multiscale method is dealt with by ‘bottom-up’ averages, which
considered the average effect of grains, micro-cracks or inclusions. This is very effective for a
macroscopic average feature, such as stiffness. However, it is well known that in heterogeneous
brittle media, the micro-damages are usually initiated on a small scale at some uncertain
locations. The micro-damages develop from small to large scales via growth and coalescence
and eventually trigger catastrophe. This is a dynamical, trans-scale phenomenon. In order
to simulate such phenomena, instead of the usual ‘bottom-up’ average, we have to turn to an
adaptive scheme with a large number of sufficiently fine elements owing to the huge scale-span
in the problem. However, the most important point is that, in the usual adaptive algorithm, the
constitutive relation almost always remains the same in all meshes (no matter large or small).

In this paper, we present an adaptive mesh refinement FEM model (based on the hp-d
version), where only the elements posing danger of damage are to be refined to smaller
scales. The intrinsic relation (damage criterion) is a kind of multiscale one in accordance with
heterogeneities. First, the governing equations of the model problem, and a finite-element
scheme are presented. Second, some critical questions in the model are answered when the
serendipity element and the smeared cracked model is adopted in the algorithm. Third, to
verify the model, a benchmark problem with a known exact solution is investigated. Finally,
we give a numerical example of damage evolution to failure in a heterogeneous brittle medium
to justify the effectiveness of this model. It is thus found that the comparison between the
adaptive mesh refinement FEM and the whole small-scale simulations (WSFEM) indicates
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that the adaptive mesh refinement FEM can give satisfactory results with sufficient precision
and lower cost.

2. Basic framework

The key factor in the damage evolution problem is the trans-scale coupling effect. In order to
reveal the coupling effects, a new finite element model is proposed to examine this problem.

We start with the general Hu-Washizu variational principle, which deals with three
independent fields: displacement u, strain ε and stress σ fields. These fields are defined in a
domain V , whose boundary consists of two parts, Su and St , with prescribed displacements
and tractions, respectively. The assumed boundaries are completely arbitrary and mutually
independent except for certain restrictions. All governing equations can be replaced by a
variational equality:∫

V

δεT σ̃(ε) dV + δ

∫
V

σT (Lu − ε) dV =
∫

V

δuT b̄ dV +
∫

St

δuT t̄ dS − δ

∫
Su

pT (u − ū) dS,

(1)

which must hold for any admissible variations δu, δε and δσ. In equation (1), the symbol δ

denotes variation, σ̃(ε) is the stress computed from the assumed strain ε using the constitutive
equations, L the operator transforming displacements into strains, b̄ the prescribed body
forces and t̄ the prescribed tractions (surface forces), ū the prescribed displacements and p
the Lagrangian multiplier defined on the Su in [2].

Variational statement (1), representing the weak form of governing equations, can be
exploited when discretizing the problem. We interpolate the unknown fields as

u � Nun, (2)

where shape function N is defined on elements of diameter h and maximum polynomial
order p, un collect the degree of freedom corresponding to nodal displacements. Each shape
function (corresponding either to a displacement mode in the x- or in the y-direction in two-
dimensional problem) is usually formed from a scalar shape function Nn by N2n−1 = {Nn, 0}T
and N2n = {0, Nn}T .

Substituting the approximation, equation (2), into the variational equality (1), we obtain
a linear equation system for the unknown node displacements un,

δ(un)T
∫

V

(LN)T σ̃ (LNun) dV = δ(un)T
(∫

V

NT b̄ dV +
∫

St

NT t̄ dS

)
. (3)

In addition, for a given state the constitutive relation of the linear problem is described by

σ̃(ε) = σ = DRε − Dε0, (4)

with the prestrain vector ε0. The linear elasticity matrix DR and D depend on the assumption
of the problem, such as plane stress or plane strain conditions in two-dimensional problems.
Substituting (4) into (3) and taking into account the independence of variations, we obtain the
discretized equation

Kun = f, (5)

where the stiffness matrix is

K =
∫

V

(LN)T DR(LN) dV
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Figure 1. The grids hierarchy.

and the load vector

f =
∫

V

NT b̄ dV +
∫

St

NT t̄ dS +
∫

V

(LN)T Dε0 dV.

