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Abstract The Taylor series expansion method is used to analytically calculate the Eulerian and 
Lagrangian time correlations in turbulent shear flows. The short-time behaviors of those correla- 
tion functions can be obtained from the series expansions. Especially, the propagation velocity and 
sweeping velocity in the elliptic model of space-time correlation are analytically calculated and further 
simplified using the sweeping hypothesis and straining hypothesis. These two characteristic velocities 
mainly determine the space-time correlations. 
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I N T R O D U C T I O N  

A space-time correlation, or a two-time and two-point correlation, is in the center of turbulence 
statistic theory and has broad applications to engineering problems such as the prediction of sound 
radiated by turbulent flows. The well-known space-time correlation theory in isotopic turbulence is 
Direct Interaction Approximation (DIA) (Kraichnan, 1959). The DIA theory is based on a simple 
model for space-time correlation, which is called the sweeping hypothesis (Kraichnan 1964). The 
model indicates that the space-time correlation in isotropic turbulence is mainly determined by a 
sweeping velocity (root-mean-square of total energy) and energy spectra. Zhou and Rubinstein (1996) 
applied this model to predict the frequency spectra of sound generated by isotropic turbulence using 
Lighthill's acoustic analogy theory. This model shows that the sweeping velocity and energy spectrum 
are critical to the Large-eddy simulation (LES) prediction of sound frequency spectra (He, Wang and 
Lele, 2004). 
The present study is devoted to develop a space-time correlation theory for turbulent shear flows. 
He and Zhang (2006) develop an elliptic model for space-time correlation in turbulent shear flows, 
which indicates that the space-time correlation is mainly determined by two characteristic velocities 
and spatial correlation. In this paper, we will use the Taylor series expansion technique to derive 
the two characteristic velocities. The Taylor series expansion technique has been used by Kaneda 
and Gotoh (Kaneda and Gotoh 1991, Gotoh and Kaneda 1991, Kaneda 1993) to calculate the space- 
time correlations in isotropic turbulence and will be used here to the ones in turbulent shear flows. 
We will first introduce the governing equations for space-time correlations and then calculate their 
two characteristic velocities using the Taylor series expansion technique. Finally, we will discuss the 
implication of the results obtained and draw the conclusions. 

BASIC EQUATIONS 
We consider the motion of an incompressible Newtonian fluid of unit density. 

av~ av~ ~ 0_2 - q_ r~ o2v~ (1) 
Ot ~- v j  Oxj --  -- Oxi OXj(~Xj 

= o (2) Oxi 

Wherev, p, and ~ are the velocity, the pressure and the kinetic viscosity respectively. The decom- 
position of (1) into the mean and fluctuating fields gives the governing equations of the fluctuating 
velocity. 

Oui _ Oui OUi O(uiuj} Op' 02ui 
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Ou~ _ Ou~ _-- 0 (4) 
Ox~ -- Ox~ 

Where the repeated indices imply the summation and 

u~ - ( ~ ) ,  ~ -  ~ -  ( ~ ) ,  p -  ( ; ) +  ;' (5) 

Here the brackets denote ensemble average. We assume that the mean strain is constant, such as 

au~ _ Ai j  - S S i l ~ j 2  Vi -- 51iU1, 

Using the incompressible condition, we re-write the pressure equatlon as follows 

(6) 

Ou~ Ouj 2OU~ Ouj O2(u~uj) 
A p '  - Oxj Ox~ - ~ j - ~  + Ox~Oxj (7) 

To facilitate the discussion on fluid particle, we use the so-called Lagrangian position function ~ and 
the generalized velocity field v defined as 

r ~; x, t) - ~ [y - ~(x, t; ~)] (8) 

v (x ,  t; s) - fv ~2(Y, s; x, t)u(y, s)d3y (9) 

where 5 a is the 3-dimensional delta function, and the integration is carried out over the entire fluid 
region V. r(x, t; s) is the velocity at times of the fluid particle that was at x at time t. The Lagrangian 
position velocity ~ obeys 

o ) ; , t ) - o  + (uj + ~ j ) ~  ~(y,  ~ x (10) 

r t; x, t) - ~ (y - x) (11) 

