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Abstract

On the basis of the Local Equilibrium Model (LEM), fine particles with large Richardson—Zaki exponent n show, under certain conditions
during bed expansion and collapse, different dynamic behavior from particles with small n. For an expansion process there may be a concentration
discontinuity propagating upward from the distributor, and, on the contrary, for a collapse process there may be a progressively broadening and
upward-propagating continuous transition zone instead of discontinuity. The predictions of the bed height variation and the discontinuity trace

have been validated experimentally.
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1. Introduction

In liquid—solid fluidized systems, the particles are dispersed
quite uniformly and possess zero net velocity (up =0) when the
fluidizing velocity U exceeds the minimum fluidizing velocity
Unin and the system keeps in a steady-state. Various param-
eters in fluidized beds, e.g. voidage oy, fluid velocity ug, etc.,
can be determined according to the Richardson—Zaki expres-
sion U = utey (Richardson & Zaki, 1954). Slis, Willemse, and
Kramers (1959) extended the Richardson—Zaki expression to the
condition u;, # 0:

U(t) — up(t, x) = uraf (¢, x). €))

Introducing Eq. (1) into solid phase continuity equation
(Qetp/dt) + (d(arpup)/0x) =0, Slis et al. (1959) obtained the fol-
lowing propagation equation and the expression for velocity V
of the concentration wave:

% + V( )% =0 2)
or e T
V =U@) +urlnef ™" — (n + Dof]. 3)

They used the above two equations to develop a study on
the transient process (expansion or collapse) in liquid—solid
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fluidized beds. Any disturbance in fluidizing velocity (e.g.
from U to U+ AU) can result in the variation of the flu-
idized state, traveling upward along the bed from the distributor.
The transient process (transition from one state to another)
comes to an end when all disturbances reach the bed surface,
and therefrom a new fluidized state is achieved. Propagation
velocity of any slight disturbance (infinitesimal |AU]J) is the
same (see Eq. (3)) in any fluidized state, whether AU>0
(slight expansion) or AU<O0 (slight collapse). For finite dis-
turbance (which can be imagined as a series of infinitesimal
disturbances with various voidages), the wave velocity V is
not constant but a function of local voidage oy, and it results
in chasing and interaction of waves, showing the non-linear
feature of Eq. (2) and providing a source of different propa-
gation properties between expansion and collapse with finite
intensity. Slis et al. (1959) utilized Eqgs. (1)—(3) to calculate
the variation of bed height with time during the process of
expansion or collapse and the result is well in agreement with
experiments.

After Slis et al. (1959), a number of authors (Fan, Schmitz, &
Miller, 1963; Thelen & Ramirez, 1997; Thelen & Ramirez, 1999;
van der Wielen, Sjauw Koen Fa, Potters, & Luyben, 1997) pre-
sented models of bed-height dynamics of liquid—solid fluidized
bed. Jin (2003), Liu and Jin (2003) and Jin and Liu (2005) also
deduced a generalized Richardson—Zaki expression of Eq. (1)
and continuous wave equations of Eqs. (2) and (3) from their
Local Equilibrium Model (LEM), which was adapted from the
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Nomenclature

dp particle diameter (m)

D inner diameter of bed (m)

h bed height (m)

ho bed height at packed state (m)

n Richardson—Zaki exponent

t time (s)

ty time the transition zone just arrives at bed surface
(s)

te time the transition zone entirely pass through bed
surface (s)

us actual velocity of fluid phase (m/s)

up actual velocity of solid phase (m/s)

ur particle settling velocity (m/s)

U fluidizing velocity (m/s)

Unin minimum fluidizing velocity (m/s)

% velocity of the concentration wave (m/s)

Vinax maximum concentration wave velocity (m/s)

Vs velocity of concentration shock (m/s)

X height coordinate (m)

Xs displacement of concentration shock (m)

Greek letters

of voidage (fluid volume fraction)

Qf cr voidage corresponding to maximal wave velocity

armia  voidage determined by Eq. (8) or (9)

ap particle volume fraction (particle concentration)

Qp.c packed particle volume fraction

of fluid density (kg/m?)

Pp material density of particle (kg/m?)

Subscripts

B after discontinuity

F before discontinuity

h bed surface

1 correspond to U

2 correspond to U

Two-Fluid Model by ignoring the inertia difference between the
two phases, and discussed the application scope of the approx-
imation. Using LEM, we can study the transient process in a
bed with arbitrarily changing velocity U(¢) (e.g. rectangular or
sinusoidal) including the propagation and interaction of various
kinds of concentration waves (e.g. shockwave and continuous
wave). The periodic changes of bed height A(#) and voidage dis-
tribution a¢(z, x) in a bed predicted by LEM agreed well with
experiments (Jin, 2003; Liu & Jin, 2003), proving that LEM is
adequately applicable to the study of transient processes in the
fluidized state.

