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Abstract 

The thermodynamical model of intermittency in fully developed turbulence due to Castaing (B. Castaing, J. Phys. II 
France 6 (1996) 105) is investigated and compared with the log-Poisson model (Z-S. She, E. L&Eque, Phys. Rev. Lett. 
72 ( 1994) 336). It is shown that the thermodynamical model obeys general scaling laws and corresponds to the degenerate 
class of scale-invariant statistics. We also find that its structure function shapes have physical behaviors similar to the 
log-Poisson’s one. The only difference between them lies in the convergence of the log-Poisson’s structure functions and 
divergence of the thermodynamical one. As far as the comparison with experiments on intermittency is concerned, they are 
indifferent. @ 1998 Published by Elsevier Science B.V. 

In isotropic turbulence at high Reynolds num- 

bers, for scales in the so-called inertial range, the 
velocity field u has structure functions 1&l” E 
(lu(x + P) - u(x)]“) which go as power laws of the 
scale e: ~L%Q(~ - el(“). Moreover, the scaling expo- 

nents c(n) appear nearly independent of flow geom- 
etry or Reynolds number, at least for n < 8 [ 11. A 

dimensional analysis due to Kolmogorov [ 21 predicts 
l(n) = n/3. Present experimental data are not con- 
sistent with such a linear shape and this discrepancy 
is a central question in turbulence [3]. Among the 
various answers found in the literature, two models 
have recently attracted special attention. 

- She and LCv&que [4], using a hierarchical de- 
scription of energy transfers, obtain an excellent fit of 
the data with no adjustable parameter, 

~SL~n)=~+2[1- (:)““I, (1) 

later shown to correspond to a log-Poisson distribution 
for the velocity increments [ 5,6]. 

- Castaing [ 71, with a thermodynamical approach, 
obtains 

where the “temperature” T of the turbulent flow is in- 
versely proportional to the Reynolds number. A value 
of T = 0.03 is sufficient to provide an excellent fit to 
the experimental data of e.g. Ref. [ 11. This confirms 
that scaling exponents are not a good way to discrim- 
inate between various models, as already emphasized 
in Refs. [ 8-101. What then can we do? 
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In the present Letter, we consider the constraints im- 

posed by scale invariance, in the spirit of Nottale and 
Pocheau [ 11,121. As was shown in Ref. [ 10,13-151, 

scale symmetry can be used to compute the possible 

scale dependence of the structure functions, i.e. the 
shape of scaling exponents, and handle infinitely di- 
visible processes. The starting point of these computa- 

tions is the observation that both universality and non- 

universality coexist in turbulent flows. Some scaling 
properties are universal; for instance, relative scaling 

exponents t( n)/J( 3) are independent of the geom- 
etry (cylinder, jet, grid) [ 11, of the dissipation [ 161 

or of the type of turbulence (hydrodynamical, convec- 

tion, magneto-hydrodynamical) [ 171. Yet, the most 
intermittent structures, representing large but rare ve- 

locity fluctuations, are not universal; they look like 
filaments or worm in numerical 3D turbulence [ 181, 

in helium or grid generated turbulence [ 19,201; while 
they are vorticity rings in jet turbulence [ 201, and 
thermal plumes in convection or magnetic sheets in 

magneto-hydrodynamics [ 211. 
This observation led Dubrulle and Graner [ 13,101 

to separate into two parts the velocity structure func- 
tions, and their scaling exponents in the inertial range, 

(34 

c(n) = nA +&J(n). (3b) 

- The first part, non-universal, is the maxi- 

mal value of intermittent velocity increments, de- 

fined [4,5,13,10] as SutW = lim,,,(l&I”+‘)/ 
(l&fl”). Its scaling exponent in the inertial range is 
A. This non-universal part should be computed ac- 
cording to a given geometry, dissipation or finite size 
effects [22,23]. For instance, in 3D homogeneous, 
isotropic, hydrodynamical turbulence, it can be com- 
puted using the Kolmogorov 4/5 law directly derived 
from the Navier-Stokes equation [ 151. 

