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Abstract

The thermodynamical model of intermittency in fully developed turbulence due to Castaing (B. Castaing, J. Phys. II
France 6 (1996) 105) is investigated and compared with the log-Poisson model (Z-S. She, E. Lévéque, Phys. Rev. Leit.
72 (1994) 336). It is shown that the thermndvnamlr‘al model nhpvq oengral sca_lmn laws and r-nrre&nnndc to the rlpmanpmtp
class of scale-invariant statistics. We also ﬁnd that its structure function shapes have physical behav:ors 51mllar to the
log-Poisson’s one. The only difference between them lies in the convergence of the log-Poisson’s structure functions and

divergence of the thermodynamical one. As far as the comparison with experiments on intermittency is concerned, they are

indifferent. (© 1998 Published by Elsevier Science B.V.
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bers, for scales in the S0- called mertlal range the
velocity field u has structure functions |Su|" =
{|e(x + ¢) — u(x)|"y which go as power laws of the
scale £: |Sug|" ~ €6 Moreover, the scaling expo-
nents {(n) appear nearly independent of flow geom-
etry or Reynolds number, at least for n < 8 [1]. A

dimensional analvsis due to Kolmogorov l?l nrpr‘lmtc
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{(n) = n/3. Present experimental data are not con-
sistent with such a linear shape and this discrepancy
is a central question in turbulence [3]. Among the
various answers found in the literature, two models
have recently attracted special attention.

— She and Lévéque [4], using a hierarchical de-
scri l_,tu'\n of energy transfers, obtain an excellent fit of

the data with no adjustable parameter,

/2\ "3
{°L(n)——+2ll—k ) J (1

later shown to correspond to a log-Poisson distribution
for the velocity increments [5,6].

— Castaing [7], with a thermodynamical approach,
obtains

cooy 143
5(”)"31+n , (2)

NS

where the “temperature” T of the turbulent flow is in-

vnrcnlv nronortional to the Revnolde number A value
Y proporiionai 10 tne KREyno:Gs numoer. A vaiue

of T = 0.03 is sufficient to provide an excellent fit to
the experimental data of e.g. Ref. [1]. This confirms
that scaling exponents are not a good way to discrim-
inate between various models, as already emphasized
in Refs. {8-10]. What then can we do?
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In the present Letter, we consider the constraints im-
posed by scale invariance, in the spirit of Nottale and
Pocheau [11,12]. As was shown in Ref. [10,13-15],
scale symmetry can be used to compute the possible
scale dependence of the structure functions, i.e. the
shape of scaling exponents, and handle infinitely di-
visible processes. The starting point of these computa-
tions is the observation that both universality and non-
universality coexist in turbulent flows. Some scaling
properties are universal; for instance, relative scaling
exponents {(n)/{(3) are independent of the geom-
etry (cylinder, jet, grid) [1], of the dissipation [16]
or of the type of turbulence (hydrodynamical, convec-
tion, magneto-hydrodynamical) [17]. Yet, the most
intermittent structures, representing large but rare ve-
locity fluctuations, are not universal; they look like
filaments or worm in numerical 3D turbulence [ 18],
in helium or grid generated turbulence [19,20]; while
they are vorticity rings in jet turbulence [20], and
thermal plumes in convection or magnetic sheets in
magneto-hydrodynamics [21].

This observation led Dubrulle and Graner [13,10]
to separate into two parts the velocity structure func-
tions, and their scaling exponents in the inertial range,

Suy

(|8us|") = (6u?°)"< Sug° > ’ G
L(n)=nd+8{(n). (3b)

— The first part, non-universal, is the maxi-
mal value of intermittent velocity increments, de-
fined [4,5,13,10] as Su® = limy_oo(|6u"*"')/
{|6u¢|"). Its scaling exponent in the inertial range is
A. This non-universal part should be computed ac-
cording to a given geometry, dissipation or finite size
effects [22,23]. For instance, in 3D homogeneous,
isotropic, hydrodynamical turbulence, it can be com-
puted using the Kolmogorov 4/5 law directly derived
from the Navier—Stokes equation [15].

