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Abstract

Low-dimensional systems are constructed to investigate dynamics of vortex dislocations in a wake-type
shear !ow. High-resolution direct numerical simulations are employed to obtain !ow snapshots from which
the most energetic modes are extracted using proper orthogonal decomposition (POD). The 5rst 10 modes
are classi5ed into two groups. One represents the general characteristics of two-dimensional wake-type shear
!ow, and the other is related to the three-dimensional properties or non-uniform characteristics along the
span. Vortex dislocations are generated by these two kinds of coherent structures. The results from the 5rst
20 three-dimensional POD modes show that the low-dimensional systems have captured the basic properties
of the wake-type shear !ow with vortex dislocation, such as two incommensurable frequencies and their beat
frequency.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier B.V. All rights reserved.
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1. Introduction

A number of experimental studies, such as Williamson (1992), Dallard and Browand (1993), Lewis
and Gharib (1992) among others, have shown that in the cylinder wake, mixing layer and some other
nonlinear waves the !ow transition involves the appearance of large-scale vortex dislocations or a
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pattern ‘defect’ with a complex three-dimensional con5guration. Vortex dislocations are generated
between spanwise vortex shedding cells out of phase. They play an important role in the !ow
transition and are considered to be a new kind of the mechanism for the transition. Recently, Ling and
Xiong (2001) and Braza et al. (2001) have made numerical exploration on the vortex dislocations in
a wake-type !ow and a cylinder wake. The generation of forced vortex dislocations and natural vortex
dislocations and their in!uences on the !ow were reported. Some classical !uid dynamics research
methods and local analysis techniques such as wavelet analysis have been used to study vortex
dislocations. However, there has been almost no report using proper orthogonal decomposition (POD)
methods to describe the vortex dislocations or constructing low-dimensional dynamical systems using
POD to study the dynamical properties of the vortex dislocations.

The forced vortex dislocations are sometimes well-organized large-scale !ow structure and ap-
peared periodically. The POD is a rational decomposition technique in which the most energetic
modes may be extracted systematically from an ensemble of signals provided by a set of snapshots
of !ow 5eld from experiments or numerical simulations. The modes can be used as a basis for
a Galerkin reduction of the governing equations. Background material for the POD approach can
be found in the review article by Berkooz et al. (1993). Recently, a number of !uid mechanical
problems, including the near-wall boundary layer (e.g., Aubry et al., 1988; Rempfer, 1996) and the
channel !ow (Moin and Moser, 1989; Bonnet et al., 1994; Bangia et al., 1997 and others) have
been studied using POD method.

This study tries to simplify the complex vortex shedding phenomena induced by a cylinder with
spanwise diameter variation, using a wake-type shear !ow pro5le with local spanwise variation
in streamwise velocity defect, and to gain some basic knowledge on the mechanism of vortex
dislocations appearing in the real !ows. Following the ‘concept of computational reducibility’ by
Triantafyllou and Karniadakis (1990), it is expected that the vortex wake will be reproduced nu-
merically by only knowing the time-averaged velocity pro5le at speci5c locations behind a circu-
lar cylinder, where it is most unstable. According to the linear instability analysis with diJerent
time-averaged streamwise inlet velocity pro5les obtained from previous experiments, we can get
vortex streets with diJerent shedding frequencies along the span of the !ow. By studying the evo-
lution of this kind of !ow, we expect to obtain the vortex dislocation phenomena with saving large
computation resources. It is also suggested that the results from this study will not be the same as
those given by the experiments, but they may mimic, in some basic aspects, the vortex dislocations
produced by a real cylinder with disturbance or a variation in cylinder diameter. It is presumptive
that the present results will be helpful to understand the complexity on the vortex dislocation occur-
ring in real cylinder wakes. On the other hand, because the evolution of the wake-type shear !ow
leads to periodic vortex shedding, it also can be considered as a kind of the nonlinear waves. Thus,
the present work also relates to the vortex dislocation problem in nonlinear waves. Direct numerical
simulations of the vortex dislocations in a !ow past a real cylinder and physical analysis are now
undertaken, and will be reported in a succeeding paper.

