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Influence of indenter tip roundness on hardness behavior in nanoindentation
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bstract

In this paper, the effect of indenter tip roundness on hardness behavior for two typical elastic perfectly plastic materials is studied by means of
nite element simulation. A rigid conical indenter of semi apex angle 70.3◦ fitted smoothly with a spherical tip is employed. It is shown that as the

ndentation depth increases hardness first rises from zero, reaches a maximum and then decreases slowly approaching asymptotically the limiting
alue equal to that due to a conical indenter of ideally sharp tip. The range within which hardness varies appreciably is comparable to the radius

f the indenter tip. The difference between the maximum value and the limiting value depends on the yield stress over the Young’s modulus ratio.
he smaller this ratio the greater the difference is. Numerical simulation also provides an opportunity for checking the accuracy and limitations of

he widely used Oliver–Pharr method.
2006 Elsevier B.V. All rights reserved.
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. Introduction

Instrumented nanoindentation has become an important and
opular tool for measuring the mechanical property of materials
t micro- and nanometer length scales. For elastic plastic materi-
ls, it readily yields values of hardness and the Young’s modulus.
f such a material is also homogeneous and if the indenter is geo-
etrically self-similar in shape hardness will be independent of

ndentation depth. Commercially available indenters such as the
erkovich and the Vickers indenters may be considered geomet-

ically self-similar if tip rounding is small enough to be ignored.
xperimentally, it is found that hardness is indeed a constant
hen the indentation depth is sufficiently large.
For small indentation depths, it is well known that hardness

s no longer a constant for most elastic plastic materials. In fact,
t often increases as the indentation depth decreases from a few

undred nanometers to several tens of nanometers. An improved
nderstanding of this indentation-size effect is the goal of many
ecent investigations. There are good reasons to believe that at

∗ Corresponding author. Tel.: +86 10 62553654; fax: +86 10 62561284.
E-mail address: zhengzm@imech.ac.cn (C.-M. Cheng).
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his length scale many materials may no longer be regarded as
omogeneous and without internal structure. This consideration
as led to much fruitful research in recent years highlighted by
he strain gradient theory [1–4]. On the other hand since the
ip radius of indenters is known to be about 100 nm or more,
ts effect on the apparent hardness can no longer be ignored
5–7]. Since these two effects are simultaneously present [8–17]
n hardness measurement there is a need to separate the two
ossible causes, one physical and the other geometrical, in a
uantitative way.

This paper examines, by means of finite element simulation,
he hardness behavior of the homogeneous and elastic perfectly
lastic material as a function of indentation depth using a rigid
onical indenter fitted smoothly with a spherical cap. The aim
s to establish a quantitative basis upon which other factors
ontributing to the indentation size effect can be separately
tudied.

Section 2 of this paper describes the mathematical model of
he present problem. Section 3 presents the principal numerical

esults of the finite element simulation. In Section 4, these results
re used to analyze the widely employed Oliver–Pharr method
or obtaining hardness and Young’s modulus from instrumented
easurements. Conclusions are given in the final section.

mailto:zhengzm@imech.ac.cn
dx.doi.org/10.1016/j.msea.2006.09.050
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the hardness varies appreciably is quite large and is of the order
of the indenter tip radius.

The hardness behavior of the two materials also differs in
several ways. Relative to the hardness at large indentation depth
Fig. 1. The ideal indenter—conic indenter with a spherical cap.

. The mathematical model

The body of the indenter used in the finite element simulation
s assumed to be conical with semi apex angle, ϑ, equal to 70.3◦.
his angle is chosen so that the cone with a sharp tip would have

he same volume to height relation as that of the ideally sharp
erkovich and Vickers indenter. In order to simulate a blunt

ndenter, the cone is fitted smoothly with a spherical cap of radius
. This geometry of the conical indenter is shown schematically

n Fig. 1. It is furthermore assumed to be rigid. Mathematically,
he contact area A can be expressed explicitly in terms of the
ontact depth hc in the following manner,

A

πR2 = hc

R

(
2 − hc

R

)
, if

hc

R
≤ 1 − sin ϑ

A

πR2 =
(

tan ϑ

(
hc

R
+ 1 − sin ϑ

sin ϑ

))2

, if
hc

R
≥ 1 − sin ϑ

(1

hen ϑ = 70.3◦, 1 − sin ϑ = 0.059. Transition from contact with
he spherical head to contact with the cone takes place at
c = 0.059R.

