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A molecular dynamics simulation: the effect of finite size on the
thermal conductivity in a single crystal silicon

QIHENG TANG

LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100080, China

(Received 2 March 2004; revised version accepted 29 June 2004)

Non-equilibrium molecular dynamics (NEMD) simulations are performed to calculate
thermal conductivity. The environment-dependent interatomic potential (EDIP) potential on
crystal silicon is adopted as a model system. The issues are related to nonlinear response, local
thermal equilibrium and statistical averaging. The simulation results by non-equilibrium
molecular dynamics show that the calculated thermal conductivity decreases almost linearly
as the film thickness reduced at the nanometre scale. The effect of size on the thermal
conductivity is also obtained by a theoretic analysis of the kinetic theory and formulas of the
heat capacity. The analysis reveals that the contributions of phonon mean free path (MFP)
and phonon number in a finite cell to thermal conductivity are very important.

1. Introduction

With the dimensions of electronic and mechanical
devices approaching the nanometre scale, a demand for
greater scientific understanding of thermal transport
at atomic scale has been created. Some experiments and
theoretical studies have been performed to predict or
measure thermal conductivity of nanowire, thin films
and periodic film structures [1–6]. Although current
experimental techniques can study heat transfer at small
scales, the spatial resolution is larger than 100 nm order
[7–10]. Moreover interpretation of experiment results
remains difficult because typically the contribution of
individual defects, such as impurities, grain boundaries
and others, cannot be deconvoluted clearly. Even for an
individual grain boundary, Cahill et al. [10] pointed out
that the interactions of phonons with a single interface
still offers significant challenges to both experiments and
theory/simulation.
There is an increasing demand to develop a method

suitable for measuring thermal conductivity for the
design of microelectronic devices. The molecular
dynamics simulation (MD) method may provide a
promising alternative technique both to calculate thermal
conductivity and to understand defect mechanisms. MD
now is extensively applied to calculate thermal properties
because there is no need for an a priori understanding
of heat transfer. Many MD simulations have been
performed on the heat transfer of different structures,
such as liquids [11], solids [12], solid–solid interface
[13] and of liquid–solid interface [14, 15]. The thermal

conductivity can be calculated either using equilibrium
MD (EMD) [16, 17] or non-equilibrium molecular
dynamics. EMD simulation, based on the Green–Kubo
formulation, use current fluctuations to calculate the
thermal conductivity at a constant temperature; NEMD
is a direct simulation method to calculate the thermal
conductivity from the temperature gradient and heat
flux crossing the system. The strength and weakness
of these two methods have been discussed by Schelling
et al. [18].

In the present paper, NEMD is used to study heat
transfer in perfect crystal silicon. Section 2 details the
simulation method; section 3 shows the results of simula-
tion; section 4 displays the size effect of MD simulation
and theoretical analysis; section 5 is the conclusion.

2. Computer simulation

Crystalline silicon is a semiconductor material,
extensively used in MEMS and integrated circuits.
Heat conduction in semiconductor materials is domi-
nated by phonon transport and the contribution to heat
conduction by the electrons is negligible. There are
several categories of existing potential models for
silicon, including the Tersoff type, the Stillinger–Weber
(S-W) two- and three-body potentials [19], and others.
The S-W potential has been used to simulate the thermal
conductivity by several authors. Building on the Tersoff
potential, Justo et al. [20] proposed the environment-
dependent interatomic potential (EDIP) which can better
describe the properties of silicon, such as the melting
temperature and the thermal expansion coefficient.
Therefore, the EDIP potential is selected to simulate
heat transfer in our work.
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Many authors have suggested different simulation
techniques to calculate the heat transfer. Some simula-
tion results can be compared to that of experiments or
theoretical analyses [21, 22] which activate one’s
interests of studies and application. Maiti et al. [14]
studied the heat flow and the Kapitza resistance across a
grain boundary. The thermal gradient is applied by
maintaining the two end sections at constant but
different temperatures. A random thermal wall border
condition first proposed by Ciccotti et al. [23] can be
applied to investigate the heat flow. Jund and Jullien [21]
studied the thermal conductivity of vitreous silica, with
the techniques of the periodic boundary condition along
x, y, z directions and the net kinetic energy increased/
decreased by an amount �� in a thin slab being applied.
Based on a similiar NEMD method Schelling et al.
studied the perfect crystal silicon and compared the
result with that of the equilibrium Green–Kubo and
found that the results are consistent with each other.
Figure 1 is a schematic of the model system for heat