This paper studies expansion or collapse process of
liquid—solid fluidized bed under the condition that the fluidiz-
ing velocity stepwise increases from Uj to U, or decreases
from U; to Uy, where Upin < U1 < Uz. o and oy, represent the
voidages corresponding to the fluidizing velocity U; and Us,

respectively according to the Richardson—Zaki expression and
(I —ape) <af <ap always holds.

2. Influence of Richardson-Zaki exponent n on the
critical voidage ag,cr

Based on Eq. (3), the wave velocity V reaches its maxi-
mum, Viax, When ag=(n — 1)/(n+ 1), for given values of U, ut
and n. Slis et al. (1959) and Jin (2003) used larger particles
(glass beads with d,=3mm and 1.8 mm, respectively), hav-
ing smaller Richardson—Zaki exponents n (n~2.37 and 2.414,
respectively), and the maximum wave velocity appeared at the
critical values of «f =0y =0.407 and 0.414 for the two kinds
of particles, respectively. Both are very close to the voidage cor-
responding to the packed particle volume fraction ap (about
0.6) (see Fig. 1). So expansion and collapse of the bed almost
always met af o < f; <otz and the wave velocity V was almost a
monotonically decreasing function of voidage oy in the fluidized
bed. In this case (larger particles), we always see a concen-
tration discontinuity propagating upward from the distributor
when the bed collapses and a progressively broadening and
upward-propagating continuous transition zone (between the
upper dense phase and the lower dilute phase) when the bed
expands.

When Richardson—Zaki exponent n is large (correspond-
ing to small particle diameter dj, or smaller density difference
(pp — pr)), the critical value of voidage o, corresponding to
the maximum wave velocity Viax, is large. Therefore, fluidiza-
tion with of <wfr may take place in the bed. In this case, the
wave velocity will increase as the voidage increases (see Fig. 1).
If a1 and app satisfy af) <o <ofer OF af) <ofer <of2, the phe-
nomena in expansion and collapse processes of these particles
are quite different from those for larger particles. For example,
we may see a concentration discontinuity not in the collapse
process but in the expansion process when o < o <o cr-

In a process of expansion or collapse, between the uniform
upper zone (dense phase when expanding or dilute phase when
collapsing) and uniform lower zone, there is always a transi-
tion zone with the voidage monotonically changing along the
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Fig. 1. Relation between voidage and relative wave velocity for various 7.
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bed height. The transition zone will get wider and wider when
the wave velocities in the transition zone increase monotoni-
cally from the bottom up, otherwise the transition zone will get
narrower and narrower and finally form a concentration discon-
tinuity (concentration shockwave) when the wave velocities in
the zone decrease monotonically from the bottom up. Therefore,
the shockwave velocity Vg must be greater than the velocity of
continuous wave before the shockwave, V(¢, ot ), and less than
the velocity of continuous wave after the shockwave, V(t, arg)
(see Eq. (5) below).

Through mass conservation of the solid phase across the
shockwave plane, the shockwave velocity Vg can be expressed
as (Jin, 2003; Jin & Liu, 2005; Liu & Jin, 2003):

Op,BUp,B — UpFlUp F

VS(tv af,Fv af,B) =

Olp,B — Olp’F
o g(1 —arp) — of p(1 — g )
= U(t) + ur—2 LE : )
ofB — OfF
V(t, arr) < Vs(t, arp, arB) < V(t, or,B), )

where apr and op B, arr and arp, upr and up g represent the
particle concentration, voidage and particle velocity before and
after the shockwave, respectively.

3. Partitioning of ap—otg plane

For given values of Richardson—Zaki exponent n and packed
particle volume fraction ¢, the ap—of plane can be parti-
tioned, according to the numerical relation among osy, > and
afcr, into four regions, i.e. region I through region IV, as shown
in Fig. 2. In each region, the relation between wave velocity V
and voidage of possesses a distinct character, as a result, the
properties of the transition zone between uniform upper and
lower zones in a transient process are quite different. The ordi-
nate oy in Fig. 2 is the voidage of dense phase (i.e. the voidage
in upper zone when expanding, or the voidage in lower zone
when collapsing), and the abscissa oy is the voidage of dilute
phase. The fluidizing velocities U; and U,, normalized against
the particle settling velocity ut, are displayed as the right and top
axes, respectively in Fig. 2. The scales of these axes are specified
through the formula of Uy /ut = of ; (k=1 or 2). The voidage
as(t, x) at any time ¢ and any height x within the transition zone
is always between oy and o, i.e. of] <o(?, x) <. The coor-
dinates of points E, F, G, H, J and K with respect to the set of ap,
and oy axesinFig. 2 are (1, 1), (afcr, 0fer), (1, ctger), (1 — o),
(I —ape)), (afer, (I —ape)) and (1, (1 —apc)), respectively.
Except for region IV in app—oey plane, which will not be consid-
ered in this study because the condition of (1 — o) <af) <o
is not satisfied, the other three regions will be discussed in detail
below.

