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Abstract ,
Two principal problems of equivalency and locality in nano-scale measurement are considered in this

paper. The conventional measurements of force and displacement are always closely related to the
equivalency problem between the measuremental results by experimental system and the real physical
status of the sample, and the locality of the mechanical quantities to be measured. There are some
noticeable contradictions in nano-scale measurements induced by the two problems..In this paper, by
utilizing a coupled molecular-continuum method, we illustrate the important effects of the two principal
problems in atomic force microscopy (AFM) measurements on nano-scale. Our calculations and analysis of
these typical mechanical measurement problems suggest that in nano-meter scale measurements, the two
principal problems must be carefully dealt with. The coupled molecular-continuum method used in this
paper is very effective in solving these problems on nano-scale.
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be closely related to the equivalency problem
between the experimental system and the sample,
and the locality of the mechanical responses of
the sample. These two problems can result in
some noticeable contradictions in nano-meter
scale measurements. So, in the nano-meter scale
measurements, we must consider these two
problems carefully. In this paper, a coupled
molecular-continuum method is used to illustrate
the important effects of the two - principal
problems in the measurements on nano-meter
scale.

For example, atomic force microscopy is
one of the instruments commonly used for
nano-meter scale measurements. In 1986, Binnig
and Rohrer were rewarded with the Nobel Prize
in Physics for their eximious invention of STM,

1. Introduction

The rapid development of the
micro/nano-electro-mechanical systems (MEMS
/NEMS) and some related technologies has led
the science of mechanics to focus increasingly
on the nano-scale [1-7]. This is a new challenge
and opportunity in the 21% century. Obviously,
proper nano-meter scale mechanical
measurement is one of the prerequisites to the
further and solid development of MEMS/NEMS.

In conventional measurements of force and
displacement, it’s always expected that the
output signals of measurement system are the
exact force acting on the sample and the
deformation of the sample. Actually, this should
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which provided a breakthrough in our ability to
investigate matter on atomic scale. In the same
year, Binnig et al [8] invented the Atomic Force
Microscopy. In fact, a number of experiments
have been done so far on a variety of layered
materials such as graphite [9, 10] and boron
nitride (BN) [10], ionic crystals such as NaCl
[11], and even biological substrates like DNA
fragments [12].

It is well known, in AFM measurement,
there are various atomic and molecular forces
between the tip of instrument and the sample,
e.g. van der Waals forces. The force acting on
the tip is~ detected by a micro-cantilever
according to its deformation. At the same time,
the instrument adjusts the position of the sample
and the fixed end of the cantilever to keep the
force unchanged [13]. The adjustment is taken to
interpret the surface morphology of the sample.
Therefore, the cantilever is used not only as the
loading part but also as the sensing part of the
measurement system. In order to make the
response of a sample equivalent to that of the
experimental system, it’s required that the
stiffness of the loading system, namely the
cantilever, should be as high as possible and the
stiffness of the sensing system (the cantilever) is
as low as possible. Obviously, the equivalency
principle is hard to be satisfied completely in an
AFM system.

On the other hand, the locality assumption
means that the load acting on the tip exactly
results from the point, on the sample, right
opposite the tip apex, regardless of the vicinity
of the point. However, in the nano meter scale
measurements, the AFM tip is of nano-meter
magnitude, and in most cases, asperities on a
sample surface are of the same order as the tip
radius. When we use AFM to detect the surface
morphology of a sample, the interaction between
the tip and the sample is not only related to the
local area of their opposite position, but also
related to the status nearby. This may lead to
some un-negligible deviation. Then, the locality
assumption needs careful re-examining. That is
to say, one should ask whether the output given
by an AFM is the real surface morphology of a
sample.

