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Abgtract A criterion of gatid chaosoccurring in lattice dynamica systems——heterodinic cycdle —s discussed.
It is proved that if the sysem has asymptoticdly stable heterodlinic cycle, then it has asymptoticaly stable homoclinic
point which implies gatia cheos.
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L attice dynamical system is an efficient tool for aradyzing space time chaos. S far there are
more papers on numerical Smulation (see ref. [1] and the references therein) than on rigorous
mathematical analysis?=!. Ref.[2] proved for thefirst time the existence of gpace time chaosin
termsof ergodic theory in lattice dynamical systems. In the point of view of dynamical theory,
there are not any appropriate definitionsfor gace time chaos. Some authord* ! discussed the lat-
tice dynamical systemsfrom the point of view of gatia complexity. A result obtainedin ref. [5]
indicates that an asymptotically stable homoclinic point implies gatia chaos. Thispaper is devot-
ed to the relationship between the existence of heteroclinic cycle and atial chaos in lattice dy-
namical syssems. Inthelast section we discuss gatid chaosof a concrete example by usngour re-
sults.

1 Main results

Let B={u={u},j Z,inwhich Z denotesthe st of integers, u; R",RPis p-dimen-
dond Euclidean gpace with the standard inner produce (- ,-) and the norm || = V(- ,-).

Let 1°={ulu B, I ull,*< e} inwhich Il ull,>=sup; 2| ujl. Inthe sequel the sub-
sript 1®in I - I = isomitted. Let us denote by (u) ; the coordinate of u at ste j.

Condderin | “themap F:1° -1%

(Fu; = FQu}d, (1.2)
in which { uj}sz[uj.s,uj.su, Ui, Uje, ,ujj (RP)**! F:isa C(k=2) map
from (RP)%**1to RP. Itiseasy to show that F:1° -1 is C*if Fis C. In thispaper it isa-
ways supposed that Fis C*(k=>2).

In pace | *, we should consider gatid trandations Sj,(jo  2) besdesthe time evolution F
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(Sjou)j = Uj+jo, j Z. (12)
It isobvious that each element S; isalinear bounded operator and commutes with the evolution
operator Ffor system (1.1) :
SjoF: Fo Sj,j Z. (13)
Definition 1.  uiscaled the steady-state lution of the system {F"} © 7 if it satifies Fu
= u.
Let A={ul Fu=u}. Obivoudy, SA=A Y| Z
Definition 2. Suppose u isa steady-state lution of F. If there are congtants ¢>0,0< g
<1l andp >0 such that
IF'W - F'U'll < cg"lld - "I, ¥Vn N, (1.4
forany v ,u" |I%, satifying I v - ull <p, Il v - ull <p ,then uis said to be asymptoti-
cdly stable.
Definition 3. Suppose u ={ uj} A. U:{v| v={v} I°°,| vj - Uj| <€ ] % is
caled the homogeneous neighborhood of u with radiuse .

Definition 4. Suppose u', u?, ,u” A,u ={u}. If there exist a;,a, ,a, R"
such that
lim u} =a,i=1,2, ,n,
e (1.5)
J_Ii[nmu} = @41, Ane1 = &, i = 1,2, ,n,
then we say u', u?>, , u" form heterodinic n-cycle. Heteroclinic 1-cycle is caled homodlinic
point.

Remark 1. Definition 4 is derived from the definition of heteroclinic cycle in low-dimen-
sona systems!®!.

Remark 2. Let V' ={vj} ,inwhich vi = a,j Z. The continuity of Fimpliesthat v'(i
=1,2, ,n) are d the steady-state wlutionof F,i.e. v A(i=1,2, ,n).In the seque

we aways denote by v', ,v"the n steady-state lutions correponding to u*, , u".
Theorem 1.  Suppose that u', ,u” A form heteroclinic n-cycle, and that u*, , u"
and v, ,v"are asymptotically stable. Then the lattice system { F"} has asymptotically stable

homoclinic point.

Theorem 2.  Suppose u' A is a homoclinic point, and u' and the corresponding vt are
asymptotically stable. Then there exists a constant r >0 such that for any finite index set { i}
cz,with | - j"l >rforanyj ,j" {i}, thefolowing holds:

(i) there exists a homoclinic point u” = u ({i}) of F such that

e [y [i’ {i)S-j'Uﬂ),i zZ,

[Ju ¢ |_|J-,U[ul [ I {i}\i’S-J’”uﬂJ J iy,

where |_|J. denotes the projection at site j, U(-) is some neighborhood of the corresponding ele-

and

ment.

(i) u’ is asymptotically stable.