— The (potentially) untversal part du, /8ug® is now
a dimensionless velocity increment. Its contribution
is the intermittency function 8¢'(n). The idea is that
it should only depend on a “universal” mechanism,
common to all configurations whatever the experi-
mental conditions, Reynolds number, turbulence pro-
duction, turbulence type. One possibility is that they
share a symmetry: here the scale invariance. Since

the intermittent structures have been renormalized
out, they are no longer influent except via the limit
limy, o0 (81 /6ug®)"). This limit is just the proba-
bility to find a velocity increment of amplitude Sup®
at scale £, since by definition Su;* is the largest ve-
locity increment. For small enough ¢, this probability
scales like £€, where C is the codimension of the set
of the largest velocity increments. Scale symmetry ar-
guments [ 13] now classify the possible shapes of the
intermittency function according only to the geometry
of the intermittent structures. Physically, it then only
depends on whether there are zero, one or two types
of intermittent structures, each characterized by one
codimension.

In turbulence, experiments and numerical simula-
tions suggests that there is only one type of intermit-
tent structures, worms or rings according to the turbu-
lence production. In such a case, there are only two
possible shapes for the intermittency function [13]:
the log-Poisson statistics, with only one finite codi-
mension C_,

8¢ (n)=C_(1- ", (4)

or the degenerate shape, where both codimensions col-
lapse into the same value Cy,

n C() ﬂ
8(m = o (5)
Here B is a free parameter. Note that the log-Poisson
case is always regular, while the degenerate case
presents a divergency at an usually negative value
n=1- Co/B.

Comparing Egs. (1), (2), (3b), (4), (5), we see
that the She and Lévéque model corresponds to the
log-Poisson case with 4 = 1/9, C_ = 2 and B =
(2/3)'/3, while the Castaing model corresponds to
the degenerate case with 4 = 0, Cp = 1 + 1/3T and
a=(1+3T)(3+ 3T). They are then strictly physi-
cally equivalent from the point of view of scale invari-
ance, as far as scaling exponents are concerned: once
again, even with the additional requirement of scale
symmetry, scaling exponents only are not sufficient to
discriminate between both models.

To go one step further, we thus address the ques-
tion of the scale dependence of the velocity structure
functions in both models. Graner and Dubrulle [14],
using an analogy with mechanics, suggested a formal-
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ism to predict such a scale dependence. Consider a
Frmniles ~AF cnmdame Galds lacad ~e vyalanlies 1o nmamsanta
ld.llllly Ul 1alTUUIL HITIUD badeUd Ul vOIULILY THVIGHIVIW
b (£) = |8us| |8us/8us®|". Each member of the fam-
ily is analog to a particle following a trajectory given
by the log-coordinates

] éa() e
wn-n(2). ren()).

where (R, L) are respectively a reference field and a
reference scale. For instance, L may be chosen as the
Kolmogorov scale 7. As for Ry, its choice influences
the meaning of the log-coordinate. For example, if R,
is chosen as ¢g, then the velocity of the nth particle

V,yr = dX,/dT is the scaling exponent of the nth order
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cides with the intermittency function 8¢ (n) in the in-
ertial range. In analogy with electro-magnetism, it can
be obtained from Euler-Lagrange and Maxwell equa-
tions [14]. The scale symmetry requires that these
equations should be scale covariant and, thus, con-
strains the shapes of their solutions.

DL tha al L Af tha alant f
rny n\,au_y, tne anaiog o of the electric field is a

function characterizing the injection and dissipation
processes in a turbulent flows. The response of the
particie to such an electric field then describes the re-
sponse of a turbulent flow to these mechanisms, and
thus, the cascade process from large to small scales.
There is one situation where this cascade is especially
simple: when the electric ficld is X-independent, i.e.,
when the interactions do not depend on the ampli-
tude of the velocity increments. In such a case, X-
translation symmetry holds, and by Noether theorem,
there is a conserved quantity along the scales. This
situation can then be seen as a generalization of Kol-
mogorov’s assumption [2] by which the energy dissi-
pation ¥ flA‘I< o d.u)? dx is conserved along the scales.
Kolmogorov’s hypothesis leads to a very special self-
similar shape for the structure function ((8u;)") ~
¢"3. In the same way, the X-independent situations
leads to a special form of similarity for the reduced
structure functions.