3.1. Region I characterized by (1 —ap ) <afer <ap <odp

Every point within the triangle EFG labeled region I meets
the condition of afcr <o <of(t, x) <opr. Under this condition,
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Fig. 2. The ap—af plane divided according to relative magnitudes of «yy, o
and of ¢ for given value of n.

the wave velocity V is a monotonically decreasing function of
voidage of (as exemplified by the segment MN on curve LPMQN
in Fig. 1).

3.1.1. Bed expansion

In this case, the wave velocity is increasing monotonically
along the height in the transition zone between upper dense
phase (of = ¢ ) and lower dilute phase (of = o2) since voidages
decrease monotonically along the height and the wave velocity
is a monotonically decreasing function of voidage. As a result,
the transition zone gets wider and wider. This is the expansion
process as we have already known.

3.1.2. Bed collapse

In this case, the wave velocity is decreasing monotonically
along the height since voidages increase monotonically along
the height and the wave velocity is a monotonically decreasing
function of voidage. As a result, the transition zone (even if with
a certain width initially) gets narrower and narrower and finally
forms a concentration discontinuity. This is also the already well-
known collapse process. According to Eq. (4), the velocity of
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the discontinuity plane is

af (1 —ap) —ap(1 —ap)
af] — o

Vs = Uy +ur (6)

3.2. Region Il characterized by (1 —ap ) <oy <op <dfer

Every point in the triangle FHJ labeled region II meets the
condition of (1 —apc)<af <of(t, x) <ap <afe. Under this
condition, the wave velocity is a monotonically increasing func-
tion of voidage (as exemplified by the segment LM on curve
LPMQN inFig. 1). It can be concluded from an analogous analy-
sis that there is no concentration discontinuity but a progressively
broadening and upward-propagating continuous transition zone
when collapsing. On the contrary, there is a concentration dis-
continuity between the upper dense phase and lower dilute phase
when expanding. According to Eq. (4), the velocity of the dis-
continuity plane is

o (1 — ap) — af (1 — ag)
o — Of]

Vs =U; +urt

(N

3.3. Region Ill characterized by (1 — ap ) < ap <ager <ap

Every point in the rectangle FIKG labeled region III meets
the condition of (1 — atp ) <oy <orfer <af(t, x) <ag. Under this
condition, the wave velocity is not a monotonic function of
voidage. As exemplified by the segment PMQ on curve LPMQN
inFig. 1 with af|p =y and af|g = a2, wave velocity Vincreases
monotonically with of in the range of o <of<oger (see the
segment PM in Fig. 1) and decreases monotonically with of
in the range of ot <or<oap (see the segment MQ in Fig. 1).
Therefore, under this condition, waves in the transition zone
may exhibit complex process of chasing and overlapping. The
following analysis shows that there is always a concentration
discontinuity in the transition zone, no matter in expansion or
collapse. Besides, there may also exist a series of concentration
waves behind the discontinuity.

3.3.1. Bed expansion

In this case, dilute phase oy, is behind dense phase «y;. The
voidage in the transition zone decreases monotonically from the
bottom up, but the wave velocity does not change monotonically.
Somewhere in the transition zone there may be a layer with the
fastest wave velocity. When the wave with fastest propagating
velocity (referred to as wave M) overtakes the previous waves, a
discontinuity forms. There must be some waves after the wave M
which can overtake the discontinuity as well because the propa-
gating velocity of the discontinuity must be less than the fastest
wave velocity (see Eq. (5)), and thus less than the velocity of
some waves behind the wave M. As a result, the discontinuity is
further intensified. If ay, is large enough, in the transition zone
there will be a wave (referred to as wave C with the correspond-
ing voidage named as ofmiq), behind which the waves cannot
catch the discontinuity because the velocity of these waves is
equal to or less than the velocity of the discontinuity. According
to the condition that the wave velocity corresponding to voidage
ofmid, 1.€. V(g mia), equals the discontinuity velocity Vs, of mid

should satisfy the following relation:

U + uT[noz;’;n:d — (n + Daf il

a?,mid(l - Olf,mid) - a?](l — o)

Of,mid — ¢fl

=Ux+ur

®)

The above equation shows that o mig is just a function of n and
ar; and can thus be written as ofmiq =f(n, ar). And now, the
whole transition zone consists of a concentration discontinuity
abruptly from af) to o mid, followed by a continuous transition
from ot mig to ap. If o < ofmig (that is, ap is not so large), then
the discontinuity encompasses all waves in the transition zone
from oy to o> without continuous waves following it.