Remark. Qvenanindex st {i} ={j1,j2, .jn} satidying the conditionsof Theorem 2,
without loss of generdity , we assume that the homodlinic point u' hasonly ong' hump” , and the
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“ hump” agppearsat dte j =0. Acoording to Theorem 2, we may construct a new steady-state -
lution u” with® n-hump”. Furthermore, the shapeof u ™ at ste j,(k=1,2, ,n) issmilarto
that of u'at ste j =0. To beprecise, the coordinateof u " at Ste j,iscontainedin asmal neigh-
borhood of the coordinate of S_; u' at ste ji.

If the conditions of Theorem 1 are satidied, then the lattice syssem has an asymptotically
stable homocdlinic point , hence the complicated atiad structure gppears. If the homodlinic point is
viewed as & one-hump” steady-state olution, then we may construct a steady- state solution with
arbitrary finite* humps’ as long as the distance between one” hump” and another® hump” is
greater than ome constant r >0. Then the lattice system is said to have atid chaos. In fact,
the action of the trandational group { S;} on the constructed steady-state lution set can be relat-
ed to symbolic dynamical system. Denote by /A ; the steady-state lution set constructed according
to Theorem 2. Let w={ w;},w; {0,1}. w Z,if andonly if the equaities w; =1 and wj
=1 imply the condition | i - j"| >r. The st Z , is endowed with the metrices I w' - w" |l

= ZJ Z;]j—ﬂ Wi - w'j'|. The shift map 0; actingon 2, is defined asfollows:
(O'J'OW)]' = Wj+j0.

Then the symbolic dynamical system {0} on the st Z , describes exactly the action of the tranda
tional system { S;} on the st A, of the steady-state lution set.

2 Prodfsaof theorems

Proof of Theorem 1. Weonly provethecase n=2, because when n >2, we can construct
in a smilar way the heteroclinic (n- 1)-cycde , up to heteroclinic 2-cycle. The proof is divided
into three steps. 1. By making use of contraction principle construct a new steady-state lution
u".2. Prove u’ isahomodinic point. 3. Prove u isasymptoticaly stable.

Step 1. Snce u'is asymptoticaly stable, from definition 2, it follows that there exist
constants ¢; >0, 0< g <1, P >0 such that for any two points u and v in the homogeneous
neighborhoods of u* with radiusp 1 , the following holds:

IF'u- F'vIl < cigill u- vll, n N.
Take m; >0 such that c;qi'*= a<1/6. Then | F"u- F™vIl <all u- vll for m=my,i.e.
F™is contraction in the homogeneous neighborhood of u' with radiusp ;. This homogeneous
neighborhood ispostively invariant with regpect to F™. Infact , F™iscontraction in the homoge-
neous neighborhood of u® with radiusless thanp 1 , and these neighborhoods are postively invari-
ant for F™. Snce u*, u?, v and u? are al asymptoticaly stable , we may take common m >0 p
>0 such that F™,F™ * are contractionsin the homogeneous neighborhoodsof u' (or u?or v* or
v?) with radiusp , the contraction factor a<1/6.
The map F™in space | © may be written as

(F™u); = F‘m)[{ uj} mﬂ , (2.1)
where F™ isa map from (R%)2™** to RP. From definition 4 , it follows that
limul = a, limuf = a.
]

—+ 0 j - o

Thusforp >0, there exists j >0 such that | ut - al <p§for i>j ", and | u?- al <%for

j<-j". Take jo=j  +2ms. Denote regectively by U' and f the homogeneous neighborhood
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of u'and u®with radius%. From (1.3) it followsthat S; U'and s ; U areinvariant for F™,

i.e. (F"(s U cs ULF"(S.; ) CS.; UF) and F™isa contraction in these neighborhoods
0 0 0 0

with contraction factor a<1/ 6. Take

Hi(sjoul), i <- ms,
V, = ni(sjoul) N |_|i(S_J-0U2), lil < ms,
|_|i(S_,-OU2), i > ms,
where |_|i is the natura projection on dste i. Evidently V; # @, for lil < ms. Let U

= |‘|i ,, beanopen setin gace | *. Weprove that F"UCU, and F "iscontractionin U. For
any u U,u ={u},wehave vy V;. For ljl > ms, since (F™u) ; is determined only by 2 ms
+1 neighborsof u;, by making use of the invariance of SJ-OU1 and S. ,-OU2 with regect to F™ we

have (F™u); V; due to the construction of V;. For | j| < ms (without loss of generaity , we
assume - ms<j <0) we have (F™u); M;(S; U"). We now prove (F™u); T;(s.; U%.
Note that (F™u) ;isdependent on{ uj} ™. Takeaneement u ={ uj} in S. J-OU2 such that u; =
u (- ms<i<j+ ms). Then thefollowing hoIds:| FI (3™ - (S, U2)1| =| (F"u),
- (F™(s.,0A | <1 EmY - ET(s ) I <all W - s < a P>, Smilarly , take

two points U and u" in the homogeneous neighborhood of v with radiusp such that their coordi-