Using (3) and (8)-(11), we obtain 

o Vi 0;' o~~ ; , t ) d y  (12) 

If the turbulent fluctuation velocity is statistically homogeneous and stationary, the Eulerian and 
Lagrangian space-time correlation can be represented as 

R.(~ ,  ~-) - <~(x,  t)~(x + ~el, t + ~-)> (13) 

R L ( r ,  m) -- <ui(x,  t ) v i ( x  + re1, t; t + 7)} (14) 

LAGRANGIAN AND EULERIAN SPACE-TIME CORRELATIONS 

For smalb-andr, we may expand RE(r, w) and RL(r, m) in Taylor series about w = 0 and r = 0; 

o ~  (o, o)~ + o ~  lO~.~. (o o)~ ~ o ~  (o o)~-  R. (~ ,  ~-) - R . ( o ,  o) + - -~  - ~  (o, o)~- + ~ o~ , + ~ , 
1 o~R~ (0 0)~ -2 +5 o~ , + O(ra r2~_, r~_2, ~_3) 

(15) 

oR~ O)r + ~-b-T~ 0-757 R~(~, ~-) - R~(o, o) + ~ ( o ,  + ~ ( o ,  o)~- 1 o ~  (o, o)~ ~ + o ~  (o, o)~-  

+ ~__~~ o ~  (o, o)~ -~ + o (~  ~ , ~ - ,  ~-~ , ~-~) 
(16) 

We assume that the velocity fluctuation filed is statistically homogeneous and stationary, which yields 
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_ o R O R E ( 0 , 0 ) _  ~  0 ) - -  ~rr L ( 0 , 0 ) - -  O R L ( 0  0 ) - - 0  (17) 
Or ~ 

We further assume that the velocity fluctuation field is quasi-normal, which implies that the odd order 
moments are equal to zero and the even order moments can be represented in terms of second order 
moment. We can obtain 

2 oo 
RE,rr -- Rn,rr = 3 fo k2E(k) dk (18) 

2 oc 
RE,~r -- 5U1 fo k2E(k)  dk' RL,~r -- 0 (19) 

oc 2 ~ 2  oc oc oc 
-- 2U~ fo k 2 E ( k ) d k -  g fo E ( k ) d k -  fo dq fo dpE(q)E(p) fE(p ,q)  (20) RE,TT -- 3 

2~2 oc oo oc 
RL,~'~'=--g fo E ( k ) d k - f o  dqfo dpE(q)E(p) fL(p ,q)  (21) 

Where 

fE(P, q) - Fp+q k3a( k p, q)dk, J [P-q[ Pq ' 

1 a(k, ;,  q) - g(1 - xyz  - 2y2z2), 

f L (P, q) -- JIP-qlfP+q -~a ka -'~(k, p, q)dk 

1 Z 2 y 2  y 2  a ' ( k , p , q ) - ~ ( 1 -  - + z 2) 

x - c o s ( ;  A q),  y - c o s ( k  A q),  - c o s ( k  A ; )  

(22) 

(23) 

(24) 

RE(k,  ~-) - 2 E ( k ) e x p ( - 0 . 5 V 2 k 2 ~ - 2 ) ,  V - V/(U/2)/3 (25) 

The straining hypothesis (Gotoh et al., 1993) suggests: 

Rn(k,  ~-) - 2 E ( k ) e x p ( - 0 . 5 ( f :  p2E(p)dp)T2) (26) 

RE(k, T) and RL(k, T)are the Fourier coefficients of the space-time correlations RE(r, ~-) and RL(r, ~-) 
respectively. 
Finally, we can use these results to simplify (20) and (2) 

_ 2 o~ $2A2 RE,~-~- -- 3 fo k2E(k)dk(U21 + + (u2)) (27) 

2 (x3 RL,~ = 3 fo k2E(k)dk(  $2A2 + (~t2i)) (28) 

Here A is the differential length scale, defined as 

A2 - f o  E ( k ) d k /  f o  k2E(k) dk 
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(29) 