- The (potentially) universal part &e/&r is now 
a dimensionless velocity increment. Its contribution 
is the intermittency function S&(n) . The idea is that 
it should only depend on a “universal” mechanism, 
common to all configurations whatever the experi- 
mental conditions, Reynolds number, turbulence pro- 
duction, turbulence type. One possibility is that they 
share a symmetry: here the scale invariance. Since 

the intermittent structures have been renormalized 

out, they are no longer influent except via the limit 
lim n+oo((6ue/6u~)“). This limit is just the proba- 
bility to find a velocity increment of amplitude 6ur 
at scale e, since by definition 8~~~ is the largest ve- 
locity increment. For small enough e, this probability 

scales like Cc, where C is the codimension of the set 
of the largest velocity increments. Scale symmetry ar- 
guments [ 131 now classify the possible shapes of the 

intermittency function according only to the geometry 
of the intermittent structures. Physically, it then only 
depends on whether there are zero, one or two types 

of intermittent structures, each characterized by one 

codimension. 
In turbulence, experiments and numerical simula- 

tions suggests that there is only one type of intermit- 
tent structures, worms or rings according to the turbu- 
lence production. In such a case, there are only two 
possible shapes for the intermittency function [ 131: 
the log-Poisson statistics, with only one finite codi- 

mension C_ , 

65(n) = C_( 1 - /3”), (4) 

or the degenerate shape, where both codimensions col- 

lapse into the same value Cc, 

K(n) = 
n CO P 

co + (n - l>P’ 

Here /l is a free parameter. Note that the log-Poisson 
case is always regular, while the degenerate case 
presents a divergency at an usually negative value 
12 = 1 - co/p. 

Comparing Eqs. (I), (2), (3b), (4), (5), we see 
that the She and LCv&que model corresponds to the 
log-Poisson case with A = l/9, C- = 2 and p = 

(2/3)“3, while the Castaing model corresponds to 
the degenerate case with A = 0, CO = 1 + 1/3T and 

(Y = ( 1 + 3T) (3 + 3T). They are then strictly physi- 
cally equivalent from the point of view of scale invari- 
ance, as far as scaling exponents are concerned: once 
again, even with the additional requirement of scale 
symmetry, scaling exponents only are not sufficient to 
discriminate between both models. 

To go one step further, we thus address the ques- 
tion of the scale dependence of the velocity structure 
functions in both models. Graner and Dubrulle [ 141, 
using an analogy with mechanics, suggested a formal- 
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km to predict such a scale dependence. Consider a 

family of random fields based on velocity increments 
4,(e) = \&Q( lSu~/Gu~l/“. Each member of the fam- 
ily is analog to a particle following a trajectory given 
by the log-coordinates 

X.,(T)=ln(F), T=ln(t), (6) 

where (72, , L) are respectively a reference field and a 

reference scale. For instance, L may be chosen as the 

Kolmogorov scale 7. As for ‘Q, its choice influences 
the meaning of the log-coordinate. For example, if ‘RE 

is chosen as 40, then the velocity of the nth particle 
V ,,,n = dX,/dT is the scaling exponent of the nth order 
reduced structure function ((6~ In / (6ur ) “) and coin- 
cides with the intermittency function 6[( n) in the in- 
ertial range. In analogy with electro-magnetism, it can 
be obtained from Euler-Lagrange and Maxwell equa- 

tions [ 141. The scale symmetry requires that these 
equations should be scale covariant and, thus, con- 

strains the shapes of their solutions. 
Physically, the analog E of the electric field is a 

function characterizing the injection and dissipation 

processes in a turbulent flows. The response of the 
particle to such an electric field then describes the re- 

sponse of a turbulent flow to these mechanisms, and 
thus, the cascade process from large to small scales. 
There is one situation where this cascade is especially 

simple: when the electric field is X-independent, i.e., 
when the interactions do not depend on the ampli- 
tude of the velocity increments. In such a case, X- 
translation symmetry holds, and by Noether theorem, 

there is a conserved quantity along the scales. This 
situation can then be seen as a generalization of Kol- 

mogorov’s assumption [ 21 by which the energy dissi- 

pation v hs,<i (a,~)’ dx is conserved along the scales, 

Kolmogorov’s hypothesis leads to a very special self- 
similar shape for the structure function ((au!)“) N 

er’ii. In the same way, the X-independent situations 
leads to a special form of similarity for the reduced 
structure functions. 