conduction with a three-dimensional periodic simulation
cell. A simulation system of parallelepiped cells is
selected in this study, and the calculation method for
the thermal conductivity � is analogous to the experi-
mental measurement. The size of the simulation cell
is Lx, Ly and Lz respectively. Suppose that the heat
transfer is along the x direction and the size in the x
direction is larger than that in the other directions.
A typical case is that the size for the simulation cell
is selected as 44a0 � 2a0 � 2a0, where a0 is the lattice
constant. To calculate the gradient, we divide the
simulation cell into j slices along the x direction, the
thickness of slice is a crystal constant, a0 ¼ 0:543 nm
and there are 32 atoms in a slice in the current
simulation. The temperature of particles in the thin
slice is calculated at every iteration. According to

Maiti et al. more than 30 atoms in a slice is needed to
yield sufficient scattering events within 1 ns. A simu-
lation with the same number of atoms at every thin slice
is given by Schelling et al.

The instantaneous temperature in each slice is
calculated using the formula

ðTMDÞj ¼
XNj

i¼1

miv
2
i

* +.
3Nj�B, ð1Þ

where hi denotes statistical averaging over all of the
simulation time, �B is the Boltzmann constant, Nj is the
atomic number in slice j, ðTMDÞj is the temperature in
the jth slice, mi and vi are the ith atom mass and velocity
respectively.

The simulations consist of two stages. The first stage
is the constant-temperature simulation, in which the
temperature is maintained at constant value using a
weak coupling scheme [12] with a coupling time of
200 000 MD steps. At this stage, some authors select
a typical run of 50 000 steps; our simulations show that
there is no big difference among the final results, the
value of the difference being within 3% in this obser-
vation. The second stage is the constant-energy one.
After equilibrium, a heat flux is imposed on the system
along the x direction. A small amount of kinetic energy
�� is added in a thin slab of one crystal constant a0
thickness centred at x ¼ 3Lx=4 and removed from a
slab of the same thickness centred at x ¼ Lx=4. Our
simulations display that the positions of the source/sink
can be in any site, but the distance between source and
sink should be Lx=2 because of the periodic boundary
condition. Each particle velocity in the source and sink
regions is scaled by the same factor � which is derived
from an amount of net kinetic energy �� increased or
decreased.

Figure 1. (a) Schematic representation of the three-dimensional periodic simulation cell. The simulation cell is parallelepiped with
length Lx, Ly and Lz. The heat flow is along the x direction. There is a slab of thickness � ¼ 2a0 at x ¼ Lx=4 into which energy
�� is removed; likewise, in the slab at x ¼ 3Lx=4, energy �� is added.
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The energy modification is performed by rescaling the
velocities of particles in the source/sink slices. To avoid
an artificial drift of the kinetic energy, conservation of
the total momentum in the source/sink slices is required.
For particle i in the source/sink slice, the scaled velocity
[21] is given by

v0i ¼ vG þ �ðvi � vGÞ, ð2Þ

where vG is the velocity of the centre of mass of the
ensemble of particles in the source/sink slice and

� ¼ 1þ��=ER
C

� �1=2
ð3Þ

depending on whether the particles are inside the source
or the sink slices. The relative kinetic energy ER

C is
given by

ER
C ¼

1

2

X
i

miv
2
i �

1

2

X
i

miv
2
G: ð4Þ

By imposing the heat transfer in this manner a
constant heat flux Jx can be calculated [21]

Jx ¼ ��=ð2LyLz�tÞ: ð5Þ

The temperature is calculated by equation (1) and the
temperature gradient is obtained.
Following Fourier’s law used by experiment, the

thermal conductivity is determined

� ¼ �
Jx

@T=@x
, ð6Þ

where @T=@x is the temperature gradient.

3. Results and discussion

A typical time-average temperature profile is pre-
sented in figure 2. In this case, the system dimensions
are 44a0 � 2a0 � 2a0, and the equilibrium temperature
is 500K. The length Lx ¼ 44a0 is divided into 44 slices.
The size of each slice is 1a0 � 2a0 � 2a0, and the local
thermal equilibrium is reached within every slice region
at 1 ns. Within two lattice constant 2a0 ¼ 1:086 nm
of the source or sink region, a nonlinear temperature
profile is observed, which has been attributed by the
strong scattering because of the heat source or heat
sink [18, 21].
The data of figure 3 come from that of figure 2. The