In the present work, by utilizing a coupled
molecular-continuum method, which avoids the

formidable difficulty in computing ability ant
time scales in molecular dynamics (MD)
simulation [14], we detailedly investigated the
important effects of the two principal problems
in atomic force microscopy measurements on
nano-meter scale. Our paper is organized as
follows. First, we briefly introduced the working
principle of AFM. Then in section 3, we
described our calculation model and method. In
section 4, we studied the equivalency problem in
AFM force-distance curve measurements. We
compared the real tip-sample force-distance
curve with the measured one based on our
calculation results and found that they are not
exactly superposed. Furthermore we explained
the jump-in and jump-off phenomena appearing
in the recording when the tip approaches the
sample surface and separates away. In section 5,
we used the coupled method to investigate the
nonlocality problem involved in AFM
measurement of the morphology of rough
surface. Finally, we give our conclusion in
section 6.

2. Working Principle of AFM

Figure 1 shows the classical AFM
instrument.
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Fig. 1 Schematic of AFM measurement instrument

In Fig. 1, d is distance between the tip and the
sample surface, and u is the position of fixed
end of the cantilever. Both of them are two basic
measuremental quantities in AFM experiments.
This measuremental system can be simplified as
a cone-shaped tip interacting with a
hemi-infinite body (see Fig. 2). From elementary
geometry we know that
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d=u-w,,, (1)
where w__ is the deformation of the free end
of the cantilever. After measuring » and w__,
from Eq. (1), we can deduce the tip-sample
distance " d . At the same time, the force signal
F output by AFM can be deduced from the
deformation of the cantilever.

For the typical rectangular Si,N,

cantilever, the length /=100um , the width
b=10pm and the thickness A =0.6pym , the

mass density oy, =3.1x10°kg/m’ [13]. So,

the weight of the cantilever is 1.86x107"'N,
and the weight of the conical-like silicon tip,
which is attached to the free end of the

. . 1
cantilever, can be estimated as E;erDmx Ps.8 s

3

. 7 6\3 -11
ie. -—~x(10><10 ) x2.33x10° x 10N=2.4x 10" 1IN

3
We see that these two weights are of the same

order O(IO_HN) , but they are at least 2

magnitude smaller than the typical quantity
(10°N, [15, 16]). Hence, the linear superposition
principle is applicable to the cantilever. In our
calculation, we take the deformed position of the
cantilever due to the gravity as the zero point of
d and w__.

Neglecting all dampness and assuming all
the tip-sample forces are acting on the free end
of the cantilever, according to the classical
elastic theory, we can obtain the force

F=k-wmx=§£—1-wm, @

where k is the elastic constant (stiffness
coefficient), £ and I are the elastic modulus

and inertia moment respectively, I = l—lz—bh3 .

3. Calculation Mode! and Method

In our calculation, we analyze the
micro-cantilever by conventional continuum
mechanics, but for the tip and the local area of
the sample, we take the intermolecular
interaction between them into account. This is
called coupled molecular-continuum method.

As shown in Fig. 2, the tip is considered to

be made up of a truncated cone and a spherical
cap.
[
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Fig. 2 Tip-sample interaction model

D, is the truncated height of the whole tip,

R is the curvature radius of the tip apex and
is the half apex angle. The sample is considered
as a half-infinite body.-

In our calculation, we consider the
intermolecular potential function between the tip
and sample as the well-known L-J 6-12 pair
potential

crf o C
e(r)= rTg ~ % 3)
where the first term of right hand side is related
to the repulsive potential and the second term
attractive potential. C is the constant
representing the interaction potential and the
parameter r, can be considered as a

characteristic  length in  intermolecular
interaction, typically taken as 0.3nm.
The interaction potential energy between

the tip and sample W is composed of 4 parts

W' =Wl WA WS W ()
where the subscripts ‘t’, °s’, ‘tc’ and ‘s¢’
represent the tip, the sample, the truncated cone
and the spherical cap respectively, and the
superscripts ‘rep” and ‘att’ represent the
repulsive and attractive potential energy
respectively. In Fig. 2, we set up local
orthogonal coordinates O'x’z’ at the tip apex.
From Eq. (4), the z' component of the
interaction force between the tip and the sample
can be expressed by

L,

5
5d &)
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As we are basically interested in the z’
component in this study, the z' component is
denoted by f for simplicity in the following

part of this paper.