This formalism, focussing on the dependence with
¢, was applied up to now only to the log-Poisson
mode! [15]. Two main results were obtained:

(1) The universal part of the structure functions
obeys a general scaling property extending from the
injection scale down to the smallest resolvable scales,

thus explaining the observation of Ref. [17].

arraInt

\ll} Thc same }lllbal ayyxuz\uua.uuu accouns fUl a
large variety of turbulent flows, from jet to boundary
layer turbulence.

Let us now examine in detail whether this analy-
sis can apply to the degenerate case in order to dis-
tinguish between both models. A basic ingredients of
the dynamical equations is a similarity factor, which
reads in the d acgenerate case I'= {i — "7/C0)~l . This
similarity factor enters in the definition of the impul-
sion of a particle via P = MCo(I'? — 1)/2. If the
nth particle ¢, does not interact with the other ones,
¢, (p # n), the impulsion can be given by Euler-
Lagrange equations, whose general shape is given in
Ref. [14]. This equation only depends on the analog
of an electric field E, through a coupling constant «,,
which reads in the degenerate case,

dr?
dT
By studying the response of a particle to various elec-
tric fields, one can prove by computations similar to

those described in Ref. [15] that the coupling con-
stants must go as

b )2, (8)

Co— 83
O ~/

=a,E(X,T). (7)

an=ao(l+
AN

while the similarity factor at initial condition T = O
obeys

_Bn
Co— B

Ny ™ snN

2(0) = 10(0) (i +

™~

). {9)

and A~ io ¢l
ana agp is t

e,

cre /3 is a parameter
f the “Oth particle”.
Now, we must account the essential hypothesis that
E is independent on X. It will solve the equation ob-
tained as the ratio of Eq. (7) written twice, for both
particles ¢, and ¢,. Using relation (8) and the initial
condition (9), we can solve the ratio equation to get

Co+(n—1)8
Co+(p—-1B

Now, we introduce the relative velocity of the nth par-
ticle with respect to the pth particle [ 13],

I'n(T) = I'y(T). (10)

n/p—CO(1 ) (11)

"/p
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Recalling that Iy, = I,/I, [13], we substi-
trsbn TN Zmen 711N 2 le o Y7 —_ N
wie (ivy mo (11) w obwain v, = Coplhn —
p)/ (Co+ (n—1)B), which is a (scale indepen-
dent) constant. As a special case, we get

y oo dinu/e) _ Copn

/0 dr Co+(n—-1g’

where 7 is the proper time of the Oth particle. Let us
pause a moment to study the physical meaning of such
a relation. In a fixed reference frame (R, T), the nth
and the Oth particle are both accelerated by the same
force, the electric field E. In the accelerated reference
frame (¢bo, 7) of the Oth particle, the test particle n
moves under the conjugate action of an “inertial” force
and an external force due to the same electric field.
Thus, both forces cancel exactly: in this accelerated
frame, the test particle n behaves as a free particle with
a constant velocity, a property translated by Eq. (12).

This simple property translates into a remarkable
property for the shape of the reduced siructure func-
tions. Indeed, integrating the expression (12) with re-
spect to 7, we find that the reduced structure functions

obey S
ln< ﬁ> B CoBn
T Co+(n-1)B

where the integration constant f, reflects the statistics
at injection scale. Such relation is the general scaling
described in Ref. [17]. In fact, when r = T'In(¥), a
situation obtained e.g. in the inertial range, it means
that reduced structure functions are self-similar and

go as 25+ i general, however, 7 is not linear in 7
th

514(
Suge

™(T) + fn, (13)

haranaa it danands An a avtarnal farna E via .
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A= — 14N