data are not linear and the fit through the data would
change considerably if one or two points on either end
were to be excluded. In order to reduce the effect of the
high scattering at the heat source and sink, the values
of points H and S at the heat or sink source could be
justified using the linear extrapolating method. From the
values of points C, B and A, we get those of points H

and S. The calculated temperature is denoted by open
circles and the least-squares linear fits are given for the
regions between the heat source and the heat sink
regions. From the fitting linear curve, the temperature
gradient @T=@x can be easily calculated. The fits in this
case have slopes of (a) 3:60K=a0 and (b) 3:66K=a0,
taking the average. According to the suggestion of Jund
and Jullien [21], a suitable �� may be 1% of kBT ; the
energy increment �� ¼ 0:000 43 eV is adopted in our
simulations. The heat flux Jx ¼ 54:188� 109 (Jm�2 s�1)
and the thermal conductivity of about 8:1WmK�1 are
obtained from equations (5) and (6), respectively.

It should be noted that the slice j temperature ðTMDÞj
is obtained from equation (1) which is commonly used
in MD simulation; however, it is a classical formula
valid only at very high temperature ðT � TDebyeÞ, where
TDebye ¼ 645K is the Debye temperature for silicon. As
in this case the system average temperature (T ¼ 500K)
is lower than the Debye temperature, it is necessary to
apply a quantum correction. Because the system energy
from classical statistics should be equal to that from the
quantum decription,

3NjkBðTMDÞj ¼

Z !D

0

Djð!Þnjð!,TÞ �h! d! ð7Þ

in which Djð!Þ is the density of states, njð!,TÞ is the
phonon occupation number, ! is the phonon frequency
and �h is the Planck constant. From equation (7), we
deduce the real system temperature T appearing in
the function nð!,TÞ. Since the temperature gradient in
the Fourier law must also be corrected, the thermal
conductivity � should be rescaled by the @TMD=@T

Figure 2. Typical temperature profile for 44a0 � 2a0 � 2a0 at
average temperature 500K. Within 2a0 of the source and
sink, a nonlinear temperature profile is observed.
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factor obtained from equation (7). When the system
temperature is 500K, the correction coefficient
@TMD=@T is nearly 1. The result given by Volz and
Chen [24] shows that the influence of the quantum
correction on the thermal conductivity is not significant
and our calculations reach the same conclusion.
The temperature evolution versus space coordinates

x is shown in figure 4 at 200 000 MD steps, �t ¼ 0:539�
10�15 s per step. This time, the equilibrium temperature
of the system is 500K, but there is a slight discrepancy
among the slices.
Figure 5 shows the evolution of the time-averaged

temperature for slice j ¼ 15a0, j ¼ 30a0, j ¼ 32a0 and
j ¼ 40a0 respectively. Initially the system is in an
unstable state and temperature varies significantly for

the first 300 000 MD steps, about 0:17 ns. The system
reaches steady state at a time greater than 1000 000 MD
steps, about 0:54 ns. This result indicates that 1:08 ns
simulation time is long enough to obtain time-averaged
temperature profiles, which is in agreement with the
results of Maiti et al. and Schelling et al.

4. Size effect on heat transfer

The results of the size effect on heat transfer have
been reported by many authors at the nanometre scale.
Schelling et al. calculated the thermal conductivity in
the NEMD method and displayed the size effects on the

Figure 3. Least-squares linear fits to temperature profiles
for the 44a0 � 2a0 � 2a0 system at an average temperature
of 500K. The fits in this case have slopes of (a) 3:60K=a0
and (b) 3:66K=a0.

Figure 4. Temperature variation versus space coordinates at
the equilibrium state of the system. There is a slight
discrepancy for temperature among the slices.

Figure 5. Time evolution of temperature for slices at 15a0,
30a0, 32a0 and 40a0 respectively. for 44a0 � 2a0 � 2a0
simulation cell with an equilibrium temperature of 500K.
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simulation results. They applied the phonon gas kinetic
theory [18]