The material being simulated is assumed to be isotropic,
omogeneous and elastic perfectly plastic (hardening exponent
= 0). Two typical cases are studied. The yield stress over
oung’s modulus ratio, σY/E, of one material is 0.1. This mate-

ial exhibits sink-in behavior. The other material has a σY/E ratio
qual to 0.003 and exhibits pile-up behavior. For both materials
he Poison ratio ν is taken to be 0.3.

Dimensional analysis [18,19] shows that hardness H is related
o indentation depth h in the following way,

= Eh2f

(
h

R
,
σY

E
, ν, n, ϑ

)
, ϑ = 70.3◦, n = 0 (2)

nd the contact depth is related to the indentation depth in a
imilar way,

hc

R
= g

(
h

R
,
σY

E
, ν, n, ϑ

)
(3)

he indentation depth corresponding to hc/R = 0.059 will be
enoted by hs. For indentation depth smaller and greater than
s, the contact area is, respectively, given by the first and second
f Eq. (1).
. Dependence of hardness on indentation depth

Finite element simulation is executed using ABQUAS [20],
nd the results of hardness behavior for the two materials are

F
i

ig. 2. Computed hardness vs. reduced indentation depth h/R using the ideal
ndenter for σY/E = 0.003 and n = 0.

hown in Figs. 2 and 3. In each case, numerical computation
as carried out for two values of the tip radius, namely 50 and
00 nm. We see from the figures that for each material the two
ets of results nearly collapse into a single curve as required
y Eq. (2). The reason that they do not exactly do so is due to
umerical error.

The hardness behavior of the two materials has two com-
on features. Firstly, as the indentation depth increases from

ero hardness increases and reaches a maximum value. It then
ecreases and approaches asymptotically a limiting value equal
o the hardness due to an ideally sharp conical indenter. Sec-
ndly, the range in terms of the indentation depth within which
ig. 3. Computed hardness vs. reduced indentation depth h/R using the ideal
ndenter for σY/E = 0.3 and n = 0.
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he peak value of hardness for the material with a low value of
Y/E is, percentage wise, larger than for the material with a high
alue of σY/E. In other words, scale effect due to tip roundness
s more pronounced for materials with low values of relative
ield stress. In Figs. 2 and 3, the points where the indentation
epth h equals to hs are marked. We note that for the material
ith lower relative yield stress the peak hardness occurs at an

ndentation depth smaller than hs, meaning that this takes place
hile the spherical tip is in contact with the material. For the
aterial with higher relative yield stress peak hardness occurs

t an indentation depth greater than hs so that the contact is with
he conical body of the indenter.

The initial increase of hardness with indentation depth is con-
istent with the experimental observation reported by Lee et al.
21]. Since for materials with low values of yield stress the max-
mum hardness is reached at an indentation depth smaller than
s = 0.059R ≈ 10 nm, this part of the hardness versus indentation
epth curve may easily be missed in hardness measurements.

. Application

As an application, finite element simulations is used to exam-
ne the Oliver–Pharr [22] method for instrumented indentation
easurements. Calculation of hardness using finite element sim-

lation is a “direct” problem where one calculates hardness from
nown material properties and geometry. On the other hand, the
etermination of hardness and Young’s modulus is an inverse
roblem where one deduces hardness and Young’s modulus from
easured load versus indentation depth relation for loading and

nloading. It is under such circumstances that the Oliver–Pharr
ethod is used. Since this method makes use of semi-empirical

ormulae, it is of interest to see to what extent these formulae can
e justified at small indentation depth. Because the method is
ot designed for materials where pile-up occurs around indents,
he following discussion is limited to sink-in cases.

From the loading and unloading curves, one obtains the peak
oad P and the initial unloading slope S = (dP/dh)u at the point
f unloading as functions of the indentation depth h. Then, the
ontact depth hcop is, according to the Oliver–Pharr method,

cop = h − P

S

2(π − 2)

π
(4)

The contact area is next calculated using the area function,

op = c0h
2
cop +

N∑
i=1

cih
1/2i−1

cop , N = 8 or less (5)

where c0 and ci are known constants determined through a
alibration process. Hardness H and Young’s modulus E then
ollow from the definition of hardness and another formula

op = P
(6)
Aop

op =
√

π(1 − ν2)

2β

S√
Aop

(7)

r
H
h
d

Fig. 4. Hop vs. h for hmax = 200 nm.

here β is an empirical constant. Relation (7) with β = 1.0 has
een justified theoretically for infinitesimal deformation and
> 1 is introduced to count for large deformation [23]. It is
sually set at 1.05–1.08 [23]. The subscript op implies that the
elevant quantity is obtained using the Oliver–Pharr method.