In the present work, some basic features of the vortex dislocations in the wake-type shear !ow
are numerically simulated. The three-dimensional characteristics of the !ow are investigated by POD
method. Properties of the low-dimensional dynamical systems with vortex dislocations using POD
are discussed. This paper is organized as follows. In Section 2, we brie!y present the spectral direct
numerical simulation (DNS) to obtain spatio-temporal evolution of the wake-type shear !ow with
local spanwise non-uniformity. In Section 3, we brie!y describe the POD procedure and the resulting
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POD vector modes for the wake-type shear !ow. In Section 4, the low-dimensional dynamical
systems are constructed based on the varying number of these eigenmodes, N =10–30, using linear
Galerkin projections, and we conclude the paper with a discussion in Section 5.

2. Numerical simulations

2.1. Theoretical formulation and numerical method

In order to obtain high numerical accuracy and, wavenumber resolution a compact 5nite diJerence-
Fourier spectral hybrid method is used for solving three-dimensional Navier–Stokes equations. A
detailed presentation of these equations and the numerical method can be found in Xiong and Ling
(1996). The procedure of the method is summarized as follows. In the spanwise direction of the
!ow, the periodic boundary conditions are assumed, and then we expand all the !ow variables into
a truncated Fourier series as

’(x; y; z; t) =
N=2−1∑
m=−N=2

’m(x; y; t)e−im
z; (2.1)

where x, y and z are the streamwise, vertical, and spanwise directions, respectively. N is the cutoJ,
and 
 is the spanwise wavenumber. The three-dimensional incompressible Navier–Stokes equations
are written, in primitive variable formulation, as

@V
@t

+ (V · ∇)V =−∇p+
1
Re

∇2V ; (2.2)

where V = {u; v; w} are the velocity components in x; y; z directions, respectively, and p is the
pressure. The characteristic length D and the velocity scales U0 are introduced, where U0 is speci5ed
to be the streamwise wake-type in!ow velocity U (y; z) at y = ±∞, and D is chosen to be the
half-width of the wake-type in!ow so that, in non-dimensional variables, U (D=2;∞)= 1

2[U (0;∞)+
U (∞;∞)]. The Reynolds number is de5ned as Re = U0D=�, where � is the kinematic viscosity.

Substituting (2.1) into (2.2), we 5nd a system of equations for the mth harmonic in a two-
dimensional (x; y) domain as

@Vm

@t
+ Fm[(V · ∇)V ] =−∇mpm +

1
Re

∇2
mVm; (2.3)

where ∇m ≡ {@=@x; @=@y;−im
}, ∇2
m ≡ @2=@x2 + @2=@y2 − m2
2, and Fm[(V · ∇)V ] is the Fourier

transformation of the nonlinear terms. For the time discretization of the equation a third-order mixed
explicit–implicit schemes is used. The solution procedure at every time step is split into three sub-
steps. The pseudo-spectral method is adopted to evaluate the nonlinear terms in the split equations.
When the Fourier coeQcients of velocities are transformed into the velocities in the physical space,
the nonlinear convection terms are approximated by the 5fth-order upwind compact scheme. For solv-
ing the Helmholtz equations for pressure and velocity, a nine-point compact scheme of fourth-order
accuracy is derived and the fourth-order central compact scheme is used for the non-homogeneous
term. In this method a semi-discrete pressure boundary conditions and a generalized non-re!ecting
outlet boundary conditions are used.
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Fig. 1. In!ow velocity pro5le U (y; z) at diJerent span locations, where solid line is for 2:5¡ |z|¡ 15 and dot–dashed
line is for |z|6 2:5.

The wake-type in!ow velocity pro5le is taken as

U (y; z) = 1:0− a(z)(2:0− cosh(b(z)y)2)e−(c(z)·y)2 ; (2.4)

which represents the time-averaged streamwise velocity pro5le in wake near the cylinder near wake
where the !ow is most unstable as seen in the direct numerical simulations of Karniadakis and
Triantafyllou (1992) as well as the experimental measurement of Nishioka and Sato (1974).