FO (™) -

natesat Ste i(j- ms<i<j+ ms) are u;and u';, repectively. Therefore,

< IF™W - Fw'll < @ [(F"w); - (S u)y] = [F™ {u}™

FO ({ u} ™)

+ F(m)({u:j}mS) _ (S-jouz)j‘

-(s_jouz)j‘ < | F™Quy™ - FMQu 3™

p p p . m :

S far we have proved F™U CU. Inasmilar way we have F™ *U CU. In thefollowing we
will prove F™ is contraction in U.

Swppose U ={ uj},u" ={uj} U Forany i Z(assume i <0), take two points V
={ Vvj},Vv' ={ Vj} in the homogeneous neighborhood of S, u* with radiusp such that

Vi = uj, i- ms<j<i+ ms,
1

\/j = (SjOU)j,Ot e.

Vi = uj, othemss< j < i + ms

= (S, uY);, otherwise.

Then | (F™u) i - (F™u) il = TF™ qu™ - FOqua™ < ie™v-Fvi < allv
- V', Vi Z,andhence Il F"u - F"u" Il <all u - u' Il . Consequently F™is a contraction
inU.
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By contraction principle, thereisa unique point u~ U, such that F™u ™ = u . Dueto the
fact that F" 'u” Uand F"(F" 'u") =F" "(F™u") =F™*u",i.e. F"'u isdD a
fixed point of F™in U, we have F™ *u " = u " from the uniqueness. Consequently, F u” =F
(F™*u") =F™u"=u". Then u’ isa steady-state lution of F.

Step 2. Let u ={u;}. From definition 4 it follows that jlirpm uf = a;. For sufficiently

large | we have | qz- a1| < '%p and | Ug* - L§2| < % due to the congtruction of U. Then
| u - a1| <p for sufficiently large j. We now prove lim uj* = a.
JA»+DO

(By contradiction) if thisis not true, then 3¢ >0 and 3 a sequence j, —+ o such that
| UJ: - a1| >€,,n=1,2, . Takeaninteger k such that ap <€,. Let j, be sufficiently large.
Then we have | ui - a1| <p ,for jn- kms<i<j,+ kms. Takeandement U in | ” such that
the coordinate of U at Ste i is u; (jn- kms<i<j,+ kms), and the other coordinates are a;.
Then | ui” - a] = [ (F™u™); - a] = [ F™ @ u}™) - a < 1E™y - VI < &Il o
- VI < ap <€,. A contradiction! Consequently Jlim u; = a lim u; = ajisproved in a
smilar way. The above discusson leads to the concluson that u ~ isa homodlinic point.

Step 3. o far we have proved that there exists a neighborhood Uof u ~ such that for any
u,u U,wehave Il F"v - F™u' Il <all v - u'll. Forany n, 3t N such that n=tm
+r,0sr<m. Hence l F'v - F'"u'll = I F™(F'v) - F™(F'u) I < allF'v - F'u'll

<call u - ull. Wecondudethat 3p’ >O,01:§‘ >0, q:%<1,forany u,u I%and

*

Iy - u" I ", I v - u'll <p'. The following inequaity holds: II F'y - F"u"ll
< cq'll U - u'll. Consequently u” isasymptoticaly stable.

Theorem 1 isproved by combining steps 1 —3.

Proof of Theorem 2. The proof of Theorem 2 is exactly smilar to that of Theorem 1.
Taking { i} ={ i1, iz} for an example, we sketch the proof. Suppose the hump” of u' appears at
dtes j =0. F™iscontractionin ome neighborhood Ut of u'. Shifting the hump” of u'to ste i,
and i, , we get two new steady-state lutions S u*and S.; u'. Then by combining S ; U
and S. i, U' we obtain a new neighborhood U. By proving F™ is a contraction in U, we get a
steady-state olution u * whose shapes at stes i; and i, are roughly the same as u' at ste j = 0.
The asymptotica stability of u " isproved in the same way asin Theorem 1.

3 Application
Let u={u}. Condderin | snelattice:
uy(n+1) = y(n) +adgnu(n) +B (u.1(n) - 2uj(n) + u.1(n)), (3.1
inwhicha >0 andB >0. Suppose Fisthe corregponding map of (3.1).

