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Abstract

To describe the various complex mechanisms of the dissipative dynamical system between waves currents and bottoms

in the nearshore region that induce typically the wave motion on large-scale variation of ambient currents a generalized wave action equa-

tion for the dissipative dynamical system in the nearshore region is developed by using the mean-flow equations based on the Navier-Stokes

equations of viscous fluid thus raising two new concepts the vertical velocity wave action and the dissipative wave action extending the

classical concept wave action from the ideal averaged flow conservative system into the real averaged flow dissipative system that is the

generalized conservative system . It will have more applications.

Keywords

The interaction of waves and currents and bot-

I evolving into a

toms is ubiquitous in coastal seas
typical dissipative dynamical system in nature with
multiple dissipative factors such as wave breaking

bottom friction and the free surface stress induced by
wind. The system itself is often treated as non-dissi-
thus deriving a number of conservation

among which the wave action law 377 is

pative
laws 2
particularly of more generality and insight than the
other ones and the wave action becomes one of es-

sential concepts in hydrodynamics.

Until now almost all classical processes observed
in the physical world are irreversible dissipative dy-
namical systems ®  therefore it is essential by now
that some classical conservative laws should be recon-
sidered and investigated to make a certain extension
for real dissipative dynamical systems °~'! . The aim
of the present work is to develop a generalized wave
action conservative equation and further elucidate the
physical mechanisms of wave-current-bottom interac-
tions by proceeding from the most general frame-
work of the viscous Navier-Stokes equations of mo-
tion.
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dissipative dynamical system wave action conservation the averaged flow equations the Navier-Stokes equations.

1 The averaged equations of motion

There are two main approaches to describing
waves on a current with large-scale variation. One is
the use of an averaged Lagrangian developed by
Whitham "> the other is direct integration with re-
spect to vertical coordinate and averaging of equations

of motion B~ 1

which is easier to appreciate the
physical significance of terms and hence to make ap-
propriate additions to the equations in order to ac-
count for wave dissipation wave generation or even
wave breaking and given as follows 1 .

Consider flow of an incompressible viscous fluid
as being at the center of fluid dynamics by virtue of
its fundamental nature and its practical importance.
Using x= x y = x; x, as the horizontal coordi-
nates and z the vertical coordinates we denote the
seabedat z= —h x

ment as = ¢ x . Dividing ¢ and the velocity V=

and the free surface displace-

uy up, w into mean and fluctuating parts yields
Ext = ¢{xt +¢xt txt =0
1

u; x 2t =U; xt tua; x =t
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=Wxt +wx 2t 2
denotes time-averaging over a wave peri-

and W can be

w X 2t
where -
od. The mean velocity U; i =1 2
defined as
B 1
T h+ ¢
B 1
T h+ L
Upon averaging the mass-conservation equation and
the Navier-Stokes equations of motion for a uniform
incompressible viscous fluid over a wave period after

¢
U, x t Juixztdz
—h

4
W x t waztdz.:i
—h

integration with respect to ¥ we obtain the following
averaged equations.

The averaged mass equations =1 2

9¢ o _
Ew +axi h+ ¢ U =0. 4
The averaged horizontal and vertical momentum equa-
i j=12
oU; oU; o ¢
R - T e ax

— b i
= 7 pg h + ¢ o,

tions

o

+ *J de + | \
axj _oidz 7! '
- 7 I' Sa
oW oW
oh+ & g UG,
a 4 o ’
+ aijh oUW — 0,5 dz
= g ht ¢

+ 7yl - r; Ir'
The averaged total Hergy equatio 1 j=12 &k
m=123
o | oF, _
a tar, - Q 0
where a number of averaged quantities read

i the total energy density
E=E + h+ € %pvzﬁ-pgg

1
S h+ {2

ii the fluctuating energy density

~ S| 1

E = J (o ptds t e U
iii the totid energy flux

+U h+ ¢ %PVszPgC

, 4
- h+ ¢ U g, +WJ ouwds
—h

iv  the fluctuating energy flux

-1 5

~ ¢ _
F;, = J dz a; S 0Tt P~ gy
—h

¢
+ J apg z— ¢ dz

v the radiation stress

¢
Sij = J ‘oft,ﬁ] + pé‘,j dz - %{Og h + g 285]'