The interpolations of stress and strain can be discontinuous, hence we can select the
interpolation functions such that each stress or strain parameter is associated with only one
finite element. The global equations contain the standard displacement degrees of freedom,
un only. Therefore, equation (5) written for one finite element occupies a certain volume Ve.
Meanwhile, the left vector (external force vector) is then replaced by the contribution of the
current element to the internal forces.

3. Adaptive mesh refinement FEM

In the previous section, the standard FEM has been introduced. The concept of the adaptive
mesh refinement finite element model (AMRFEM) is outlined in this section. The AMRFEM
is based on the hp-d version FEM, i.e. the degree of polynomial interpolation functions is
fixed, while the mesh is refined as damage occurs in the evolution.

3.1. Hierarchy of grids

There are many multiscale numerical models, which adopt the sequence of cell averages based
on a finite element discretization. It will make the model easily applicable to trans-scale
problems. However, this convenience is based on the local mean field theory, which may
discard some significant trans-scale effects on catastrophic failure. In order to delineate the
trans-scale effects and have different scales solved together, we introduce a sequence of grids
�i = {0, . . . , i}, i = 0, . . . , I . The coarsest grid is indicated by i = 1, while the finest scale
we consider is indicated by i = I (i = 0 stands for the whole structure). A simple example
is shown in figure 1, where a coarse grid is successively refined with increasing refinement
level. This sequence is called a grids hierarchy. Note that the framework presented here is
not restricted to this simple configuration, but can also be applied to unstructured and irregular
grid refinement if we introduce one mapping function which can map the irregular grid to
the structured grid. In addition, we assume without lost of generality, that the computational
domain and hence, the grids hierarchy, is unchanged in the paper.

The key factor in the grids hierarchy is the adaptation of shape base function which
can guarantee both the continuity of structure and the connectivity of different scales. In
finite element analysis, interpolation theories based on Lagrangian and Hermitian interpolation
polynomials have produced a variety of useful finite elements. Lagrangian rectangular elements
are conceptually simple, but are of limited use due to the large number of internal nodes.
Nevertheless, they provide a natural introduction to interpolation functions of serendipity
elements which have no internal nodes. The serendipity rectangular element (shown in figure 2)
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Figure 2. The 4–8 variable nodes serendipity element.

is applied to our problem. The discontinuous polynomial interpolation functions which satisfy
the C0 continuity are used in the model to connect different scales with each other, smoothly.

In addition, based on the variational principle, the stiffness matrix of the whole problem
can be set up and solved in one equation.

3.2. Self-adaptive mesh topology and material heterogeneity

The self-adaptive mesh topology is adopted in the model. All elements have multi-levels.
Computation starts with the coarsest grid. However, with increasing load, some larger scale
elements become dangerous to damage; then, these dangerous elements will be adaptively
refined to smaller scale grids in the local area. As an element is refined to the smallest
scale, it will keep intact or, be broken according to a particular criterion. The criterion is
expressed by the comparison between the threshold of the element and the current stress on
the element. In this paper, we consider the media with frozen heterogeneity, which means that
the threshold of the finest elements is pre-defined randomly and follows a given probability
distribution function. The stress on each element is determined by damage-induced stress
redistribution, which is a non-linear dynamical process. Therefore, the self-adaptive refined
procedure is governed by the coupling between the damage-induced dynamical nonlinearity
and the random heterogeneity on multi-scales.