With the assumption of additivity, the
attractive interaction energy between the
truncated cone and the hemi-infinite plane
surface will be the sum of its interactions with
all the molecules in the pair [17]. Therefore

2

» R
g ATy Jl z

dz' (6)
tc,s 6 R2 [z’+d -(R/siny —R)]3

where

R = Dpax +R/siny—R , R, =R/siny —Rsiny ,

A=n*Cp,p, is the Hamaker conStant, p, and

p, is the number density of molecules in the tip

and the sample respectively. Similarly we can
calculate the other parts of W™ :

2

Arostgzy/ B z
45 g[7+d—(R/siny—R)]

Wrcp = dzl s (7)

tc,s

w ATz -(R/siny - R)](R+R/siny -2)

U6 R [d+z’—(R/sim//—R)]3 “®
and
Wees =
i [z'—(R/sim//—R)](R+R/sinu/—z')dzl, ®
45 2 [:d+z’—(R/sim//—R):|9

where R, =R/siny —R. Substituting Eqgs. (6)-(9)
into Egs. (4) and (5), we can obtain the expressions
of W and f.

4. Analysis of Equivalency Principle in
AFM Measurements

4.1. Non-equivalency between the real
force-distance curve and the measured one

In this section, we investigate the
equivalency between the output F ~u curve
by AFM instruments and the real force-distance
curve f~d, where F and f is the output

force signal by AFM and the real interaction
force between the AFM tip and the sample.

We take the same parameters as those used
before in estimating the weight of the cantilever
and the tip. For elastic modulus of the cantilever,
we take E =300GPa [13]. The parameters for

silicon. tip are: R=10nm , D, =lum and
w =65". So, the Hamaker constant for silicon
tip and sample is 1.865x107°J [18, 19]. From

Egs. (5)-(9), we can obtain the real tip-sample
force-distance curve f ~d , as shown in Fig. 3.

Simultaneously, according to Egs. (1) and (2)
and the calculated f ~d curve, we can deduce

the ‘measured’ force-distance curve F ~u, as

illustrated in Fig. 4.

— - — Real Force-Displacement Curve

oy £ (N)
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1 ) N 100

Fig. 3 Real force-displacement curve

— « — Measured Force-Displacement Curve

15 F(nN)
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2.0

Fig.4 Measured force-displacement curve

The solid line in Fig. 3 is the real tip-sample
force-distance curve f ~d , which represents

the real physical interaction between the tip and
the sample. Figure 4 (The abscissa values in Fig.
4 have been shifted by +7.7nm to compare
with Fig. 3) gives the measured force-distance
curve F ~u, which can be directly output by
AFM instruments. The F ~u curve represents
the coupling response of the whole experimental
system made up of the tip, cantilever and the
sample, i.e., the superposition of the mechanical
response of the cantilever and the tip-sample
interaction. The curves NM, BA and ACN in Fig.
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3 are completely corresponding to those in Fig. 4.

Therefore, it’s quite reliable to deduce the real
tip-sample interaction from the measuremental
information given by the instrument. However,
there exists one part of the real force-distance
curve that can not be deduced by this way. For
example, the MC part in Fig. 3. Actually, MC is
corresponding to MB (the dotted line in Fig. 4)
when the tip is approaching the sample surface,
but is to CN when the tip-sample separates away.
It’s worthwhile to note that, in the MB and CN
part of the measured force-distance curve, the
force is not the monodrome function of the
distance. So the system state shift from M to B
or from C to N is an unstable process.

4.2. Stability analyses of AFM measuremental
system

In this section, we detailedly explain the
reason that the MC part in the measured
force-distance curve can not reflect the
corresponding part in the real one.

For the whole system composed of the
cantilever, tip and sample, the total energy U™
can be expressed as

Ut =U*+K° +K' + W}, (10)

where U° and K° is Hooke’s elastic potential

energy and kinetic energy of the cantilever .

respectively, K' is the kinetic energy of the tip,
and W™ is the interaction energy between the tip
and the sample, as denoted in Sec. 3. For the
present derivation, the cantilever deformation is
described by the Hooke’s law
|
Ut = 5 kwe,. ' an
and as we are only interested in the quasi-static
experimental process in this section, we assume
K°=K'=0. 12)

For the system to be in stable equilibrium,

we must have

62/;1 = ' (13)
and

27 rtot

aagz >0. (14)

Equation (13) is the condition for U™ to be
stationary, and Eq. (14) gives the stability

condition for the system, i.e.