Therefore, as shown in Fig. 2(a), the whole region
Il can be divided into two subregions, subregion III.
and subregion IIl,. Subregion III, covers the range of
(I —oape)<oap <ager<ap <fln, ag). When voidages of af
and ap fall into this range, the transition zone degenerates
into a discontinuity only. Subregion IIl. spans the range of
(I —ape) <oaf <afer <fln, ar)) <op. When voidages of afy and
ar fall into this range, the transition zone consists of a discon-
tinuity followed by a series of continuous waves.

3.3.2. Bed collapse

In this case, dense phase oy is behind dilute phase oy, . The
voidage in the transition zone increases monotonically from the
bottom up, but the wave velocity does not change monotonically.
All the waves before the wave M (with the fastest wave velocity)
and some waves after it are packed into a discontinuity. If «f; is
small enough, there will be a wave (referred to as wave C with
the corresponding voidage named as of miq), behind which the
waves cannot catch the discontinuity. According to the condition
that the wave velocity corresponding to voidage ofmiqa equals
the discontinuity velocity, ofmig should satisfy the following
relation:

U + uT[naE;}d — (n + Dog il

of mig(1 — @ mid) — o (1 — ap)

Of,mid — &f2

=U;4+ur 9
The above equation shows that ormig can be written as
ot mid =f(n, or2). And now, the whole transition zone consists
of a discontinuity from o> to afmiq followed by a continuous
transition from o mig to or1. If f) > o mig (that is, oy is not so
small), then the discontinuity encompasses all waves in the tran-
sition zone from oy to af) without continuous waves following
it.

Therefore, as shown in Fig. 2(b), the whole region III can
also be divided into two subregions, subregion IIl. and sub-
region III,. Subregion Il covers the range of (1 — o) <fin,
ap) <of <drer <opy. When voidages of o and g fall into
this range, the transition zone degenerates into a discontinu-
ity only. Subregion Il spans the range of (1 — o o) <af) <f(n,
ap) <ofe <of. When voidages of af) and ap fall into this
range, the transition zone consists of a discontinuity followed
by a series of continuous waves.
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Fig. 3. The ap—oaf plane divided according to the characteristics of transition
zone for n=4.0.

Plane ap—af) can now be re-divided into four regions, i.e.
A, B, C and D, according to whether the transition zone has a
discontinuity (shockwave) or continuous waves (see Fig. 3(a)
and (b)). For the parameter combination (a2, o) in Region
A, there are a series of continuous waves in the transition
zone without shockwave. For Region B, there is a shock-
wave only in the transition zone without continuous waves.
For Region C, there is a shockwave followed by a series of
continuous waves in the transition zone. Corresponding to the
Regions A, B and C, the transition zones are named types A,
B and C.

For expansion processes, Region A, C and D are just the
region I, subregion IIl; and region IV, respectively, as mentioned
above, and Region B consists of the region II and subregion III},
(see Fig. 3(a)). For collapse processes, Region A, C and D are
just the region II, subregion Il and region IV, respectively,
and Region B consists of the region I and subregion III}, (see
Fig. 3(b)).

For n=2.414, the regions in plane ap—oyr are shown in
Fig. 4(a, expansion) and (b, collapse). It can be seen obviously
from Fig. 4(a) and (b) that almost only Region A for expansion
and Region B for collapse are likely to occur.
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Fig. 4. The ap—oaf plane divided according to the characteristics of transition
zone for n=2.414.

4. Variation of the bed height A(¢) and bed surface
velocity dh/dt

Suppose ty is the time when the front of transition zone just
arrives at bed surface, before which (0<7<t,) the bed surface
goes up (when expanding) or down (when collapsing) with a
constant velocity £(U, — Uy), and ¢, is the time when the tail of
transition zone passes through bed surface, after which (r>t.)
the bed height stops varying and the transient process comes to
the end. If the transition zone degenerates into a discontinuity,
then t, =t..