Here, a(z), b(z), and c(z) are the parameters imposed to produce diJerent inlet velocity pro5les
along the span of the !ow. In the present calculation, a(z)= 1:1, b(z)= 1:1, c(z)= 1:2 for the outer
region |z|¿ 2:5, and a(z)=1:1, b(z)=0:9, c(z)=0:9818 for the central non-uniform region |z|6 2:5.
These variations of the parameters yield two diJerent inlet velocity pro5les along the span. It may
mimic, to some extent in some basic aspects, the situation of cylinder with stepped variation of the
spanwise diameter. The inlet velocity pro5les at diJerent regions are shown in Fig. 1, where D=1:42,
U0 = 1 and Re = 200. The computation domain is 60, 30, and 30 in the streamwise, vertical, and
spanwise directions, respectively. The cutoJ wavenumber of the truncated Fourier series is N = 64,
and the corresponding number of the grid points in (x; y) plane is 122× 62.

2.2. General feature of vortex dislocations

A typical signal of the vertical velocity component v is presented in Fig. 2. The sampling points
are taken on a line of x = 15 and y = 0:5 for all z positions examined. The vertical velocity
component is employed for the analysis, because it responds immediately to the passage of a von
KRarmRan vortex row and it is not masked by the upstream convection velocity as in the case of the
streamwise component. The signal has normal characteristics of two dimensional wake !ow at z¿ 5,
while the signal is modi5ed at z ∈ (0; 3), and is qualitatively similar to those with vortex dislocations
observed in experiments, such as Williamson (1992), and in numerical simulations, such as Braza
et al. (2001).

In order to examine the global behavior of the !ow along the spanwise direction, a fast Fourier
transformation was performed on the v component signals at diJerent values of z, each of which
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Fig. 2. Time series of vertical velocity component v at diJerent positions z along the span at (x; y) = (15; 0:5).
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Fig. 3. Power Spectral Density (PSD) of vertical velocity component v at diJerent positions z along the span at point
(x; y) = (15; 0:5).

consists of 1024 points. The dimensionless length of the time series was 0.2 and the dimensionless
frequency accuracy was 0.0049. The spectra of vertical velocity component v for several values
of z are shown in Fig. 3, where we can see two incommensurable frequencies, i.e. f1 = 0:141,
f2 = 0:117, from z = 0 to 3, while there only appears a single peak f1 = 0:141 at z¿ 4. The two
incommensurable frequencies, and the relative energies of the two peaks, are primarily functions
of the spanwise location. Furthermore, for z ∈ (0; 3), a peak appears in the spectrum at a reduced
frequency of 0.0244, i.e. at the diJerence frequency between the two peaks. It seems that this apparent
‘beat’ frequency, f1 − f2, is the result of nonlinear interaction of the two shedding frequencies of
neighboring cells.
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Fig. 4. Iso-vorticity surfaces at values |!|= 0:15.

Fig. 5. Iso surfaces at values !x = 0:11 (gray) and −0:11 (black).

Iso-surfaces of vorticity and iso-surfaces of the streamwise vorticity component are shown, re-
spectively, in Figs. 4 and 5, which show the formation of vortex dislocation in this !ow. In Fig. 4,
the spanwise vortex rolls are largely modi5ed along the span. Streamwise and vertical vorticity
branches are deformed at the position of large curved vortex rolls and connected with adjacent vor-
tices with opposite sign. The vortex linkage region is in a narrow zone near the central area. In
Fig. 5, the iso-vorticity surface of !x = ±0:11 shows the structure of the linkage. It is shown that
the vortex dislocations do not occur uniformly in the streamwise direction. The !ow pattern is a
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chain-like structure in this direction. The head part (downstream) of the structure is narrow, the
width of which is about 5. The bottom (upstream) of it is wider, and is about 10 in width. A gap
appears between these two adjacent structures. As seen in the sequential 5gures from (a) to (d), the
chain-like structure in the downstream moves out of the computation region and at the same time a
new vortex dislocation structure is generated in the upstream. In the downstream near the positions
|z|= 2:5, the !ow pattern is very like the direct mode in Lewis and Gharib (1992). As the central
nonuniform region is not very long in the spanwise direction, the pattern may be concerned as a
spot-like structure which is similar to the two-side vortex dislocations in Williamson (1992).

