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ANEW METHOD TO ANALYSE THE PEIERLS-NABARRO
MODEL OF AN EDGE DISLOCATION IN A
RECTANGULAR PLATE
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ABSTRACT

A new method is presented here to analyse the Peierls-Nabarro model of an edge
dislocation in a rectangular plate. The analysis is based on the superposition scheme
and series expansions of complex potentials. The stress field and dislocation density
field on the slip plane can be expressed as the first and the second Chebyshey
polynomial series respectively. Two sets of governing equations are obtained on the
slip plane and cuter boundary of the rectangolar plate respectively, Three numerical
methods are used to solve the governing equations.
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INTRODUCTION

The original concept of the Peerls-Mabarpo{P-MNy o model [1-2] 15 based on the
balance of stress in the slip plane. The solution of the Peierls-Nabarro's
imtegrodiflerential equation determines the core structure of an edge dislocation.
But the original solution of P-N model can not directly apply to the problem of an
edge dislocation in a finite rectangular plate. A general methed to analyse an edge
dislocation with core structure of P-N model in a rectangular plate is presented in
this paper. The basic procedure is developed by Wang and co-workers [3-4]. Based
on the superposition scheme and series expansions of complex potentials, the stress
ficld and dislocation density field on the slip plane can be expressed as the first and
the second Chebyshev polynomial series respectively. In order to meet the boundary
condition on the outer boundary, two analytical complex functions are introduced.
Two sets of governing equations are obtained on the slip plane and the outer
boundary of the rectangular respectively, Three numerical methods including the
boundary collocation, least sguane and New-Raphson method are used 1o solve the
governing equation. In order to compare with the original results of P-N model, the
case of an wdge dislocation inan infinite body is also analysed,
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Figure 1. Rectangular plate with an edge dislocation.

PROCEDURES, RESULTS AND DISCUSSION

Suppose an edge dislocation in a simple cubic crystal. v and &_denote the shear
stress and the relative displacement of two atomic plane adjacent to the slip plane,
respectively., According o Peierls [1] and Nabarro [2], assume that the relation
betweenr  and &, is the Frenkel sinusoidal function. We have
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Consider a rectangular plate with an edge dislocation that is subjected no traction on
the outer boundary, as shown in Figure 1. Here m{;] and£1( z)are used as the two

complex potentials, Stress can be derived from [ 5]

o —ir, = ¢{:]+R{E}+ {:—E]ﬂIT{z_}
For a slip plane lying on the real axis betweens=—Lands= L. the complex
potentials @ z) and 0 z) are given by the following formula:

®(z)=Q(z) =—L r'f_b{#}d:.' (3)

mi{x+1) -t z—s
here b(s)is the dislocation density at point z=son the slip plane, For the plane
strain problem s = 3 -4, and plain stress problem a = (3-v) /(1+v). gis the shear

modulus, v is Poisson's ratio.
The dislocation density can be expressed as the ollowing sefes [4]:
A po di(s) & T,(£)
—hl§)z—— (4
i(x+1) (s) i(x+1) ds ; " J1=E

Then substituting Eq.(4) into Eq.3), we obtained
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Substitution Eq.5) imo Bg.i2), the stress feld at any point due to the dislocation
can be expressed as a series. Especially, the stress field on the slip plane can be
expressed as

o —ir_ —7Z&m L {.\'I.I'IL} 6]
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In order oo meet the raction free condition on the outer boundary, two additional
complex potentials @, { z) and €, { z)are introduced here, we set

1

O, =Yz, Q=" (7)

nel n=l
According to the superposition scheme, the stress on the slip plane can be written as
follows

g -ir, = l-lzﬂ.uu.u NETFAR i"{:ﬂﬁ k)" [ ()
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The traction free condition on the owter boundary can be written in terms of
resultant forces from A w A%, as shown in Figure 1. Point A is assumed 1o be fixed
at all ime. point A*is permitted to move along the outer boundary. The boundary
condition can be expressed as;

N N
{'ﬁ[ )ro(z) ( }ﬁ’{tj]il =0
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From Eq.(4), we oblain
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Equation ( 1) and Equations (8)-( 10} arc I.ht.. governing equations for determining the
unknown coefficients e ). |4, land{y }.
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It is difficult to solve the governing equations analytically. The governing
equations can be reduced to a set of nonlinear algebraic equations on the slip plane
and a set of linear algebraic equations along the outer boundary of the rectangular
plate. The boundary collocation method and the least square method are wsed to
solve the linear algebraic equations while the Newton-Raphson method is used to
solve the nonlinear algebraic equations. The collocation points on the outer
boundary are taken as shown in Figure 1. The collocation points on the slip plane
are given by the following expression

x= Luu.l:[
M
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In this paper. the plain strain condition is considered and calculation is carried out
with materials parametery =0.3, r_ fu=0.159. Figure 2a and Figure 2b show
the shear stress and ship displacement for the infinite body, The comparison of the
present results with the original results of [1-2] is also shown in Figure 2a and
Figure 2h. As shown in Figure 2, the present results agree completely with the
original results given by Peierls [1] and Mabarro [2]. For rectangular plate, we
take H/L =1, the case of Lfb =5, Lfb =8  L{b=10and L{k =20 are calculated and
the results are shown in Figure 3a and Figure 3b. The calculation results show that

the present method is a direct and efficient approach to analyse the edge dislocation
in the finite hody,
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Figure 2a. Shear stresses on the slip plane. Figure 2h. Shear displacemenis on the slip
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Figure Ja. Shear stresses of rectangular Figure 3h. Shear displacements of
plate. rectamgular plate,
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