To establish the area function for a specific indenter, the load-
ng and unloading curves of a standard material (usually fused
ilica) are measured. One calculates hcop as a function of h using
q. (4). Since for a standard material both E and ν are known
priori, Eq. (7) can be used to calculate the contact area Aop

after replacing Eop by E) also as an explicit function of h. In
his way, one obtains a set of values of (hcop, A

∗
op) for a set of

alues of h (or P). The best fit of the area function Eq. (5) to this
et of values then determines the unknown coefficients c0 and
i. It is known that values of these coefficients depend also on
he range of indentation depth (or of load) as well as on whether
dditional constraints are put on the coefficients (such as setting
0 to 24.5 to make the area function approach asymptotically the
ontact area of a conic indenter with ϑ = 70.3◦ at large indenta-
ion depths).

First, we check the overall performance of the Oliver–Pharr
ethod. Using the loading and unloading data from the finite

lement simulation as input as if they were given experimentally,
e establish the area function for the ideal indenter defined by
q. (1) by following the recipe of the Oliver–Pharr method.
sing the same set of data and the contact area Aop thus obtained
e calculate hardness Hop and Young’s modulus Eop as function
f h by means of Eqs. (6) and (7). The overall performance of this
ethod can then be quantitatively evaluated by (a) how well this

ardness agrees with the hardness H obtained by finite element
imulation and (b) how well the calculated Young’s modulus
grees with the value E assigned a priori.

Figs. 4 and 5 compare Hop and H for a range of h equals
o 200 and 2500 nm, and for two choices of c0. The material
roperties are: σY/E = 0.1, ν = 0.3, E = 70 GPa, and indenter tip

adius R = 400 nm. We note that Hop deviates considerably from

at small indentation depth. Moreover, the curves Hop versus
at small indentation depth may behave quite differently for

ifferent choices of the indentation depth range and c0. In fact
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Fig. 5. Hop vs. h for hmax = 2500 nm.

or certain choices, this method may over-predict hardness by
factor much larger than unity. Fig. 6 contrasts Eop with E in
similar manner. Again, deviations at small indentation depth

re quite noticeable. Figs. 4–6 demonstrate that the Oliver–Pharr
ethod may not be accurate at small indentation depth.
Next, we show how and why such inaccuracy arises. Numer-

cal simulation provides values of P, S, hc, A for a given h.
he differences of corresponding quantities from the simulation
nd the Oliver–Pharr results are regarded as errors. We calcu-
ate the contact depth hcop by means of Eq. (4). Then a measure
f the error in contact depth due to the application of Eq. (4)
s simply hcop/h. Similarly the error due to the application of
q. (7) in calculating the contact area A∗

op can be expressed as
∗
op/A. An additional error is introduced when fitting the data

et (hcop, A
∗
op) by a smooth curve to obtain a reconstructed area

unction Aop(hcop). A measure of the error in curve fitting is
op(hcop)/A∗

op(hcop). Since Eq. (4) defines a one-to-one corre-

pondence between indentation depth and contact depth, we can
lso replace Aop/hcop by Aop(h). However, we note that trans-
orming Aop(hcop) to Aop(h) introduces an additional error due
o the use Eq. (4).

Fig. 6. Young’s modulus vs. indentation depth, hmax = 2500 nm.
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Fig. 7. Area ratio (A∗
OP/A) vs. indentation depth.

In our example, the Oliver–Pharr method returns a value of
oung’s modulus Eop(h) different from E. It is easily shown

rom the definition of A∗
op and E that

op(h)
√

Aop(h) = E
√

A∗
op(h) (8)

Consequently, Eop/E versus h is a direct measure of the error
ue to the fitting process. Fig. 6 indicates that curve fitting by
eans of the area function, Eq. (5), can be poor at small inden-

ation depth (note that E is a constant).
Since by definition AH(h) = Aop(h)Hop(h) = P, we arrive at

nother relation.