This formalism, focussing on the dependence with 

!. was applied up to now only to the log-Poisson 
model [ 151. Two main results were obtained: 

(i) The universal part of the structure functions 
obeys a general scaling property extending from the 
injection scale down to the smallest resolvable scales, 

thus explaining the observation of Ref. [ 171. 

(ii) The same linear approximation accounts for a 
large variety of turbulent flows, from jet to boundary 

layer turbulence. 
Let us now examine in detail whether this analy- 

sis can apply to the degenerate case in order to dis- 
tinguish between both models. A basic ingredients of 

the dynamical equations is a similarity factor, which 
reads in the degenerate case r = ( 1 - V/Co)-‘. This 
similarity factor enters in the definition of the impul- 
sion of a particle via P = MCc( r* - 1:) /2. If the 

lath particle (b,, does not interact with the other ones, 

+p (p # n) , the impulsion can be given by Euler- 

Lagrange equations, whose general shape is given in 

Ref. [ 141. This equation only depends on the analog 
of an electric field E, through a coupling constant cy,, 
which reads in the degenerate case, 

dr* 
2 = a,E(X,T) . 
dT 

(7) 

By studying the response of a particle to various elec- 
tric fields, one can prove by computations similar to 

those described in Ref. [ 151 that the coupling con- 
stants must go as 

while the similarity factor at initial condition T = 0 
obeys 

r,(o)=ro(o) (I+&-). 
Here p is a parameter and LYO is the coupling constant 
of the “0th particle”. 

Now, we must account the essential hypothesis that 
E is independent on X. It will solve the equation ob- 

tained as the ratio of Eq. (7) written twice, for both 
particles 4” and bp. Using relation (8) and the initial 

condition (9), we can solve the ratio equation to get 

r,(T) = 
C0+(n-1)P 

co + (P - l>P 
r,(T) (10) 

Now, we introduce the relative velocity of the nth par- 
ticle with respect to the pth particle [ 131, 

I 
q,, - c ( 1 - r;,,) . - 0 (11) 
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Recalling that r,l, = r,,/rp r 131, we substi- 
tute (10) into (11) to obtain V fllP = C&n - 
p)/ (Co + (n - l)p), which is a (scale indepen- 
dent) constant. As a special case, we get 

C0Pn 

CO + (n - I>/3 ’ 
(12) 

where r is the proper time of the 0th particle. Let us 

pause a moment to study the physical meaning of such 
a relation. In a fixed reference frame (Re, r), the nth 

and the 0th particle are both accelerated by the same 

force, the electric field E. In the accelerated reference 
frame (40, r) of the 0th particle, the test particle n 

moves under the conjugate action of an “inertial” force 
and an external force due to the same electric field. 
Thus, both forces cancel exactly: in this accelerated 

frame, the test particle n behaves as a free particle with 
a constant velocity, a property translated by Eq. ( 12). 

This simple property translates into a remarkable 

property for the shape of the reduced structure func- 
tions. Indeed, integrating the expression ( 12) with re- 

spect to 7, we find that the reduced structure functions 

obey 

sue 
n 

In - (I I> Co@ 

Su? =Co+(n-I)p 
7(T) + .fn 9 (13) 

where the integration constant fn reflects the statistics 
at injection scale. Such relation is the general scaling 

described in Ref. [ 171. In fact, when r = T In(e), a 
situation obtained e.g. in the inertial range, it means 

that reduced structure functions are self-similar and 
go as eslcfl); in general, however, r is not linear in T 
because it depends on the external force E via To, 

ro ’ 
where To follows the Euler-Lagrange equation (7). 
One observes well-defined scaling exponents only 
when plotting one reduced structure function with 
respect to another one (e.g., the n = 3 one), see 
Figs. 1 and 2. In such a plot, which eliminates 7, 
one then measures relative scaling exponents, e.g. 
Sl(n)/65(3), which are then independent on non- 
universal quantities lumped in E. This provides an 
explanation of the universality properties observed in 
turbulent flows. 