This is the general feature of vortex dislocations in the wake-type shear !ow. More detailed
features and a case of diJerent discontinuous inlet pro5le will be discussed in our succeeding work.
In the next section, we will focus on the wake-type shear !ow by analyzing the POD eigenmodes
and a low dimensional dynamical system derived by using the eigenmodes.

3. Eigenspectrum and POD modes

In order to obtain the most energetic eigenmodes from the DNS databases we employ the snapshot
method of Sirovich (1987), which we formulate as follows.

Let V(x; tm) be a time-dependent velocity 5eld, where tm for m∈ [1; M ] is a sequence of discrete
time at which the snapshots are taken, and M is the total number. We then decompose V(x; tm) as

V(x; tm) =U(x) + u(x; tm); (3.1)

where U(x) is the average and u de5nes the !uctuation velocity, and its covariance matrix is obtained
by

Cp;q =
∫
!
u(x; tp) · u(x; tq) d!; (3.2)

where ! is the computational domain. Let (b1k ; : : : ; b
M
k )

T denotes the eigenvector to Cp;q with
corresponding eigenvalue #k (16 k6M). The sum of these eigenvalues gives the total !uctua-
tion velocity ‘energy’ E of the system

E =
M∑
k=1

#k ; (3.3)

where the snapshots number M¿ n∗ is determined by the numerical cutoJ criterion #n∗=#1 = 10−8.
The POD vector mode �k(x) is de5ned by

�k(x) =
∑M

m=1 b
m
k u(x; tm)

‖∑M
m=1 b

m
k u(x; tm)‖

: (3.4)

This equation is written in matrix form, and the eigenspectrum and corresponding eigenmodes are
obtained using standard LINPACK routines. The normalized POD modes thus obtained are numeri-
cally orthogonal.
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Fig. 6. Eigenvalues normalized by the total energy of the !uctuation velocity system for three-dimensional wake-type
shear !ow at Re = 200.

The eigenvectors are, by construction, incompressible,

∇ · �k(x) = 0 (k = 1; : : : ; M): (3.5)

The !uctuation velocity at any instant can be expanded in terms of these POD vector modes as

u(x; tm) =
M∑
k=1

ak(tm)�k(x); (3.6)

where ak(tm) is the amplitude.
We perform the decomposition using 160 snapshots from our simulation ensemble. In Fig. 6 we

show the 5rst 20 largest eigenvalues corresponding to the most energetic modes. The 5rst 10 modes
are found to occur in pairs of eigenvalues of comparable magnitude. The modes form pairs due
to the closeness of the vortex street to a traveling wave, similarly to the two-dimensional !ow
studied in Deane et al. (1991). This is also re!ected in the eigenmodes of each pair, which are
only phase-shifted with respect to each other. But after the 10th mode, the modes do not appear in
pairs. The 5rst two modes dominate over the !uid motion, comprising more than 80% of the total
!uctuation velocity energy of the motion. The 5rst 20 modes collectively contain more than 98% of
the energy.

In analyzing the modes, it should be kept in mind that each POD mode does not necessarily
represent a coherent structure, while the sum of several modes most probably does. Each mode can
be thought to capture dominant characteristics of the !ow which may or may not render itself to
visualization or other diagnostic techniques.

A qualitative picture of the structure of the POD modes is provided in Fig. 7 which presents
the 5rst through 10th modes of the vertical component of eigenmodes. In this 5gure, each one
in the 5rst 5ve pairs of modes presents almost the same pattern but with phase shift each other.
These are three-dimensional global eigenmodes, for which it becomes ambiguous how scale infor-
mation is introduced as the mode index increases. The 5rst, the third and the 5fth pairs of modes
still show that the structures are re5ned as the mode index increases. These three pairs of modes
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Fig. 7. Contours of the vertical component of the 5rst 10 modes at values 0:01 (gray) and −0:01 (black).

also show two-dimensional characteristics except that there is a break at the middle region of the
spanwise.