a7 = N \i7)
0

where I'; follows the Euler-La 3
One observes well-defined scalmg exponents only
when plotting one reduced structure function with
respect to another one (e.g., the n = 3 one), see
Figs. 1 and 2. In such a plot, which eliminates T,
one then measures relative scaling exponents, e.g.
8¢ (n)/8¢(3), which are then independent on non-
universal quantities lumped in E. This provides an
explanation of the universality properties observed in
turbulent flows.
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structure functions display a transmonal behavior between the
anomalous power law # in the inertial range to the regular
scaling #* in the dissipative range.
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Fig. 2. When the nth order reduced structure function is plotted
as function of any other one (here the 3rd one), the transition
between the inertial range to the dissipative range is erased. All
information regarding such a transition is in fact lumped into the
function 7 shown in Fig. 3.

To compute explicitely the reduced structure func-
tions, we need the shape of the electric field. The elec-
tric field E obeys the Maxwell equation JE/dT = —J
where J is analog to the eleciric current. We can foi-
low the idea used in the log-Poisson case and consider
a linear (“ohmic”) approximation J = ¢ F, where the
proportionality constant is a pseudo-conductivity o.
This closes the system of equations (7), (14) which
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can be solved using elementary integrations. We can
describe all solutions by introducing two character-
istic “times” (1.e., log-scales): the injection time T;
defined by 7(7;) = 0 and the dissipative time Ty by
I'(Ty) = 3/2; here the 3/2 is arbitrary, it could be any
number larger than one. The solution depends on an
integration constant k = I'2(0) + agEp/o. It yields
two different types of solutions:

(1) A scale-symmetric case k = 0
Ll ) A DLAIC-D> ylll llCLllL« Lade K = U,

= (4/30.)(60'(7'—7}1)/2 _ ea(ﬂ—ﬂl)/z) ,

Ti=Ty+(4/0) In(3/2) . (15)

This exponential self-similar shape is exactly the same
as in the log-Poisson case, except for a factor two in
the conductivity. It has been observed in a turbulent
wind tunnel experiment [24], and predicted using La-

anaoian 251 ar narmal form T
angian | <3 Or normai 101 | 24§ appr

case is compatible with the local scale symmetry dis-
cussed in Refs. [12,22], hence its name.
(2) The symmetry-breaking case k = 1,

171 annroachec Thig
Cacnes. inis

H(T=T4)/ /—17—__7'7_:'7
e” u;/‘-.f_\/e £ —id) +D/4

(16)

2
7=—1In .
T o T=To/2 4 | [eoT-T) 1 5]4

This case resembles, but differs from the correspond-
ing symmetry breaking solution obtained in the log-
Poisson case. As an example, we plot both solutions
in Fig. 3 and compare them with the log-Poisson case.
The daia of Ref. {19] are also shown. We see that
although different, both solutions fit the data equally
well and could be used to describe these data.

Summarizing, we have studied both She-Lévéque
and Castaing models from the point of view of scale
invariance, and found no striking differences in their
properties. Both account equally well for the scaling
exponents, both expiain the property of general scai-
ing observed in turbulence and both give similar re-
sults when usmu a hinear ;mnrm(lmatmn In fact, at the
present stage of knowledge, they only differ by the
regularity of the intermittency function: the moments
for the thermodynamical model may divergence but
the moments for the log-Poisson model always con-
vergence. At the moment, we do not have any theo-
retical arguments ruling out the presence of divergen-
cies in the scaling exponents. It is therefore only an
act of faith to privilege one or the other model in the
description of turbulent flows.
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shown with Ty =2 and 7; = 8 as in the data of Ref. {19}, shown
with circles. In the symmetric case, this yields o = 0.135 in the
log-Poisson case and /2 = 0.135 in the degenerate case so that
both solutions coincide (full line). In the nonsymmetric case. o
is a free parameter; high values, e.g. o = 20 for log-Poisson or
o /2 = 20 coincide (dotted line) and provide the best fit, in contrast
with low values, e.g. o = 0.2 (dashed-dotted line) for log-Poisson
and /2 = 0.2 (dashed-dotted line with crosses) for degenerate.
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