For example, the Coulomb criterion [1]:

F = |τ | + µσ − S0 � 0, (6)

can be used. In equation (6), coefficient of friction µ, and inherent shear strength τS are two
parameters of the Coulomb criterion. The physical meaning of this inequality is as follows.
Firstly, if the stress state of an element does satisfy this inequality, it will be adaptively refined to
four smaller elements; otherwise the mesh topology will not be modified. Secondly, provided
the smaller element still satisfies the inequality, this adaptive refining will continue till the
finest element. Finally, when the finest element satisfies this inequality, it will be set damaged.

3.3. Constitutive relation

The FEM is based on a constitutive relation. The elastic-brittle constitutive relation is adopted
in our model. When the sample is loaded in the compressive load, the response of damaged
element will alternate due to the stress situation, i.e. the stiffness of the element will vary
according to the difference of force on the damage direction. Actually, the smeared crack
model has been widely used for concrete and rocks in [9], but needs modifying for its own
feedback. The other relevant model is the rotating crack model based on the evaluation of the
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Figure 4. Three-dimensional damage in elements.

damaged material stiffness matrix from the nonlocal average of the total strain in [10]. So,
our modified smeared crack model is based on the rotating crack model. That is to say, after
an element has become damaged and the force on the direction of damage is the tension, the
behaviour of the failed element can be described through a reduced Young’s modulus. On the
other hand, if the force is the compression, Young’s modulus will recover to simulate crack
closing. In the meantime, the strain of a damaged element will hold due to the impossibility
of the strain recovery at damage. Figure 3 gives a schematic of the constitutive relation.

In the diagram, the response of an intact element will follow line OA, and when the stress
reaches σA, brittle damage will occur on the orientation of stress, which can be determined
with the crack initiation criterion (equation (6)). The element will retain the strain εA and
sustain further loading. In figure 3, the assuming nominal stress on the crack direction is the
tension. So the Young’s modulus will be reduced to reflect the effect of the damage. When
stress reaches σC , the nominal stress changes to compression and the damaged element will
switch to a state similar to the intact one. Then Young’s modulus will switch to the undamaged
state. For simplicity, the stiffness matrix DR and D are assumed to be identical.

The multiple damage orientations are allowed in the simulation. Since three-dimensional
crack is allowed in the simulation, damage will cause the relevant modulus to reduce in that
axis. The damage of an element may appear in three directions, so that the elements can be
distinguished as intact, partially damaged or entirely damaged (figure 4).

3.4. The basic procedure of AMRFEM

Figure 5 shows the flow chart of the AMRFEM Algorithm.
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Figure 5. Flow chart of AMRFEM.

4. Benchmark

The key points of AMRFEM have been given in the previous section. To verify the effectiveness
of the algorithm, a benchmark problem with a known exact solution is investigated. As a typical
two-dimensional problem with singularities, the L-shaped domain in plane strain condition
shown in figure 6 is considered. The convergence of the AMRFEM procedure can be studied
and the accuracy of various FEM versions can be investigated. The boundary conditions are
prescribed so that the analytic solution can be computed and corresponds to a MODE 1 loading
of the structure [11]. At the re-entrant corner the exact displacement solution can be expressed
by an asymptotic expansion, i.e.

ux1 = A1

2G
rλ1 [(3 − 4ν − Q1(λ1 + 1)) cos(λ1α) − λ1 cos(λ1 − 2)α],

uy1 = A1

2G
rλ1 [(3 − 4ν + Q1(λ1 + 1)) sin(λ1α) + λ1 sin(λ1 − 2)α],

(7)

which can be written in the form

�u1 = A1

2G
rλ1{	1(θ)}. (8)

In (7) and (8), G is the modulus of rigidity, and ν is the Poisson’s ratio. Here polar
coordinates r and α are centred at the re-entrant corner and the exponent λ1 characterizes the
smoothness of the solution. The coefficient A1 is called generalized stress intensity factor and
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Figure 7. L-shaped AMRFEM grids hierarchy (a) and convergence of AMRFEM (compared with
the methods in [4, 11]) (b).