4.1. Expansion process
(U|t<() = Ulv U|z>0 = U27 h|15() = ]’l], h|tzte = h2)

Applying Eq. (1) to bed surface (x=h(f)), we obtain
dh/dt = upn(t) = Uz — uTagh(t) where the voidage and solid
phase velocity at bed surface are defined as afp(?)=oi(,
X)|x=n and wupn(t) =up(?, x)|x=n, respectively. In the interval
of O<t<ty, dh/dt=upy = U, — Uy because arp(f) =ar . When
t>te, dh/dt=up, =0 because afp(f)=arp. In the interval of
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t, <t<t. when the transition zone of type A passes through the
bed surface, the voidage arp(#) changes continuously from oy
to af and so the solid phase velocity up p(?), i.e. the bed surface
velocity dh/dt, changes continuously from (U — Uj) to zero and
the bed height curve A(?) is smooth. When the transition zone of
type B passes through the bed surface, the voidage ot p(f) jumps
from af to af, and so the solid phase velocity upn(#) drops
from (U, — Uy) to zero and the curve h(f) has a sharp break at
t=1ty =t.. When the transition zone of type C pass through the
bed surface, the voidage oy p(?) first jumps from g to ot mig at
the time ¢=1,, when the discontinuity passes through the bed
surface, and then changes from o mig to aef2 continuously when
the continuous waves following the discontinuity pass through
the bed surface sequentially. Correspondingly, the solid phase
velocity up p(#) first drops from (U — Uy) to (U — ”To‘gmid) at
t=1ty, and then changes from (U, — MTa?,mid) to zero continu-
ously. So the curve A(f) has a moderate break at t=1#, and then
changes to the terminal value s, smoothly. For the expansion
process, of mid =f(n, af1).

The expressions of #, and f. are summarized in Table 1, the
formulas calculating the bed surface velocity and bed height are
expressed by Eq. (10) (for Region B, the condition (#, <7<t.)
does not exist), and the typical bed height curves calculated by
Eq. (10) for n=4.0 are shown in Fig. 5.

afn(t) = of
upn(t) = Us — U
h(t) =hy + Uz — Uyt

O<r=n)

upn(agn) = Us — urogy

h(agn) = (U + utlnefy ' = (n+ Dty Beern) (1 <1 <1) (10)
Hagn) = [hi(1 — ar))/[nureffy (1 — agp)?]

apn(f) = ap

upn(?) =0

h(@®) = hy =h(1 —oan)/(1 —ap)

(te <1)

4.2. Collapse process
(U|t<0 = Uy, U|t>0 = Uy, h|t§0 = ha, h|t2te = hy)

Applying Eq. (1) to bed surface, we obtain
dh/dt = up () = Uy — uTa?’h(t). In the interval of 0<r<#tp,
dh/dt=upn=—(Uz — Uy) because agn(f)=oap. When 1>t
dh/dt=u, =0 because arn(f)=af. The voidage ar in the
transition zone of type A changes continuously from g to
ar1, so the bed height curve A(f) is smooth. The transition zone
of type B degenerates into a discontinuity, so the curve h(f)
has a sharp break. The transition zone of type C consists of
a discontinuity followed by a series of continuous waves, so
the curve A(f) has a moderate break at =1, and then changes
to the terminal value /; smoothly. For the expansion process,
armid =f(n, ap).

The expressions of 7, and f. are summarized in Table 2, the
formulas calculating the bed surface velocity and bed height in
collapse process are expressed by Eq. (11) (for Region B, the
condition (f, <t<t) does not exist), and the typical bed height

curves using Eq. (11) for n=4.0 are shown in Fig. 6.

afgn(f) = an

up h(t) = —(U2 = Uy)
h(t) = hy — (U2 — Uyt
upn(arn) = Uy — urogy
hagp) = (Ui + utlnafy! — (n+ Degy DGarn) (1 <t<1) (11)

Harn) = [ha(1 — ap)]/Tnuref ) (1 — agp)’]

O<t=t)

agh(t) = of
”p,h(t) =0 (te <1)
h(t) = hy

5. Experimental validation

Experiments were carried out to validate the above theoretical
analysis.

5.1. Experimental setup and procedure

Fig. 7 shows the experimental setup, including a 2.4 mm-id
and 1.2 m-high glass column fluidized by water introduced at
its bottom through a 0.012 m calming section packed with glass
beads, and a high-resistance sieve plate to insure essentially one-
dimensional flow in the bed. To conduct experiments with fine
particles in a narrow fluidized bed, high-pressure (15 £ 0.5 MPa)
nitrogen is used to press cooled boiled water from storage
through control and measurement system into the fluidized bed.
To eliminate the influence of adhering bubbles, particles need
to be soaked in cooled boiled water with continuous stirring,
and then dried and kept under vacuum for 24 h before use. The
flow rate is measured by means of an indirect method. Since the
particles are very fine and the flow rate needed is very small,
it is critical to guarantee a prompt response of fluidized bed to
the step change of fluidizing velocity in the experiments. There-
fore a horizontal bubble gauge with the same diameter as the
fluidized bed is connected directly to the outlet of fluidized bed,
with an air bubble injected inside. The movement of the bubble
as recorded by a digital camcorder is used to monitor the actual
fluidizing velocity in the fluidized bed. The bed height and the
transient distribution of the particle concentration are recorded
continuously by a digital camcorder. A ruler is placed parallel
with the column axis to guarantee an accuracy of bed height
measurement within &1 mm.

