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A Family of Interesting Exact Solutions of the Sine-Gordon Equation *
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By using AKNS [Phys. Rev. Lett. 31 (1973) 125] system and introducing the wave function, a family of interesting
exact solutions of the sine-Gordon equation are constructed. These solutions seem to be some soliton, kink, and
anti-kink ones respectively for the different choice of the spectrum, whereas due to the interaction between two
traveling-waves they have some properties different from usual soliton, kink, and anti-kink solutions.
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During the last three decades an exciting and ac-
tive area of research has been devoted to constructing
exact solutions for a wide class of nonlinear partial
differential equations. Indeed, to find exact solutions
plays an important role in the research of thé non-
linear science.! In particular, solving the sine-Gordon
equation

u  0%u

or2 98Xz
which arises in many branches' of mathematical
physics, has led to an extensive research?® and its
some kink, anti-kink, breather solutions were found
in the inverse-scattering method. Furthermore, from
these exact solutions of the integrable sine-Gordon
equation, the dynamics and solutions of the per-
turbed sine-Gordon equation were investigated.®—28
Especially, the pattern competition in the damped
and forced periodically sine-Gordon equation was ob-
served. This implies that the breather solutions are
important in the pattern competition. So it is sig-
nificant to construct new soliton (or kink, anti-kink)
solutions of the sine-Gordon equation.

In this letter, instead of the inverse-scattering
method, we consider the sine-Gordon equation by us-
ing a similar method to generate exact solutions from
stationary solutions in Ref. 9 and introducing the wave
function!® which is solution of the associated AKNS!!
(Ablowitz, Kaup, Newell and Segur) system. Firstly
we construct directly a family of traveling-wave solu-
tions of the sine-Gordon equation from the constant
solutions, which are coincident with those obtained in
Ref. 11. Secondly, by this family of traveling-wave so-
lutions, we find a family of interesting new exact solu-
tions of the sine-Gordon equation. Finally, by taking
limitations in the spatial direction we find this fam-
ily of new solutions are like kink, anti-kink and soli-
ton solutions respectively for the different choice of
the related parameter (actually this parameter just is
the spectrum of the sine-Gordon equation). However,
these solutions have some properties different from
usual soliton, kink, and anti-kink solutions within the
local region of space. Actually, from the explicit ex-
pression of this family of new solutions, we find that

+sinu =0, (1)

they contain two traveling-waves with different speeds.
By stimulating numerically these solutions, we find
that there exist various oscillations and singularities

~ within the local region of space, and we believe that
" the occurrence of these phenomena just results from

the interaction between two traveling-waves.
It is known that eigenvalue of the general AKNS
system are defined in the form:

b, =M®P, =N, ()

where ¢ = ( zl >, M and N are two 2 x 2 matrices:
2

w=(5) v=(E 5) w

where 7 is a real parameter. In components, Eq. (2)
may be rewritten as

Y1z = NP1 T qP2,
P2z = TY1 — NP2,
p1: = Ap1 + Bypa,
par = Copy — Aps. (4)

From the integrable condition @,; = &;,, we have

—A;+qC—-rB=0, (5)
qt — B: —2qgA+2nB =0, (6)
re — Cy —209C + 2rA =0, (7

which are equivalent to the desired nonlinear evolution
equations by the suitable choice of A, B and C.

By introducing a function known as the wave
function!®

¥1
r==—, 8
P2 ®)
the Eq. (2) is reduced to the Ricaati equations:
or
3—m=277p+q-7‘FZ» 9)
%—f = B+ 2AT" - CT2 (10)
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Fig. 1. Profile of the solution withn =0,c=0,¢co =1, T =2.0for (a) n=0.25, (b) n=1, (c) n = —1.

Construct a transformation IT : (I',q) — (I',§)

r—r, g=q+f(I)n), (11)
where f is a function. If Eq. (9) is invariant under the
transformation 7, i.e. (f ,q) satisfies Eq. (9), then q
still is a solution of the desired nonlinear equation.

For the sine-Gordon equation (1), by the transfor-
mation

1 1
2=s(X+1), t=3(X-1), (12)

Eq. (1) becomes

Uge = Sin U.

(13)
Its corresponding AKNS system is

1 1 1 .
2uz,A = I cosu,B=C= 2 sinu.

(14)
Actually, substituting Eq.(14) into Eq.(6) gives
Eq. (13). In this case, Eq. (9) becomes

’r=—q:

ar

=2 2,

9 nl" +q+ql’ (15)
Introduce the following transformation

~ 1

I'= T (16)

d=q-— ZEarctanF (17)

q= q aa: .

It is obvious that I’ together with g satisfies Eq. (15).
Therefore, integrating Eq. (17) we obtain the relation
between the old and new solutions for the sine-Gordon
equation (13)

U = u + darctanT, (18)
where I' = ¢1/¢3. So from a known solution, a new
solution for the sine-Gordon equation can be found by
Eq. (18).