In the derivation of the equations (18)~(21), we make the three assumptions: (1). the velocity 
fluctuation is statistically homogeneous and stationary; (2). the velocity fluctuation is quasi-norm; 
(3). the energy spectra of velocity fluctuation are statistically isotropic. The first two assumptions 
are reasonable for velocity fluctuations in turbulent shear flows, but the third assumption is under 
verification for turbulent shear flows. 
The equations (20) and (21) have two parts: one is corresponding to the anisotropic part and another 
corresponding to the isotropic part. The latter is exactly as same as the ones obtained by Kaneda 
and Gotoh for isotropic turbulence. To further simplify the second parts, we have already used the 
results from the sweeping hypothesis for the Eulerian time correlation and the straining hypothesis 
for Lagrangian time correlation. For the isotropic turbulence, the sweeping hypothesis (Kraichnan, 
1964) suggests: 

D I S C U S S I O N  

The viscous term 2~, f o  k4E(k) dk is neglected from (20) and (21) due to infinitely large Reynolds 
number. 



and 

(ft~} - 2 f o  E(k)F(k)dk (30) 

The filter function is defined as 

r(k) - p E(p)dp/ f o  p E(p)dp (31) 

He and Zhang (2006) propose an elliptic model for Eulerian space-time correlations in turbulent shear 
flows. In the elliptic model, there are two characteristic velocities: the propagation velocity and the 
sweeping velocity. These two characteristic velocities can be calculated from above results: 

V c -  RE,rT/RE,rr -- U1 (32) 

V s  - - + (33) 

C O N C L U S I O N  

The Taylor series expansion method is used to carry out a short-time and short-distance analysis of 
the Lagrangian and Eulerian space-time correlation. In the Eulerian space-time correlation, the first- 
order coefficients are zero and the second-order coefficients are determined by mean velocity (mean 
shear rate), the differential scales and energy spectra of fluctuation velocity. 
The sweeping hypothesis and the straining hypothesis are applied to simplify the representations of 
the second order coefficients. The Lagrangian description intrinsically excludes the convection effects 
induced by both the mean velocity and fluctuating velocity. The exact forms including the effects of 
the mean velocity and shear rate are formulated in this study. 
This results obtained implies that to an accurate prediction of LES on the space-time correlation in 
turbulent shear flows needs the accurate prediction on enstrophy spectrum in additional to the mean 
velocities, mean shear rates and energy spectra. The present results can be further improved via 
the consideration on the non-Gaussian statistics effect and the anisotropic effect on the fluctuating 
velocity. 

Acknowledgements 

The support of Chinese Academy of Sciences under the innovative project "Multi-scale modelling and 
simulation in complex system" (KJCX-SW-L08) and National Natural Science Foundation of China 
under the Project Nos. 10325211 and 10628206 is gratefully acknowledged. 

REFERENCES 
1. Kraichnan RH. The structure of isotropic turbulence ar very high Reynolds number. J. Fluid 

Mech., 1959;5:497-543 
2. Kraichnan RH. Kolmogorov's hypotheses and Eulerian turbulence theory. Phys. Fluids, 1964;7: 

1723-1734 
3. Zhou Y, Rubinstein R. Sweeping and straining effects in sound generation by high Reynolds number 

isotropic turbulence. Phys. Fluids, 1996;8:647-649 
4. He GW, Wang M, Lele SK. On the computation of space-time correlations by large-eddy simula- 

tion. Phys. Fluids, 2004;16:3859-3867 
5. He GW, Zhang JB. Elliptic model for space-time correlations in turbulent shear flows. Phys. Rev. 

E, 2006;73:Art. No. 055303 
6. Kaneda Y, Gotoh T. Lagrangian velocity autocorrelation in isotropic turbulence. Phys. Fluids A, 

1991;3:1924-1933 
7. Gotoh T, Kaneda Y. Lagrangian velocity autocorrelation and eddy viscosity in 2-dimensional 

anisotropic turbulence. Phys. Fluids A, 1991;3:2426-2437 
8. Kaneda Y. Lagrangian and Eulerian time correlations in turbulence. Phys. Fluids A, 1993;5:2835- 

2845 
9. Gotoh T, Rogallo RS, Herring JR, Kraichnan RH. Lagrangian velocity correlations in homogeneous 

isotropic turbulence. Phys. Fluids A, 1993;5:2846-2864 

161 