When the inner diameter gets smaller, the drag force on the
bed wall will become more prominent. Would Eq. (1), derived
by ignoring the drag force on the sidewall, be still valid for a
bed with an inner diameter as small as 2.4 mm? The answer is
positive. Although the inner diameter of the bed is only 2.4 mm,
it is not so small relative to the particle diameter we used. Many
reported experiments have shown that Eq. (1) is valid under the
condition of D:dj, =16:1.

In a vertical column with an inner diameter of D, between two
cross-sections at a separation of Az, the drag force of the fluid on
the sidewall Fry, equals AzwDrgy,, where the shear stress on the
sidewall t¢w o< ufU/D and U is the superficial velocity in this
section, as a result, the drag force Fr, oc AzwusU. The gravity
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Fig. 5. Variation of solid phase velocity u, and concentration o, , at bed surface and bed height 2 with elapsed time 7 in expansion: (a) Region A; (b) Region B; (c)

Region C.
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Fig. 6. Variation of solid phase velocity up, and concentration o, at the bed surface and bed height & with elapsed time ¢ in collapse: (a) Region B; (b) Region A;
(c) Region C.
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Table 1
Summary of expressions for #, and . during expansion

Domain of ¢ and ap

Expressions for #, and 7,

Region B

(I —ape) <o <arer and af <op <f(n, af)
Region A

afer<ap <1and af <ap <1

th =te =ha/Vs = [(ap — ap)hi/ut]l/[(1 — an)(ap — of)]

o = h1/[V(ag) — Uz — UDT = (b1 Jur)/[ney” (1 = ap)],

te = ha/ Vagp) = [(1 — ap)hy /ur]/Inely (1 = ap)*]

Region C
(I —ape) <o <oper and fin, af)<op <1

ty = h1/[V(f,mia) — (U2 — UD] = (h1/ut)/lof, + ”a?,:n}d =+ Dog Ll

te = ha/V(ar) = [(1 — ag)hi /ur)/Inay (1 = ap)’]

Table 2
Summary of expressions for #, and 7. during collapse process

Domain of af and oy

Expressions for #, and #.

Region B

afer <oy <1 and max{fin, ap), (1 —apc)} <op <ap
Region A

(I —ape)<op <ofe and (1 —ope) <ap <ap

th =te =h1/Vs = [(ap — am)ha/utl/[(1 — e )(og — afp)]

thy = ha/[V(ar) + (Uz — UD] = (ha/ur)/Inefy ' (1 — ap)],

te = h1/Vian) = [(1 — ap)(ha /ur)]/Ine; (1 — an)?]

Region C
arer<ap <1and (1 —apc)<af <max{f(n, ap), (1 —apc)}

ty = ha/[V(f,mid) + (U2 — U] = (ha/ut)/log, + na’ff;{d — (4 Dof gl

te = hi/Vien) = [(1 — ap)(ha /ur))/Ineg (1 = ap1)?]

force of the mixture equals AZ(?T/4)D2(Olf,0f+Olp,0p)g and the
pressure drop is equal to Az(/4)D?>dp/dz.

In single-phase pipe flow with a given flow velocity U, the
ratio of the drag force on sidewall to the gravity force increases
quickly when the inner diameter of pipe D decreases (the ratio
is proportional to D~2). However, it is completely different in
fluidized bed. The drag force on sidewall is comparable with
the gravity force under the condition that the voidage oy in bed,
rather than the superficial velocity U, remains constant. For a
given «of, the superficial velocity U is proportional to the par-
ticle settling velocity ut (Richardson—Zaki expression) and ut

is approximately proportional to ,opdgg/ uf, so the superficial
velocity U and drag force on sidewall Ffy, are proportional to
,opdgg/ ws and Az,opdgg, respectively. As a result, the ratio of
drag force to gravity force is proportional to dg /D?. Therefore
the effect of the drag force on sidewall does not rise with the
decrease of the diameter of column D as long as the ratio D?/ dg
does not decrease. Actually, in Slis’ experiments (Slis et al.,
1959), D=30mm, dp =3 mm, D:d, =10, and in Jin’s experi-
ments (Jin & Liu, 2005), D=30mm, d,=1.8 mm, D:d, =16.6.
Their experiments showed that it was reasonable to ignore the
drag force on the sidewall.