Let the constant solutions of Eq. (13) be

'U/n:nﬂ,n=0a:t1’i27”'7 (19)

substituting Eq. (19) into the corresponding AKNS
system of the sine-Gordon equation, we get easily

1
Y1 = ¢y €xp (nw+ 4n( ) >,

1
= —nz — —(—-1)"t 20
or=cremp (<no— L (C0") . (20)

where ¢; and ¢y are the positive constants. So

1
r=%_ co exXp <2nm+ ——(—1)"t) ,Co = 4o
P2 2n

Cc2
(21)
Substituting Egs. (19) and (21) into Eq. (18), gives

U = n7 + 4arctan[cp exp(2np,)],

-1 n—1
Pn =1 — knt, kn=L

o7 0L

(22)

which are a family of the traveling-wave solutions of
the sine-Gordon equation. Furthermore, by using the
transformation (12), we find out that the solutions
(22) contain the well-known kinks as same as those
traveling-wave solutions in Ref. 11.

Next, we want to find a family of new solutions by
the above traveling-wave solutions (22). In this case,
we suppose that the elements ¢ and r of the matrix
M are in the form:

q= (I(P), r= "'(P), (23)
where p = = — kt, k is a constant. Then by
Egs. (5)—(7), A, B and C read the same form:

A= A(p), B = B(p)a C= C(p)v (24)

In order to obtain ¢; and 3, from Eq. (4), we have

1

o1 = ;(‘P2a: + np2), (25)

1
C‘P2z — TP = E(Cz - Tt)‘ﬂ?' (26)
This first-order linear partial differential equation in-
volving 2 can be solved by the method of character-
istics. It is easy to get the general solution of Eq. (26)
with the form

w2 = (C + kr)Y2F(¢), (27)



No.1 HUANG De-Bin et al. 3
where Then we find
rdp 28)
&= C+kr ( hm Un(X,T) = lim Un(X,T) = nm,
xz—+o0 T——00

and F(£) is a differentiable function of £. Substituting
Eq. (27) into Eq. (25) gives

=(C+kr) V2F' (&) + (A+kn)F(E)].  (29)
Substituting Egs. (29) and (27) into Eq. (4), we have
F'(€) - BF(&) =0, (30)

where
=(A+kn)? +(B+kq)(C+kr). (31)

By complicated calculations, we can get

rn = 2nsechry,,
C,. = 2nk,sechy,tanh~y,,
A, = nk, (sech2’yn — tanhz*yn). (32)
Now substituting Eqgs. (32) into Eq. (31), we have
Bn=(An+kan)’ +CL —kiri =0.  (33)
Therefore, Eq. (30) is easily solved as
F(&n) = caén + ca, (34)

where ¢3 and ¢4 are the integration constants. Then
we obtain the corresponding wave functions:

sechy,, 1
" 1+tanhy, = 2nkgsechy, (1 + tanhy,)(é, + c)’
c= %4,% = 277Pn +In (& (35)
3

Finally, substituting expressions (35) and (32) into
Eq. (18), we obtain a family of new solutions for the
sine-Gordon equation

un(z,t) = nm + 4arctan[co exp(2np, )] + 4arctanT,,
n=0,41,42, .. (36)

Next, we investigate this family of new solutions (36).
By the transformation (12) and an operation, we
rewrite solutions (36) in the coordinates (X, T) as

Un(X,T) =nn + 4arctan[exp(3,)] + 4arctan(I,),

n=0,x1,+2,---, 37)

where
~ _ 1 + kn _ (- )n_l
=n(l—ky,) <X+ l_knT)+1nco,kn— 0
(38)

=[n(=1)""'exp(2Yn) + 2n(-1)" F + X - T
+2e+2n(1)" 7 {[2n(~1)"" 1%+X T+2c
-exp(Fn) — n(—1)""" exp(-Fn)} " (39)

for |n| < % and n # 0,
lim Un(X,T)=nr+4r, lim U,(X,T) = nm,
T——00

T~—>+00
f 1
or n> 3
lim Un(X,T)=nn, lim U,(X,T)=nnr+ 4m,
x—+00 T~>—00
for n< —%. (40)

So, the solutions (37) are a family of soliton solu-
tions, kink solutions and anti-kink solutions of the
sine-Gordon equation, respectively, when || < 1/2
with  # 0, n > 1/2 and # < —-1/2. In par-
ticular, by taking limitations we find that the soli-
ton solutions seemly consist of kinks and anti-kinks
pairs bound together. In addition, from Egs. (38) and
(39), the solutions U,(X,T) are functions of (X — T)
and (X +T(1 + k,)/(1 — ky)), thus this family of new
solutions contain two traveling-waves with different
speeds.

Finally, let n = 0, ¢ = 0 and ¢y = 1, we stimulate
numerically the solutions U, (X, T) in Figs. 1(a)—1(c),
respectively.

From these figures, we can easily find that there
exist some oscillations and singularities for the solu-
tions within the local region of space, and we think
the occurrence of these phenomena just results from
the interaction between two traveling-waves. There-
fore, although these solutions are the same as usual
soliton, kink and anti-kink solutions from the spatial
limitations, there exist obviously large differences in
the local region. The further study of these solutions
will emerge in the later publication.

Remark: The real parameter 1 just is the imag-
inary part of one purely imaginary spectrum of the
sine-Gordon equation.
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