� ¼
1

3
Cvvl ð8Þ

and the concept of effective MFP l to give an analysis
of finite-size effects, and extrapolated it to an infinite
system size. Here Cv is the heat capacity per unit volume
and v and l are the velocity and mean free path of the
phonons, respectively.
Parallelepiped cells are used in the present work. The

sizes of the simulation cells are from 20a0 to 84a0
along the x direction, and 2a0 in the y and z directions
respectively. There are 9 simulation cells in total. The
simulation results are ploted in figure 6; the maximum
errors for the simulation results is about 10% which is
within the range of the usual estimated value from about
10% to 20% [10]. It is clearly observed that the heat
transfer increased with increasing sample size which
is in agreement with those of Schelling et al. [18] and
Feng et al. [22].
It is known that the phonon velocity v and MFP

are characteristics of the propagative phonons. As for
the phonon, there are three polarization modes, the two
transverse phonons and a longitudinal phonon which
contribute to the thermal conductivity � in the semi-
conductor material silicon. The phonon group velocity
v varies for the different modes, with vT1 ¼ 5:86�
103 m s�1, vT2 ¼ 2:0� 103 m s�1 and vL ¼ 8:48� 103

m s�1. The phonon velocity v in equation (6) is taken as
the average phonon group velocity vs ¼ 6:4� 103 m s�1

[25, 26]. As for the phonon MFP, there is a great
discrepancy among the existing estimation given by

Maiti et al., Schelling et al. and Yu and Goodson [8].
Compared to the results of Schelling et al. and Yu and
Goodson, the values of MFP given by Maiti et al.
are smaller, 20 nm at 1000K and 30 nm at the Debye
temperature. In our simulation, the size of the simulation
cell is less than that of the predicated MFP. We can take
Lx=2, the distance between source and sink regions, as the
effective MFP of the phonon [22]. Our simulation box
is finite and the number of phonons is also finite,
therefore the formula for thermal capacity of a finite
system can be applied [21]

Cv ¼
�B
V

X
p

X
k

�hvpk=2kBT

sinh ð �hvpk=2kBT Þ

� �2

, ð9Þ

where V ¼ Lx=2� Ly � Lz is the volume, the term 1
2
is

due to the heat transfer direction with the periodic
boundary condition. In the expression of Cv the double
sum runs over three polarizations p ¼ L,T1,T2 and
over the first N=2 wave vectors, N being the total
atom number of the simulation system. The component
of the wave vector takes discrete values of the form
kx ¼ �nx2p=Lx, where nx ¼ 0, 1, 2, . . . , ðN � 1Þ=4 [27].
From equations (8) and (9), the value of the thermal
conductivity for different sizes can be easily calculated.

The theory curve is plotted in figure 6. It shows that
the simulation result is in good agreement with that of
theory analysis as Lx is less than 28:236 nm. However as
Lx is larger than 32:58 nm, deviation is observed and the
maximum deviation is about 12%, which is within the
numerical simulation error [10]. It is verified that there
is a size effect on thermal conductivity, and the NEMD
technique is a very good method to calculate thermal
conductivity within the nanoscale. When the size of
simulation cell is within 24 nm for a perfect silicon
crystal, the cell size can be taken as the MFP of a
progressive phonon, and the number of phonons is
finite. The analysis result implies that the capacity of the
finite size cell is different from that of an infinite system.

Applying the method of Schelling et al. [18], we can
write the following equation:

1

�
¼ hslope

1

4L1

þ
1

Lx

� �
: ð10Þ

The curves of equation (10) and the calculated thermal
conductivity are plotted in figure 7, where hslope ¼ 2:46�
10�9 m2 KW�1 for the EDIP potential, which is a little
higher than that of the S-W potential suggested by
Schelling et al.The benefit of a nice linear fit equation (10)
of 1=� versus 1=Lx is very informative as it allows the
true value of the thermal conductivity (the x ! 1)
limit to be determined.

Figure 6. Comparison of the results of the NEMD simula-
tion and theoretical analysis; the size effect on the thermal
conductivity is clearly observed.
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5. Conclusion

The NEMD with periodic boundary conditions is
performed with the aim of determining the thermal
conductivity in a perfect silicon crystal. The results
of the simulation and the theoretical analysis show that
the thermal conductivity of nanoscale silicon has a
remarkable size effect at a temperature lower than the
Debye temperature. In the simulation cell, with a
thickness range of 4–40 nm, the thermal conductivity of
silicon decreases linearly as the cell thickness is reduced.
Our theoretical analysis reveals that the size effect occurs
due to following two factors: (1) the effective phonon
MFP is greatly reduced when the cell thickness is smaller
than that of bulk silicon; (2) the number of phonons
which contribute to the heat transfer or thermal capacity
is limited when the simulation cell is finite.

The research presented here was supported by
the National Natural Science Foundation of China
(No. 10342001) and Chinese Academy of Sciences
(No. KJCX2-SW-L2), and Institute of Computational
Mathematics, Chinese Academy of Sciences (CAS).
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