18

{ ) 19

7

16

15

Fig. 7. Experimental setup for fine-particle fluidization: 1, nitrogen cylinder; 2, start valve; 3, filter regulator; 4, start valve; 5, pressurized water reservoir; 6, cut-off
valve; 7, solenoid valve; 8, precision flow control valve; 9, check valve; 10, cut-off valve; 11, pressure gauge; 12, flowmeter; 13, fluidized bed; 14, DV/DC; 15, ruler;

16, air bubble; 17, glass pipe; 18, ruler; 19, tube.
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Table 3

Properties of the materials used in experiments

op (kg/m®) 2.6 x 10°
ot (kg/m?) 1.0 x 103
dp (mm) 0.15

Qpe 0.62

n 4.00

ut (m/s) 0.0267

5.2. Experimental materials

Glass beads were carefully sieved between two close meshes.
The particle density p, was determined pycnometrically with
water. Properties of the materials used in experiments are listed
in Table 3.

In order to determine the Richardson—Zaki exponent n and
particle setting velocity ut, we performed a set of steady-
state experiments at different fluidizing velocities U;, recording
the corresponding bed height h; and calculating the cor-
responding voidage of; based on the particle conservative
relationship hoape =hi(1 —ag;) (=1, 2, 3, ...), where ap.
is the packed particle concentration and /g the bed height at
the packed state. We fitted these data (U; and of;) against
the Richardson-Zaki expression U; = utayg; and got n=4.00
and ut =0.0267 m/s with a correlation coefficient of 0.9976, as
shown in Fig. 8. Results of steady-state experiments show that
the Richardson—Zaki expression is also tenable for fine-particles
in a narrow fluidized bed.

5.3. Experimental results

Several experimental evidences about the following two facts
will be provided in this section to validate the theoretical analy-
sis described above. First, when the parameter combination (o,
arp) lies in region I in Fig. 2, the transient process of fine parti-
cles with larger Richardson—Zaki exponent n behaves like that of
larger particles with smaller n, that is, there is a transition zone
of type A (a progressively broadening and upward-propagating
continuous transition zone) between upper dense phase and
lower dilute phase during bed expansion, and a transition zone

0.01 o D
Linear Fit of Data1_D
0.008 |
F log(U)=A+B*log()
0.006 |- pParameter Value Error
E A -1.6727 0.01126 o &
B 4.00219 0.059010

D 0.004 [
Ui=uqu".i
[ apc=0,62
0.002 | n=4.00
I u =0.0246

s e b b b b
06 065 0.7 075 08 085
OLf

Fig. 8. Fitting experimental data on variation of voidage with fluidizing velocity.

of type B (a concentration discontinuity) between upper dilute
phase and lower dense phase during bed collapse. Second, under
other conditions for fine particles, on the contrary, there is a tran-
sition zone of type B during bed expansion, and a transition zone
of type A during bed collapse. Our primary interest was focused
on the second fact.

A direct method to judge transition zone type is to observe
(or measure) the zone width to see whether a concentration dis-
continuity exists or not. Another method is to observe the bed
height curve h(f) to see whether it is a smooth curve or has a
sharp break.

The fine particles used in our experiments are the glass beads
with diameter d, =0.15 mm (n=4.0), and larger particles used
in the control experiments are the glass beads with diameter
dy=18mm (n=2.414).

Initially, a series of transient process experiments of fine par-
ticles were carried out in a fluidized bed with inner diameter
D =10mm, including expansion and collapse of type A and B,
and using a camcorder to record the whole bed height variation,
and the results were found in good agreement with the theoreti-
cal predictions, though, neither a concentration discontinuity in
expansion of type B, nor a discontinuity in collapse of type B
could be seen.

During experiments, we observe the concentration according
to the intensity of the transmitted light. If there is an intensity
discontinuity in the image, there will be a concentration discon-
tinuity in the bed. But the light scattering caused by particles in
bed may obscure the view of concentration discontinuity, or even
make the blurred discontinuity disappear from the view. Light
scattering is much stronger for fine particles than large ones
for the same thickness of two-phase medium and same particle
concentration. This may explain the phenomena that no concen-
tration discontinuity was observed in transition zone of type B
for fine particle collapsing, though the concentration disconti-
nuity appears clearly when using larger particles under the same
conditions. Following this clue, we conducted a series of exper-
iments in beds with smaller inner diameters, D=6 mm, 4 mm
and 2.4 mm, under the similar conditions. As the inner diameter
decreased, the visibility of the concentration discontinuity was
improved, and for D=2.4 mm, the concentration discontinuity
became visible both in the collapse process of type B and in the
expansion process of type B.