An interesting thing is that the second and the fourth pairs of modes are concentrated in the
middle region of the span where the other three pairs of modes are not large. The size of the two
pairs of modes in the streamwise direction is larger than the other three pairs in the 5rst 5ve pairs
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Fig. 8. Iso-vorticity surfaces at values |!|= 0:15: (a) DNS, and (b) reconstructed result by the 5rst 20 POD modes.

of modes. More interesting is that the size of the fourth pair modes is the largest one in the 5rst
5ve pairs. In z direction, the width of the structure in the upstream is much larger than that in the
downstream. So we may say that the second pair of modes mainly corresponds to the characteristics
of the non-uniform region, and the fourth pair of modes primarily represents the characteristics of
the vortex dislocations.

Finally, we note that based on the energy decay shown in the eigenspectrum plot in Fig. 6, it
appears that at least the 5rst 20 modes are energetically signi5cant and should be included in the
truncated system. Actually the 5rst 20 modes are used to reconstruct the !ow (Fig. 8(b)) almost the
same as the result of the direct simulation (Fig. 8(a)).

4. Construction of dynamical systems

The dynamical systems are obtained by performing a Galerkin projection of the incompressible
Navier–Stokes equations onto the space of the eigenmodes. Expanding the velocity as in (3.1) we
form the evolution equations for the amplitudes in (3.6) through∫

!
�k(x) ·

(
@u
@t

+ (V · ∇)V +∇p− 1
Re

∇2V
)

d! = 0 (4.1)

and ∫
!
�k(x)(∇ · V) d! = 0: (4.2)

The divergence-free equation (4.2) is satis5ed automatically since the POD modes are divergence-free
(3.5) by construction. The pressure term drops out from the governing equations since∫

!
�k(x) · ∇p d! =

∫
&
p�k · n d& −

∫
!
(∇ · �k)p d! = 0; (4.3)

where & is the boundary of !, and n is its unit normal outward vector. The boundary conditions
on the !ow are periodic in the spanwise direction. Furthermore, the pressure is zero at the out!ow
boundary, while the eigenvector are zero at the in!ow boundary by construction. Hence, there is no
contribution from the 5rst term in (4.3).
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Fig. 9. Phase portraits of the coeQcients. The circles correspond to the coeQcients which are directly obtained by projection
of the DNS data on POD modes, and the curves to the coeQcients of POD prediction.

The above procedure leads to a system of N equations by retaining the 5rst N modes from M
POD modes in the Galerkin expansion

dak
dt

=−
∑
l

∑
m

Bklmalam −
∑
l

Cklal − Dk; (4.4)

where

Bklm =
∫
!
(�l · ∇�m) · �k d!;

Ckl =
∫
!
(U · ∇�l) · �k d! +

∫
!
(�l · ∇U) · �k d! − 1

Re

∫
!
∇2�l · �k d!;

Dk =
∫
!
(U · ∇U) · �k d! − 1

Re

∫
!
∇2U · �k d!:

In (4.4), the constant terms arise from the contribution of the mean !ow, the linear terms involve
the time-varying part (including its interaction with the mean), and the quadratic terms are due to
the self-interaction of the time-varying part.

We have obtained the low-dimensional systems for N=10, 20, and 30. The system with 10 modes
displays an oscillation which, however, slowly grows without bound. But using 20 and 30 modes,
the oscillations are stabilized. The simulation with N = 30 modes is almost indistinguishable from
the simulation with N = 20 modes for the history of the coeQcients of the 5rst 10 modes.
A comparison of the time coeQcients of the model system with N =20 modes to those of the full

system is shown in Figs. 9 and 10 for 400 convective time units (only parts of them are plotted in
the 5gures) at Re = 200. The limit cycle is reasonably accurately captured by the 5rst and second
modes (Fig. 9(a)). The shape of the attractor in the phase portrait of a–a6 is almost the same as
that of a1–a3 in the two-dimensional case in Deane et al. (1991), while the shape of a1–a4 is new,
which means there are new characteristics in the system for the three-dimensional properties of the
!ow.