—h

vi the dissipative terms

b b ”U/a
| ' I + J Uk,” d
- I)l

In addition the viscous stress tensor

’ ’ ~7

ka = G}em + ka
v=V+v= U U W + a; u, w

7, and rZ denote respectively the stresses acting on

Q=- vz, |

the free surface by the wind and the bottom shear
stress exerted by the fluud R x 2 ¢+ and B x =
represent the free surface and the bottom surface re-
spectively the bottom pressure p’=p x —h t
o 9
ox oz

If we subtract from the overall energy equation
6 pg ¢ together with U, times 5a
and W times 5b  we obtain an energy equation for
the fluctuating motion
ok , o J? I
+ = N
o Tor, ) dza gt

+U,-E

times 4

+tog z- ¢

gzvj ouwdz + W+ U;

@

e h+ ¢ %;VJFU—

il [ s Uiyp-

+ o, . 7hlou1-wdz +S; o, +D=0 7
where D denotes the total dissipative effects and takes
the form
D = 772‘[:

-|— B |!

¢
+ J,,F’"” 8—de + U; 8_ h+ ¢ o,
pde [y
Ui axi 81] 7/0']3(:12
ah b s
Ui ;L + W T3 ‘ ' | T3 | ' ‘
2 ¢ ,
~ e J, o dz + h+ § U o 8
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2 Generalized wave action conservation

equation

In classical mechanics a ratio of energy to fre-
quency is called action and found to be invariant when
the setting is theory of slow modulation for vibrating
systems. In the case of wave if the medium such as

ambient currents and bottoms  varies slowly with x

and ¢ then we arrive at the classical wave action con-
servation equation

o E’ o . E
~ = ~ .+ .= =
5 o T U, + Cy o =0 9

. . . , _E". .
in which wave action A" = = is the energy density
E’ divided by intrinsic angular frequency w, Cyi
the group velocity relative to U, .

1

18

Within the framework of geometric-optic ap-

proximation in Eq. 7 adding and subtracting the

term igﬁ;ﬁ U;+C, and dividing the result by
w, yields
St AU

+ a)ir %X/ Jgh‘oﬁ,@dz

+ W+U,-%; o h+ ¢ %]+ ]2%;

+ o, J:hpﬁgﬁudz + 5

a% % + U+ Cy, gzr

; wi’_s,-j %{1 ~0 10

where A = E Among the four terms on the left-

£

"
hand side of 10
form of the classical wave action conservation equation

9  the second term can be defined as the vertical
velocity wave action and the third term the dissipation

the first term constitutes the basic

wave action finally the fourth term vanishes identi-
cally * . Thus Eq.

servation form .

10 reduces to an extensive con-

4 the equivalence of

We can show
Eq. 9 {for many other types of wave motion in fluid
dynamics therefore Eq. 10 can be regarded as a
valuable extension to 9  and named a generalized
wave action conservative equation for the dissipative
dynamical system in the nearshore region which will

play an important role in dealing with the process of

real viscous flow.
A tentative relation between wave action conser-

vation and dissipative effects was given by Christof-

fersen and Jonsson 0 .

3 Concluding remarks

Starting from the Navier-Stokes equations we
obtain a generalized wave action conservation equation
and thus put forward two new concepts for wave ac-
tion extending the classical concept of wave action
from the ideal averaged flow conservative system into
the real averaged flow dissipative system and reveal-
ing the richness and variety of wave action. If we

want to consider a special dissipative effect such as

breaking effect it then can be added to the dissipa-
tive wave action and the generalized conservative
form of Eq. 10 remains unchanged.
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