Q1 can be calculated through λ1. The exact solutions were discussed in detail in [11, p 173 ff],
where λ1 = 0.544 483 737 and Q1 = 0.543 075 579 are obtained. In this case, the numerical
values of the constants are assumed: Poisson’s ratio ν is 0.3, Young’s modulus E and the
thickness of problem t are set to 1.0, a = 1.0 and the stress intensity factor is closely related to
that in [12, 13]. The strain energy of the exact solution is computed as ‖u‖2

E = 4.154 544 23.
To study the convergence of AMRFEM, nine different-scale grids are generated (see

figure 7(a)). The L-shaped domain is loaded with the tractions from the MODE 1 stress tensor.
In addition, the edges of re-entrant corner are the free edges, the other edges being clamped
with symmetry conditions. To eliminate the rigid body motion, the displacement of the node
at the re-entrant corner is set to zero. The relative error of the AMRFEM solution is expressed
through the difference between energy norm of exact solution and the AMRFEM solution of

η = ‖u‖FE
E − ‖u‖exa

E

‖u‖FE
E

, (9)

where ‖u‖FE
E is the energy norm of AMRFEM solution and ‖u‖exa

E is the energy norm of exact
solution.
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Table 1. The percentage of relative error in energy norm.

I = 1 I = 2 I = 3 I = 4 I = 5 I = 6
DOF = 42 DOF = 68 DOF = 94 DOF = 120 DOF = 146 DOF = 172

29.1675% 20.7246% 15.9564% 12.4565% 9.0201% 7.6370%

I = 7 I = 8 I = 9 I = 10 I = 11 I = 12
DOF = 198 DOF = 224 DOF = 250 DOF = 276 DOF = 302 DOF = 328

5.9475% 5.0406% 4.2613% 4.1136 % 4.0164 % 3.9274 %

Table 1 gives the convergence of the discretization. In particular, the relative error is
less than 5% (4.2613%) when the grids hierarchy reaches 9. And we now compare it to the
well-known h-, p-, and hp-extensions and hp-d adaptive of the FEMs. In figure 7(b), the
effect of increasing I can be studied on the log–log graph. As in [11], the typical curves of
an hp-extension on a geometrically refined mesh and the convergence of an adaptive h-version
and p-version are given. The relative errors in the energy norm of the p-version, hp-extension
descend very fast at the beginning of the DOF increase since the key point of the error is still
in the smooth part of the solution. Therefore, the high convergence of the p-version for smooth
solutions is observed. When the error at the corner becomes dominant, the convergence rate
slows down to λ1. The singularity of the corner influences the discretization with the adaptive
h-version mesh from the beginning of the refinement process. The dot curve (standing for
the h-version) is therefore flatter than the p-version FEM. Moreover, we can see that the
convergence of AMRFEM is very close to the hp-extension version FEM with its exponential
interpolation function at the beginning of the refinement process (the steepest rate is about
2.549). Finally, the convergence rate slows down because the method is based potentially on
the hp-d version FEM. Based on [4], the hp-d adaptive FEM at fixed polynomial p = 3 is also
given in figure 7(b). Although the error is smaller than AMRFEM, the DOF consumption of
the hp-d adaptive FEM is relatively greater than AMRFEM.

In short, the AMRFEM with grids hierarchy is superior to nomal h-extensions and to the
p-extension on a uniform mesh. The DOF consumption of AMRFEM is smaller than the
hp-d adaptive FEM with the same error in energy norm. Nevertheless, its efficiency is still
slightly less than that of a p-extension on a geometric mesh with its exponential preasymptotic
range of convergence. However, for heterogeneous media, due to the hierarchy of grids and
the high-efficiency convergence, the AMRFEM is naturally suited to the relevant trans-scale
problems. A numerical example of catastrophic failure in a heterogeneous medium will be
given in the following section.

The previous benchmark can only give us the convergence of this method. However, due
to the impossibility of obtaining the exact stress redistribution after the damage evolution, the
previous benchmark can only be used before any damage occurs in the domain.