It is shown in Fig. 10 that the amplitude of the time coeQcients decreases as the index increases.
The coeQcients of the 5rst four modes in the low-dimensional dynamical system match well with the
coeQcients which are directly obtained by projection of the DNS data on POD modes. However for
the higher modes, e.g., the 5fth and the sixth modes in the 5gure, there are noticeable diJerences of
the amplitudes while the phases still match very well, though for the seventh and the eighth modes
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0.0 0.1 0.2 0.3 0.4

frequency

P
S

D

0.0 0.1 0.2 0.3 0.4

frequency

P
S

D

a5

0.0 0.1 0.2 0.3 0.4

frequency

10-4
10-3

10-2

10-1

100

a7

10-4
10-3

10-2

10-1

100

a3

10-4
10-3

10-2

10-1

100

a1

10-4
10-3

10-2

10-1

100

P
S

D

0.0 0.1 0.2 0.3 0.4

frequency

P
S

D

Fig. 11. Spectra of the coeQcients a1; a3; a5, and a7.

the coeQcients could match only qualitatively. Comparing the time history of coeQcients of the 5rst
four pairs of modes, we 5nd that the amplitude and the period of each pair are the same except for
the phase shift each other.

The coeQcients of the 5rst eight modes are chosen for the fast Fourier transform analysis. The
properties of the odd and the even modes of each pair are the same and the results of odd modes
are drawn in Fig. 11. The amplitude a1 has the frequency f′

1 = 0:140, which is almost equal to f1
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in the DNS data analysis. The frequency spectrum of a5 has a peak at twice of f′
1. The spectrum of

a3 has the frequency f′
2=0:117, which is equal to f2 in the DNS data analysis. The beat frequency,

f1 − f2, in the DNS frequency analysis appears in the spectrum of a7.
In summary, the low-dimensional system of N = 20 not only captures well the basic charac-

teristics of the real !ow, but also clearly presents the diJerence of dynamical roles of the co-
eQcients. The amplitudes a1 and a5 correspond to the characteristics of the basic !ow, a3 has
a property of the non-uniform region and a7 represents the dynamical features of the vortex
dislocations.

5. Conclusion and discussion

The POD procedure has been used to obtain low-dimensional systems. It is found that 20 POD
modes are suQcient to reproduce the three-dimensional wake-type shear !ow with vortex dislocations.
The characteristics of the 5rst 10 modes and their dynamical properties are studied in detail.

The POD modes have captured the coherent structure of the three-dimensional wake-type shear
!ow. There are two kinds of POD modes. One kind of modes, such as the 5rst, the third and the
5fth pair modes, represent the general characteristics of two-dimensional basic !ows, while the other
one, including the second and the fourth pair of modes, is mainly related to the three-dimensional
properties or non-uniform characteristics in the spanwise direction; the second pair of modes rep-
resents the characteristics of the non-uniform region of the wake-type !ow, and the fourth pair of
modes represents the characteristics of the vortex dislocations.

The orbit of the low-dimensional dynamical system, which we are concerned with, is stable, and
lasts for a few hundred shedding cycles. The base frequency (f1, one of the two incommensurable
frequencies) and its second and third harmonics are, respectively, described by the coeQcients of
the 5rst, the third and the 5fth pair of modes in the phase space. The spectral properties of the !ow,
such as f2 (the other one of the two incommensurable frequencies) and the beat frequency, are also
accurately described in the dynamical system by the coeQcients of the second and the fourth pair
of modes.

The present study has shown that the POD method can well extract the coherent structures of
wake-type shear !ows with vortex dislocation, the low-dimensional dynamical system constructed
by using the POD modes can clearly reproduce the dynamical properties of the !ow; the fourth pair
of modes represents the characteristics of the vortex dislocations and their coeQcients show the beat
frequency, f1 − f2. In physical space, these properties correspond to the vortex dislocations in the
wake-type shear !ow.

The !ow 5eld and the vortex dislocations obtained in the present work are speci5ed by the inlet
!ow with stepped variation in velocity defect. When the width between the discontinuity is de-
creased as a(z) = 1:1 + 0:4e−z2 (Ling and Xiong, 2001), a systematic vortex dislocation is also
generated, while the !ow pattern and the frequency variation in downstream are not the same as the
!ow presented here. Various vortex dislocation modes and three-dimensionality could be produced.
However, features on the generation of vortex dislocations are similar; for instance, streamwise
vorticity is generated or split from the original spanwise rolls and connected to adjacent span-
wise vortex rolls by substantial redistribution of the vorticity. Details will be reported in later
works.
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