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Abstract. A steady-state subsonic interface crack propagating between an elastic solid and a rigid 

substrate with crack face contact is studied. Two cases with respective to the contact length are 

considered, i.e., semi-infinite and finite crack face contact. Different from a stationary or an open 

subsonic interface crack, stress singularity at the crack tip in the present paper is found to be 

non-oscillatory. Furthermore, in the semi-infinite contact case, the singularity of the stress field near 

the crack tip is less than 1/2. In the finite contact case, no singularity exists near the crack tip, but less 

than 1/2 singularity does at the end of the contact zone. In both cases, the singularity depends on the 

linear contact coefficient and the crack speed. Asymptotic solutions near the crack tip are given and 

analyzed. In order to satisfy the contact conditions, reasonable region of the linear contact coefficient 

is found. In addition, the solution predicts a non-zero-energy dissipation rate due to crack face 

contact.  

Introduction 

Cracks in homogeneous solids or along bimaterial interfaces play an important role in determining 

the behavior of materials and structures. Generally, the fracture toughness and the energy release rate 

are obtained under the non-contact conditions of crack faces, which is violated in many real-life 

situations. For examples: cracks lie along a bimaterial interface with dominated shear loadings, 

sizeable contact zones emerge near the crack tip. Crack face contact does exist in earthquake. On the 

other hand, the asymptotic elastic fields of not only a stationary but also a dynamic interface crack 

possess oscillatory singularity [1-3] (Williams, 1959; Wu, 1991; Yang et al. 1991), and their 

behaviors near the tip are physically inadmissible because crack faces will interpenetrate each other 

due to the oscillatory. 

A series of experiments [4-5] have been done several years before. These experiments also show 

that a relatively large contact zone exists behind the crack tip. The contact zone length is between 

1.5-2 mm in the shear dominated intersonic interface fracture [5]. Crack face contact has also been 

observed in numerical simulations of Xu and Needleman [6]. In order to understand the stress and 

deformation fields around propagating interface cracks with crack face contact, many works have 

been done. Deng [7] investigated the asymptotic features of semi-infinite contact for sub-Rayleigh 

interface crack growing steadily along the interface of two dissimilar, homogeneous, isotropic and 

linearly elastic solids. As for the intersonic crack face contact problem, Huang, et al.’s solution [8] 

features a large scale contact zone and two distinct traveling shock waves, one emanating from the 

crack tip and the other from the end of the contact zone. 

Motivated by the aforementioned experimental and theoretical observations, this paper presents an 

investigation of the stress and displacement fields for a subsonic propagating interface crack with 

semi-infinite and finite crack face contacts. Since an elastic/rigid bimaterial system [8] can capture all 

characteristic features of a general elastic/elastic bimaterial [9] and the solution of the former is 

significantly simpler than that of the latter, an elastic/rigid bimaterial system will be considered in the 

present paper, which will provide basic solutions for further use. 

Advanced Materials Research Vols. 33-37 (2008) pp 307-314
Online available since 2008/Mar/07 at www.scientific.net
© (2008) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/AMR.33-37.307

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 130.194.20.173, Monash University Library, Clayton, Australia-17/01/14,07:32:51)

http://www.scientific.net
http://www.ttp.net


 

2η  

1η  
l  

Elastic 

Rigid 

General formula for subsonic propagating interface crack 

A general formulation for a subsonic crack propagating along an interface between an elastic solid 

and a rigid substrate under in-plane (plane strain or plane stress) deformation is given in this section. 

The model is shown in Fig. 1, in which the interface lies in 
1

η  axis. The crack tip lies at the origin of 

the coordinate system (
1 2
,   η η ) and the crack tip propagates in the positive 

1
η  direction with a 

constant speed v , 
s

v C< , where 
s
C  is the shear wave speed of the elastic solid. The crack growth is 

assumed to be steady-state. The equations of motion for the elastic solid can be expressed by two 

displacement potentials φ , ψ , 

,11 ,222

,11 ,222

1
0

1
0

l

s

φ φ
α

ψ ψ
α

 + =


 + =


,
2

0η > ,
2

2
1l

l

v

C
α = − ,

2

2
1s

s

v

C
α = −   (1) 

where 
l
C  is the longitudinal wave speed of the elastic solid. 

The general solutions can be expressed by two analytical 

functions as follows, 
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where ( )
l

F z  and ( )
s

G z  are analytical functions of 
l
z  and 

s
z  in 

the upper half plane, respectively. 
1 2l l

z iη α η= +  and 
1 2s s

z iη α η= + . 

The in-plane displacements 
1
u , 

2
u , and the stress components in the elastic solid can be expressed 

by the two analytical functions as 
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where µ  is the shear modulus of the elastic solid. 