To get the steady-state olution, letasnu; +B (uj- 1 - 2u; + uj+1) =0. Denote u; = v;. 1.

Then
Vi = Ujs1 = - g_s'nuj +2Uj - Uj.1 = - g_s'nvj_l +2Vj.1 - Uj-1.

We get a map on R? by changing the symbols:
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y
T: X - a . .
[yJ -Bsny+2y-x

Gven apoint (xo,Yo) , by iterating T we get the trgectory
X yan) L (xe1,ya1) L (xoy0) L (XnLYi)

If sup; z| Xi| <+o,thenu=( ,X-n, ,X-1,X0,X1, ,Xn, ) iSa Steady-state slution
of (3.1). In thefollowing we discuss the propertiesof the steady-state solutionsof (4.1) by in
vestigating the map T on R?.

Evidently, (x, x) isafixed point of Tif x satifiessnx=0,and u={ y}(uy=x,j 2
isa steady-state lution of (3.1). Consder afixed point of T(-TT,-T) , where the Jacobian
matrix is

0 1

al| = A.
-1 2+ 5
B

a

The characteristic equation isA - | 2 +B A +1 =0 which has two postive rootsA A ,, A1 <1,

A2>1. Thenpoint P=(-Tt,-TT) hasa saddle type. Smilarly the other fixed point Q = @T T1)
has a0 a saddle type. Both of them have stable manifold W® and unstable manifold W".

Denote by R the symmetric map with regect to line y = - x on R?. The symmetric map
with regpect to line y = x isdenoted by R. Then R(x,y) =(-y,- x), R(x,y) =(y,x).
It iseasy to verify

T°R°T=R, T°R°T=R.

Then R(WY(P)) = W*(Q) and R (W"(P)) = W¥(P). To show W“(P) n W(Q) # @,
WE(P) nW"(Q) # @, it issufficient to prove the intersection of W"( P) andline y = x is not
empty. Then T has heteroclinic cycle, which implies that (3. 1) has heteroclinic cycle in the
sense of definition 4.

Denote by € o.N0o) the eigenvector correponding to eigenvalueA , >1 at P. Then

AEO =)\2£O, U_Q:)\2>1'
Ng No 0
Let E=(-1,-1/2) ,G=(-1/2,-1/2). Inthefollowing we prove that W"( P) must inter-
sect line segment EG when W' ( P) leavestriangle PEG. Suppose that a vector € ) satifies1

<N/ <+ o. For -T < yg< -TU/2, we have
0 c11 £ _ I’]cx
-1 2- 5 oosyq (N -& +|2- p-oosyg N
B B
=2

B
n n

Then W"( P) intersects line ssgment EG. Note that T(EG) = E G, where E = (-T1/2,
a/B),G =[ -Tt/20/B -1/2 . Theline segment E G is above theline y = - x if a/f >Tt.
Then theintersectionof W"(P) andtheline y= - x isnot empty, which leads to the concluson
that sysem (3.1) has heterodlinic cycle.

Suppose that WY ( P) intersectsline y = - x at H(Xp, Yo) , and the symmetric point H

and

oosycln -& £

@ Q

> 1.
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with repect to y= x is H = (yo, xo) . By iterating H we get a trgectory
AXonayan), o L (xo,y0), L (Xn,yn) .

with the property that x, —-Tl ,y, »-TL as n —- o and x, JT,y, JL as n -+ oo. Let u'
={ul}uf=y;,j Z Then u'isasteady state lutionof (3.1) satifying uj —-T(j »- o),
uj J(j -+ ). Smilarly, by iterating H we get another steady-state solution of (4.1) u?
={u%} , satifying u? T (j -- o) ,u? --T(j -+ o). Acoording to definition 4, u* and u?
form heterodinic Zcyde. Let v ={vi} ,vi=-Tt,j Z,vV*={Vv%},vi=m,j Z Itiseasyto
prove that when 43 +0 <1 anda /B >Tt , the radiusof the gectrum of the differentiad D F (u®)
(or DF (u®) or DF (v or DF (V? islessthan 1, then u', u?,v', v? are dl asymptoticaly
stable.

The above discusson leads to the concluson.

Theorem 3.  For system (3.1) , whenO /B >TT and0 +43 <1, there exists a heteroclinic
2-cycle ul and u?. u', u® and the correspondi ng steady-state sol utions v' and v* are asymptoti-
cally stable, hence the system has an asymptotically stable homoclinic point.

Acoording to Theorem 2, we may construct a steady-state solution set of system (3. 1) , de-
noted by A’ such that the action of the trandational group { S;} on A’ is chaotic.
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