5. Numerical example

In order to illustrate the validity of the proposed model, a numerical example of catastrophic
rupture in a heterogeneous brittle medium is given. In the example (figure 8), the failure
criterion of the mesoscopic element is of the Coulomb criterion (equation (7)). Obviously,
each mesoscopic element has two parameters for failure, the coefficient of friction µ, and
inherent shear strength τS. µ is assumed to be the same for all elements, but τS is different and
follows the Weibull distribution in [8], which is used to describe the material heterogeneity,
h(τS) = m(τm−1

S /ηm) exp[−(τSη)m], where η, m are two parameters in the Weibull distribution
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Figure 8. The topology of numerical example.
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Figure 9. The damage pattern evolution. The number on the arrow line is the quasi-static loading
step number. In the pattern, there are three kinds of darkness; black indicates that the elements
have been entirely failed; while gray indicates that the elements have been partially failed and white
means that the elements are intact.

which stand for the scale parameter and Weibull modulus (shape parameter), respectively. In
the example, µ = 0.639, m = 3 and η = 3.10 × 105 Pa as given in [1] and [17] for marble.
All elements are linear elastic at the beginning, but the modulus will reduce to 1/R (R = 105

in the case study) of the initial, when the element fails. Although the example is a plane stress
problem, the damage is allowed to be a three-dimensional one, which is shown in figure 4.
A damage evolution pattern obtained with the AMRFEM algorithm is given in figure 9. It
clearly shows the transition from random accumulation of damages to catastrophic rupture
owing to coalescence of damage. In addition, we compare this result with that of the simulation
with elements of the same finest size, see figure 10.
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Figure 10. The damage pattern of two simulations, left is the multiscale simulation and right is
the whole small-scale simulation.

In order to validate the effectiveness of the proposed AMRFEM algorithm in dealing
with the failure in heterogeneous media, we define an equivalent damage ratio Dj =∑elenum

i=1 A
(j)

i /N , whereA
(j)

i = {0, 0.5, 1.0} (the partially failed element is defined as 0.5) andN

is the total of elements. The damage ratio of the state after catastrophe is 7.15% for AMRFEM,
while it is 7.37% for WSFEM. It can be seen that the precision of the AMRFEM result is good
enough if the simulation with WSFEM is regarded as the standard. More importantly, the
computational time of the two simulations are 42.6 h and 64.4 h, respectively. Obviously, the
AMRFEM algorithm is much more economical in time consumed for computation, which is
extremely significant in large-scale computations.

However, as shown in figure 9, the catastrophic rupture cannot be predicted only from the
σ–ε curve. Actually, from our computations, we found that the stress redistribution resulting
from the damage interaction plays a critical role in the catastrophic rupture, which we will
report in another paper [18] with more computations to clarify the significant mechanism
governing the trans-scale phenomenon.

6. Conclusion

In order to handle the trans-scale coupling between the damage of mesoscopic scale and the
heterogeneity in the damage evolution and rupture in heterogeneous brittle media, a self-
adaptive mesh refinement finite element model (AMRFEM) is proposed. The serendipity
element is applied to connect the scales at different levels, while the smeared crack model is
implemented to avoid the moving inner boundary in damage evolution.

Various numerical examples show definitely, the effectiveness of this AMRFEM modelling
simulation of trans-scale problems. First, both benchmark and simulations of damage evolution
to failure in heterogeneous medium demonstrate that the AMRFEM results can give a very good
precision. Second, the AMRFEM algorithm is much more economical in the time consumed in
computation, which is extremely significant in large-scale, trans-scale computations. Finally,
the simulations show clearly, the transition from random damage accumulation to catastrophic
failure, owing to the coalescence of damage. This indicates that the AMRFEM is a very
helpful tool in coping with trans-scale phenomena, which can ensure both, the effectiveness
and the low-cost of computation. Therefore, AMRFEM is beneficial not only in revealing the
characteristics and underlying mechanism of catastrophe phenomenon, but also in seeking a
clue to predicting the catastrophic rupture.
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