It is convenient to define the stress components as a traction vector, 
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and the displacement vector is defined as 

[ ]1

2

2Im ( )
u

z
u

 
= = 
 

u Bh     
Q iP

iP R

− 
=  
 

B          (5) 

where z is replaced by 
l
z  in F  function and 

s
z  in G  function. The terms in matrix B  are 
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Fig.1 A subsonic interface crack 

propagating between an elastic 

solid and a rigid substrate. 
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Semi-infinite contact case 

The semi-infinite contact problem is considered first. At the interface, 
1

0η > , 
2

0η = , the 

displacements should vanish due to a rigid substrate, 

0=u                                      (7) 

From equation (5), the above equation can be written as 

0+ −− =Bh Bh                                       (8) 

Based on analytical continuation, a new analytical function ( )zθ  is introduced as follows, 

( )                      Im( ) 0
( )

( )                      Im( ) 0

z z
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The function ( )zθ  is analytical in the entire plane, except on the crack face (
1

0η < , 
2

0η = ). ( )zθ  

is to be determined by the boundary conditions on the crack face. In the present study, linear contact 

model is used. The stress components and displacements within the contact zone are expressed as 

12 22
σ λσ=    

2
0u =    

22
0σ ≤                      (10) 

where λ  is the linear contact coefficient and assumed to be a constant. 

In addition, the shear traction at the contact face should be resisting the relative sliding on the crack 

face, which means, 

12 1
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2
0η +=                         (11) 

where 
1 1

d / dv u t=  is the particle velocity along the crack face and 
1 1 1 1

d / d /v u t v u η= = − ∂ ∂ . 

The first two equations in (10) can then be written as a Hilbert equation, 
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Solving the above Hilbert equation yields 
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where ( )A z  and ( )E z  are two entire functions and analytical in the entire plane including the crack 

face. From equation (14), one can find the singularity of the stress field is r  ( 1/ 2r ≤ ), which is 

influenced by the linear contact coefficient and the crack velocity. 

The two analytical functions ( )F z′′  and ( )G z′′ can be obtained easily as well as the whole stress 

fields, from which the asymptotic stress fields near the crack tip are, 
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where we have used the following definitions, 

1 2

i l

l l l
z i e

θη αη ξ= + =   
1 2

i s

s s s
z i e

θη α η ξ= + =                     (18) 

and the entire functions ( )A z  and ( )E z  are expanded into Taylor series 
0
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∑= , all the coefficients 

n
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n
e  are real. 

0
e  is the leading term in the Taylor expansion of 

( )E z , which is similar to the stress intensity factor in fracture mechanics. The real parameter 
0
e  

represents the amplitude of the near-tip asymptotic field and depends on geometry of the bimaterial, 

time-varying external loading, and the crack tip velocity. 

Due to a steady-state crack, the particle velocity on the 

contact crack face is 
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The requirement of the shear traction on the contact 

crack face resisting crack face sliding, 
2 2
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gives the admissible linear contact coefficient 0λ > , 

where 2 0QR P− > , 0Q > , 0R > , 0P <  have been used. 

In the permissible range of linear contact coefficient, 

the relation between the singularity index and the linear contact coefficient is plotted in Fig. 2 for 

different values of crack velocity. From Fig. 2, one can see the singularity decreases as the linear 

contact coefficient increases. As a limiting case, when the linear contact coefficient tends to be 

infinite, the singularity approaches zero. 

Finite Contact Case 

In this section, the case of a finite contact zone l  on the crack face is investigated. The contact 

conditions in equations (10) hold within the contact zone, while the traction-free condition should be 

used for the crack face outside the contact zone, i.e., 
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The contact conditions in equation (22) become identical to those in equations (12) in terms of 

function ( )zh , except that they hold only in the region of 
1

0l η− < <  for this finite contact problem. 

The traction free conditions on the crack face and outside the contact zone can be written as 
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Fig.2 The crack tip singularity via 

the linear contact coefficient 
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Combining equation (12) and (24) leads to a set of Riemann-Hilbert equations for 
1
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However, the discontinuity conditions on the crack face are given separately inside the contact 

zone and outside the zone as in equations (25). To solve the Riemann-Hilbert equations, we first 

assume equations (12) hold in the whole region 
1

0η < , then we obtain the solution as equations (14). 

Substituting equations (14) into the second equation in (25) and regarding the functions ( )A z  and 

( )E z  no longer entire functions now, we can obtain Hilbert equations about ( )A z  and ( )E z . Solving 

the corresponding Hilbert equations and noting that ( )A z  and ( )E z  need to be continuous in the 

region of 
1

0l η− < < , we obtain the expressions of ( )A z  and ( )E z after tedious derivations, 
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It can be proved that ratios of 21 / cc  and 21 / dd  are real as well as 
1
r  and 

2
r . ( )e z  and ( )d z  are 

entire functions, which are analytical in the whole plane including the crack face. 

From the numerical results, we know that 
2

0r →  and 
2 1
r r<< . The terms related to 

2
r  will be 

omitted in the following text. For general ( )e z , the stress field becomes an infinite series. Here, we 

only give the asymptotic stress components along the crack line 
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It can be found that the relation between the shear and normal stress in the contact region is 

12 22
σ λσ=  and equation (33) shows that the traction free conditions outside the contact zone are 

satisfied. 