I.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 

1 2 3 4 5 6 7 6 9 

Scale In (I/q) 

Fig. 1. When plotted against the log-scale T, the nth order velocity 

structure functions display a transitional behavior between the 

anomalous power law @tn) in the inertial range to the regular 

scaling P in the dissipative range. 
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Fig. 2. When the nth order reduced structure function is plotted 

as function of any other one (here the 3rd one), the transition 

between the inertial range to the dissipative range is erased. A11 

information regarding such a transition is in fact lumped into the 

function T shown in Fig. 3. 

To compute explicitely the reduced structure func- 
tions, we need the shape of the electric field. The elec- 
tric field E obeys the Maxwell equation dE/aT = -.I 
where J is analog to the electric current. We can fol- 

low the idea used in the log-Poisson case and consider 
a linear (“ohmic”) approximation J = WE, where the 
proportionality constant is a pseudo-conductivity g. 
This closes the system of equations (7), ( 14) which 
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can be solved using elementary integrations. We can 
describe all solutions by introducing two character- 
istic “times” (i.e., log-scales) : the injection time T; 
defined by r(T) = 0 and the dissipative time Td by 
r( Td) = 3/2; here the 3/2 is arbitrary, it could be any 
number larger than one. The solution depends on an 

integration constant k = r;(O) + q&/a. It yields 

two different types of solutions: 
( 1) A scale-symmetric case k = 0, 

7 = (4/3a) (e<Jr(T-T,,)12 _ e0&)/2) , 

7; = Tf + (4/(+) ln(3/2) , (15) 

This exponential self-similar shape is exactly the same 
as in the log-Poisson case, except for a factor two in 
the conductivity. It has been observed in a turbulent 
wind tunnel experiment [ 241, and predicted using La- 

grangian [ 251 or normal form [ 221 approaches. This 
case is compatible with the local scale symmetry dis- 
cussed in Refs. [ 12,221, hence its name. 

(2) The symmetry-breaking case k = 1, 

2 
7=-ln 

erru--Td)12 + eU(T-Td) + 5/4 
(16) 

u eg(T,-T,,)/2 + eV(T,-r,f) + 5/4 . 

This case resembles, but differs from the correspond- 
ing symmetry breaking solution obtained in the log- 
Poisson case. As an example, we plot both solutions 

in Fig. 3 and compare them with the log-Poisson case. 
The data of Ref. [ 191 are also shown. We see that 

although different, both solutions fit the data equally 

well and could be used to describe these data. 
Summarizing, we have studied both She-LCvCque 

and Castaing models from the point of view of scale 
invariance, and found no striking differences in their 

properties. Both account equally well for the scaling 
exponents, both explain the property of general scal- 
ing observed in turbulence and both give similar re- 
sults when using a linear approximation. In fact, at the 

present stage of knowledge, they only differ by the 
regularity of the intermittency function: the moments 
for the thermodynamical model may divergence but 
the moments for the log-Poisson model always con- 

vergence. At the moment, we do not have any theo- 
retical arguments ruling out the presence of divergen- 
cies in the scaling exponents. It is therefore only an 
act of faith to privilege one or the other model in the 
description of turbulent flows. 

z 

.?,‘,,,i”‘,i”‘.~“, I’,“/, ,,/’ ,;‘-L 
1 2 3 4 5 e 7 8 9 

T 

Fig. 3. The behavior of a the proper time in the ohmic solution. 

shown with Td = 2 and Ti = 8 as in the data of Ref. [ 191. shown 

with circles. In the symmetric case, this yields g = 0.135 in the 

log-Poisson case and u/2 = 0.135 in the degenerate case so that 

both solutions coincide (full line). In the nonsymmetric case, rr 

is a free parameter; high values, e.g. (T = 20 for log-Poisson or 

u/2 = 20 coincide (dotted line) and provide the best fit, in contrast 

with low values, e.g. D = 0.2 (dashed-dotted line) for log-Poisson 

and (r/2 = 0.2 (dashed-dotted line with crosses) for degenerate. 

Thanks are due to to P Tabeling and B. Castaing 
for their support and to SAP for its hospitality to G.W. 
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