In all experiments, the bed was first maintained at a steady-
state before a step change of fluidizing velocity was introduced.
Under steady-state condition, the voidage throughout the bed
is uniform. The bed experienced an expansion or collapse pro-
cess upon a step increase of fluidizing velocity from U; to Us
or a step decrease from U, to U; was introduced, respectively,
where Uj < U,. The results of the bed height and concentration
discontinuity displacement prove a good agreement between
the experimental data and model predictions, as shown in
Figs. 9 and 10.

In the collapse process with the parameter combination (cfy,
ary) falling into Region B (see Fig. 3(b)), we see a concentration
discontinuity in the bed (see Fig. 11(b)) and the bed height curve
h(?) has a sharp break at t =1, =~ 60 s (see Fig. 9(b)). In the expan-
sion process with the parameter combination (o1, o) falling
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Fig. 9. Comparison between experiments and calculations of collapse processes in a fine particle fluidized bed: (a) os; and a; in Region A; (b) o¢y and g in Region
B; (c) af; and «f, in Region C.
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A B) ©

(A) ) ©)
Fig. 11. Transient distribution of concentration during collapse process in a fine
particle fluidized bed: (a) o =0.42 and a2 =0.59 in Region A; (b) af; =0.60
and o =0.83 in Region B. Note: (A) a snapshot taken at an instant of bed
collapse; (B) digitized grey scale chart; (C) grey value profile along the bed.

into Region A (see Fig. 3(a)), we see a transition zone in the bed
where the concentration changes slowly (see Fig. 12(a)) and the
bed height curve A(?) is smooth (see Fig. 10(a)). These are the
characteristics of collapse and expansion processes as we have
already known.

In the collapse process with the parameter combination (o,
ar) falling within Region A, we see a transition zone in the
bed where the concentration changes slowly (see Fig. 11(a))
and the curve A(f) is smooth (see Fig. 9(a)). In the expansion
process with the parameter combination («fy, o) falling within

(a)

(b)

(A) (B) (©

Fig. 12. Transient distribution of concentration during expansion process in a
fine particle fluidized bed: (a) af; =0.62 and o> =0.83 inRegion A; (b) ag; = 0.42
and o =0.59 in Region B. Note: (A) a snapshot taken at an instant of bed
expansion; (B) digitized grey scale chart; (C) grey value profile along the bed.

Region B, we see a concentration discontinuity in the bed (see
Fig. 12(b)) and the curve h(¢) has a sharp break at t=#,~44s
(see Fig. 10(b)). Such transient characteristics of collapse and
expansion have not been seen in the fluidized bed with larger
particles.

If the parameter combination («fy, ar2) falls within Region C
either in collapse process or in expansion process, the composi-
tion of the transition zone is complicated and we cannot record
a fine and clear snapshot, however A(f) data obtained in exper-
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iments agree well with the model predicted ones as shown in
Figs. 9(c) and 10(c).

6. Conclusions

(1) Although bed expansion and collapse are converse pro-
cesses, their transient phenomena are quite different due
to the non-linear characteristic of Eq. (2), that is, the wave
velocity V is not constant but a function of voidage af. The
voidage in the transition zone changes monotonically from
the bottom up, thus resulting in chasing and interaction of
waves. The function relation between V and «f is depen-
dent on the exponent n, and so both Viax and ogcr, the
voidage corresponding to the maximum wave velocity, are
dependent only on the exponent n.

(2) If the parameters «f; and og in expansion or collapse
processes fall into the range of of¢r <o <of2, we may
see a concentration discontinuity propagating upward from
the distributor when collapsing and a progressively broad-
ening and upward-propagating continuous transition zone
when expanding. These are the phenomena we have already
known. This paper reveals theoretically that the contrary
cases may occur for fine particles if the parameters oy
and oy fall into the range of o <ap <ofer. Our exper-
iments have proved that, for fine particles with 0.15 mm
diameter in a fluidized bed with inner diameter of 2.4 mm,
a concentration discontinuity may appear in an expan-
sion process and a continuous transition zone may appear
in a collapse process. If the parameters oy and oy fall
into the range of oy <ogor <opp, We may see a concentra-
tion discontinuity followed by a succession of continuous
waves in expansion process and in collapse process as
well.

(3) Asthe basis of theoretical analysis in this paper, LEM model
has proved capable of predicting dynamics in fluidized bed,
meaning that it catches the essential aspects of two-phase
flow in fluidized bed.

(4) Whether the effect of drag force on bed wall can be ignored
in liquid—solid fluidization depends mainly on the ratio of
bed diameter to particle diameter rather than the bed diam-
eter itself. Bed height variations measured in the 2.4-mm-id
bed with 0.15 mm diameter glass beads agreed well with the
predictions of theoretical formula developed, in which the
drag force effect on wall had been neglected.
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