Based on the assumption of steady-state crack growth, the field of particle velocity can be obtained 

from the displacement field. The particle velocity on the 

contact crack face is 

1
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The requirement of the shear traction at the contact crack 

face resisting crack face sliding yields the range of admissible 

linear contact coefficient λ  as 0λ < .  

The relation between the linear contact coefficient and the 

singularity factor is shown in Fig. 3, from where one can see 

that the singularity decreases sharply from 1/2 when the 

absolute value of linear contact coefficient increases. 

Energy analysis and fracture criterion 

The above analysis shows that the singularity near the crack tip is less than 1/2 which results in a 

vanishing crack tip energy release rate and reaches 1/2 when the linear contact coefficient tends to be 

zero. A mechanism of energy absorption [8] to calculate the energy dissipation over the contact zone 

per unit crack length is adopted in the present paper to analysis the energy dissipation. 

The energy dissipation D  over the contact zone per unit crack length is given by 
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The non-negative energy dissipation requires 0λ < , which is equivalent to the condition that the 

shear tractions resist crack face sliding. Motivated by [8], we postulate that subsonic crack growth 

will take place with velocity v  at a critical sliding displacement evaluated at the end of the contact 

zone, i.e.,  

{ }1 1 2 1 1 2
( , 0) 2 Im ( , 0)

c
u l lη η θ η η δ= − = = = − = =                     (36) 

where cδ  is a constant depending on the materials and bond properties. 

Fig.3 The crack tip singularity via 

the linear contact coefficient 
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then, substituting the amplitude 
0
e  obtained from equations 

(36) and (37) into equation (35) yields 
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c Q c R r rDl
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λ π

δ π
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The dependence of the normalized energy dissipation rate on 

the crack velocity is plotted in Fig. 4, where the energy 

dissipation rate D  is finite in the range from 0  to near 
R
C  and 

decreases to zero when the velocity approaches 
R
C . One 

should note that the results in the present 

paper does not adapt to the case that the crack velocity attains 

R
C  exactly. 

Acknowledgments 

The work reported here is supported by NSFC (10672165) and KJCX2-YW-M04. 

References 

[1] M.L. William: Bull. Seism. Soc. Am. Vol.49 (1959), p. 199. 

[2] K.C. Wu: Int. J. Solids Struct. Vol.27 (1991), p.455. 

[3] W. Yang, Z. Suo and C.F. Shih: Proc. R. Soc. Lond. A Vol.433 (1991), p.679. 

[4] C. Liu, J. Lambros and A.J. Rosakis: J. Mech. Phys. Solids Vol.41 (1993), p.1887. 

[5] J. Lambros, and A.J. Rosakis: J. Mech. Phys. Solids Vol.43 (1995), p.169. 

[6] X.P. Xu, and A. Needleman: Int. J. Fract Vol.74 (1996), p.289. 

[7] X. Deng: J. Mech. Phys. Solids Vol.41 (1993), p.531. 

[8] Y. Huang, W. Wang, C. Liu and A.J. Rosakis: J. Mech. Phys. Solids Vol.46 (1998), p.2233. 

[9] W. Wang, Y. Huang, A.J. Rosakis and C. Liu: Eng. Fract. Mech. Vol.61 (1998), p.471. 

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

λ=−10.0λ=−5.0

λ=−0.5

D
/(
l δ

2 c
)

v/C
R

λ=−0.1

 

Fig.4 Normalized energy dissipation 

rate versus the crack velocity 

Advanced Materials Research Vols. 33-37 313



Advances in Fracture and Materials Behavior 
10.4028/www.scientific.net/AMR.33-37 
 
 
Subsonic Interface Crack with Crack Face Contact 
10.4028/www.scientific.net/AMR.33-37.307 
 

DOI References

[3] W. Yang, Z. Suo and C.F. Shih: Proc. R. Soc. Lond. A Vol.433 (1991), p.679.

doi:10.1098/rspa.1991.0070 
[4] C. Liu, J. Lambros and A.J. Rosakis: J. Mech. Phys. Solids Vol.41 (1993), p.1887.

doi:10.1016/0022-5096(93)90074-P 
[5] J. Lambros, and A.J. Rosakis: J. Mech. Phys. Solids Vol.43 (1995), p.169.

doi:10.1016/0022-5096(94)00071-C 
[8] Y. Huang, W. Wang, C. Liu and A.J. Rosakis: J. Mech. Phys. Solids Vol.46 (1998), p.2233.

doi:10.1023/A:1007479709559 
[9] W. Wang, Y. Huang, A.J. Rosakis and C. Liu: Eng. Fract. Mech. Vol.61 (1998), p.471.

doi:10.1023/A:1007479709559 

http://dx.doi.org/www.scientific.net/AMR.33-37
http://dx.doi.org/www.scientific.net/AMR.33-37.307
http://dx.doi.org/10.1098/rspa.1991.0070
http://dx.doi.org/10.1016/0022-5096(93)90074-P
http://dx.doi.org/10.1016/0022-5096(94)00071-C
http://dx.doi.org/10.1023/A:1007479709559
http://dx.doi.org/10.1023/A:1007479709559