Hop

H
= A

Aop
= A

A∗
op

A∗
op

Aop
=

(
Eop

E

)2
A

A∗
op

(9)

In this relation, A∗
op/A is a measure of the error in A∗

op due
o the use of Eq. (7) (β = 1.08). Fig. 7 plots A∗

op/A against h. It
hows that this ratio can differ significantly from one at small
ndentation depth. We know that Eq. (7) at small indentation
epth is only accurate for β = 1.0 and that the evaluation of the
nloading slope S at small indentation depth can involve large
rror.

In Fig. 8, hcop/hc representing errors due to the use of Eq. (4)
s plotted against h. Like in the previous figures, the error appears
o grow as h decreases toward zero. This is expected since Eq.
4), a generalization of a relation in the elastic penetration by an
deally sharp cone, is not applicable to a spherical indenter.

The above analysis shows that all three kinds of errors become
ore prominent as the indentation depth approaches zero. To

xamine why this happens we discuss the behavior of Aop and
op near h = 0. For our ideal indenter we know that at the limit

c = 0, to the first order of approximation, A ≈ 2πRhc ∝ hc. Finite
lement simulation as well as analysis shows that H → 0 at this
imit. Then, the definition of hardness requires that the load

m
∝ hc , m > 1 as hc → 0. Likewise, for a homogeneous mate-

ial the unloading slope S must behave like S ∝ h
1/2
c in order to

aintain a finite Young’s modulus. Let us define δA = Aop − A

s the error in the contact area, then δA ∝ cNh
1/2N−1

c . Conse-
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Fig. 8. Contact depth ratio vs. indentation depth.

uently, as hc → 0, we have Hop = P/Aop = P/A + δA ≈ P/δA. This
eans that there always exists a certain region close to hc = 0
here the hardness calculated according to the Oliver–Pharr
ethod is dominated by error in the calculation of contact

rea, resulting in unreliable hardness and Young’s modulus (for
xample, a negative cN would lead to a negative contact area
ufficiently close to hc = 0). Since the value of coefficients in the
rea function depends on many factors such as the quality and
uantity of raw data, the range of contact depth within which
tting is done, whether or not constraints on the constants c0
nd ci are put in place, etc., the behavior of the hardness curve
ear hc = 0 becomes unreliable. For the same reason the size of
his region is subject to variations.

Thus, although the Oliver–Pharr method yields reliable hard-
ess and Young’s values at sufficiently large indentation depth
roughly greater than R, Figs. 4–6) when the material is elas-
ic perfectly plastic, the above analysis shows that at very small
ndentation depth (about 0.059R and less) the method is likely to
roduce spurious results. The main reason is that in this region
a) the contact area is very small making it difficult to reliably
alculate hardness and Young’s modulus, (b) data are sparse
poor fitting), (c) the error in Eq. (4) is large and (d) the analytical
orm of the area function is a poor representation of contact area.
rrors incurred at such small indentation depth can be carried

nto region beyond 0.059R because of the smoothness require-
ent of the fitting curve. How far this region extends seems to

epend on many factors including the calibration process, qual-
ty and quantity of initial data (Figs. 4 and 5).

. Concluding remarks

. For elastic perfectly plastic materials, tip rounding can cause
appreciable increase in hardness at indentation depth compa-
rable to the tip radius. Decreasing the ratio σY/E makes this

kind of “scale effect” more pronounced. The peak value of
hardness for σY/E = 0.003, ν = 0.3 and E = 70 Gpa is approxi-
mately 13% higher than its limiting value at large indentation
depth.

[
[
[
[

ineering A 445–446 (2007) 323–327 327

. Tip rounding causes hardness to vary with indentation depth.
The range in terms of the indentation depth within which
hardness varies significantly is roughly on the order of R.

. For sink-in elastic perfectly plastic materials, the
Oliver–Pharr method offers a useful tool. With proper
choice of the range of indentation depth or load in the
calibration of the area function, it leads to accurate values
of hardness and Young’s modulus at indentation depth
large relative to the indenter tip radius. But, care must be
exercised at small indentation depth. As the indentation
depth approaches zero, the method may yield erroneous
hardness and Young’s values mainly because the contact
area approaches zero and the Oliver–Pharr method may not
provide accurate values for the contact depth or area. This
error may be a contributing factor to indentation size effect
in nanometer scales.

. To properly interpret indentation data at small indentation
depth it is desirable that the hardness and Young’s modulus
data be examined together with specific information regard-
ing calibration of the related area function, because the latter
information may help identify probable error contained in
the hardness and Young’s modulus measurements.
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