2f-<k.

15
5d (15)
Accordingly, the critical condition is
o
——=k. 16
2 (16)

It is indicated that, if the force gradient is
larger than the elastic constant, the cantilever
becomes unstable and “jumps” onto or off the
sample surface. This is the jump-to-contact or
jump-off-contact discontinuity as shown in Fig.
4 (dotted line). From Eq. (16) the cantilever
position u, or wu. at which the

jump-to-contact or jump-off-contact occurs can
be determined. That is to say, in MC part of the
real force-distance curve in Fig. 3, the system is
unstable (tip jumping), therefore it 1is
understandable that the measured curve fails to
reflect this part in AFM measurements. In the
final analysis, this is induced by the special
working principle of AFM instruments. On one
hand, in order to avoid these unstable
phenomena, it is required that the elastic
constant of the cantilever should be as high as
possible. On the other hand, for the sake of high
force resolution, it is expected that the elastic
constant should be as low as possible.
Apparently the two sides are incompatible. In
practical experiments, we should make a
trade-off between them. This problem is
ineluctable in AFM measurements as long as the
working principle doesn’t change.

5. Analysis of the Nonlocality Effect in
AFM Surface Morphology Measurements

In this section, we investigate another
important problem in AFM measurements.

Usually there are some nano-scale
structures, such as artificially = designed
structures in nano-devices as well as the
ineluctable disordered roughness on the surface
of samples. It is well known that finite tip has
limitation to detect the morphology with deep
valley [13]. However, it is rare known that
owing to the nonlocality effect even an
individual atom tip can not give exact
morphology by means of the assumption  of
locality. Here we study a simple case to reveal
this nonlocality problem in AFM surface
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morphology measurements.

5.1. Calculation Model

In this investigation of the nonlocality, we
assume the AFM tip to be a small sphere to scan
a specified rough surface, as shown in Fig. 5.

AL -

Sample

Fig. 5 Schematic diagram of an AFM tip scanning a
specified rough surface

The sample surface is composed of an ideal
plane surface with cosine like asperities
periodically collocated with amplitude a and
wavelength A . The sample is hemi-infinite in
z direction and infinite in x and y direction,
and then the sample surface function is

z, =acos(g}xj, a7

as shown in Fig. 5. For simplicity and
convenience, the tip is replaced by a sphere with
radius R. The separation between the tip and

surface is denoted by H, and x, is the tip

position in the horizontal direction.
The interaction potential energy between

the tip and the rough sample W,

trs

can be

written as

W = P — W LW W, (18)

trs

where the subscripts ‘rs’, ‘f” and ‘a’ represent
the rough sample, the hemi-infinite body and the
asperities respectively, and the other scripts are
the same as those in Sec. 3. The vertical
component of the interaction force can be
expressed by

aWtot
ﬁ,rs=———af;“ . (19)

By the same way we did in Sec. 3, we can

calculate the f,,, for the respective values of
H and x,,ie.the specified tip position.
We performed the force calculations by

choosing a z interval, in which the root of the
equation

Sirs = Jfned (20)

lies for a fixed x,, where fg ., is the prefixed

P 2
scanning force. Through the golden search method
[20], we can “solve” Eq. (20) within relative error
1% t0 f;.,- When this procedure is repeated for

several x, values in one period, that is to say,
0<x,<A, the AFM image with a constant

scanning force of f; ., can be obtained.
5.2. Results of Single-atom Tip

To reveal the intrinsic reason that induces
the nonlocality effect, we use the model of a
single-atom tip which represents the virtual
sharpest tip. Specifically we investigate this
single-atom tip model in a number of cases with
both amplitude a and the wavelength A of
asperities varying from 107, to 3007, . By
assuming the tip be diamond and the sample be
silicon, we can take the Hamaker constant

A=7°Cp,p,=1.13x107°] in our calculation,

provided A4=1.13x10""J (corresponding to
C=127x10"Tm®) [18, 21]. All the following
quantities with length dimension are divided by
r,, and those with force dimension are divided,

by C/r,.
According to the essential AFM working
principle, when fixing the scanning force f, .4

in Eq. (20), for every tip position x,, we can

deduce the corresponding separation H (xp)

which represents the “measured” surface
morphology of the sample. Now let the particle
be so close to the sample surface that the AFM
can work in contact mode. With the assumption
of fiq=1953 (0.10N), we can obtain the

“measured” morphology scanned by the
single-atom tip, as shown in Fig. 6. For
comparing, we also draw the real surface
morphology of the sample in Fig. 6.
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Fig. 6 Comparison of the real (real line) and measured (dashdotted line) surface morphology scanned by a
single particle in one asperity period with a =50, 4 =100 and. fg , =1.953.

From Fig. 6, we can see that in the case of
the single-atom tip, the measured and real
surface morphology are almost identical, except

the slight difference (see the two insets in Fig. 6).

In order to characterize the discrepancies
between the measured and real surface
morphology, we define a parameter

N, N,
S, E\/Z(Zm ——zr)2 /\/erz , (2D

i=]

where N, is the number of calculating points

in one asperity period, z, and z are the

measured and real surface positions respectively.

m

For a=50, 4A=100 and f,_,=1.953 in Fig.

6, S,=1.59% . This suggests that the
nonlocality effect in AFM measurement with a
single-atom tip is not very strong when a>1
and A>1, and the measured results are
believable.

However, for deep (with increasing « ) and
closer (decreasing A especially close to
characteristic length scale r,) asperities, the

parameter S, , namely the indicator of the
nonlocality effect of the measured results, will
increase sharply. Figures 7(a) and 7(b) show the
curves of S, varying with wavelength A and
amplitude a respectively.

These figures indicate that S; increases with
increasing a or decreasing A, that is to say,
the more rough the sample surface is, the more

pronounced the nonlocality effect of measured
morphology is.

From Figs. 7(a) and 7(b), we can
approximately draw out the influence zone in the
a-A space, as illustrated in Fig. 8.

164 —— a=10
S, /% —+— a=20
12+ —v— a=30
—e+— a=40

| \%M

T T T T T T T v T
Q 50 100 150 200 250 - 300

(@ .

——— e,

124 1/ —a—2=70
v —v— =80
0.8 —J ‘ —e—2=90
i —e—2=100
04 T T T T
0 40 80 120 160 200
a

(®)
Fig. 7 (@) S, vs A curves for various a
changing from 10 to_40; (®) S; vs a curves with

A varying from 60 to 100. Both figures are
calculated under constant scanning force 0.1nN.
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Now, it can be concluded that the nonlocality
effect of the measured morphology may be
significant when @ -A parameter lies in zone I,

while inconspicuous in zone II (at least A >10).

From the model of single-atom tip, where there
is a characteristic intermolecular interaction

distance r, , we can conclude that the

nonlocality effect on morphology measurement

made by AFM under constant load mode is

intrinsic, regardless of the finite size of AFM tip.
50

+ Constant S =5.5% points
Polynomial fitted curve

40

304

20 I

0 - T T -
0 10 20

T T M
30 )\' 40 50

Fig. S, =5.5%

polynomial. The points are calculated under constant
scanning force 0.1nN.

8 Constant curve fitted by

6. Summary

- In  summary, by using a coupled
molecular-continuum method, we have analyzed
two important problems (equivalency and
nonlocality) in AFM measurements. It is found
that the non-equivalency problem is ineluctable
and the nonlocality problem is intrinsic. In
particular, the effects of non-equivalency and
nonlocality may become significant for high and
dense asperities. The calculations and analysis of
these .two typical mechanical measurement
problems suggest that in nano-meter scale
measurements, one must deal with the above
two principle problems carefully. The coupled
molecular-continuum method used in this paper
is very effective in solving these problems on
nano-meter scale.
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