
International Journal of Heat and Mass Transfer 51 (2008) 6328–6331
Contents lists available at ScienceDirect

International Journal of Heat and Mass Transfer

journal homepage: www.elsevier .com/locate / i jhmt
Technical Note

Influence of Rayleigh effect combined with Marangoni effect on the onset
of convection in a liquid layer overlying a porous layer

Rong Liu, Qiu Sheng Liu *, Si Cheng Zhao
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 14 September 2007
Received in revised form 16 June 2008
Available online 19 August 2008

Keywords:
Porous medium
Instability
Marangoni convection
0017-9310/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.ijheatmasstransfer.2008.06.020

* Corresponding author. Tel.: +86 10 82544095.
E-mail address: liu@imech.ac.cn (Q.S. Liu).
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Marangoni effect for different depth ratios.
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1. Introduction and Lapwood [7]. Up to now, most of previous works [8–11] focus
Thermal convection in a horizontal liquid layer is an important
problem and has received extensive attention since Bénard [1] ob-
served hexagonal roll cells upon onset of convection in molten
spermaceti with a free surface. Rayleigh [2] developed a theory
to explain the results of Bénard’s experiments. The convection ob-
served in Bénard’s experiments is believed to be driven by buoy-
ancy in Rayleigh’s theory. In 1956, Block [3] introduced a new
viewpoint to explain Bénard’s experiments. He demonstrated that
the convection cells in a thin liquid layer are driven by variations in
surface tension instead of buoyancy. Pearson [4] proposed a new
theoretical model different from Rayleigh’s and demonstrated ana-
lytically that Bénard convection can be driven by variations in sur-
face tension. This surface tension-driven convection is referred as
Marangoni–Bénard convection. Nield [5] found that buoyancy
and surface tension are tightly coupled in Bénard’s experiments.
The critical Rayleigh number and the critical Marangoni number
are linked by a simple linear relation, i.e.

Ra=Ra0 þ Ma=Ma0 ¼ 1 ð1Þ

Here Ra0 and Ma0 denote the critical Rayleigh number and the crit-
ical Marangoni number for pure buoyancy case and pure thermo-
capillary case, respectively.

A more complicated problem is the thermal convection driven
by buoyancy (Rayleigh effect) and surface tension (Marangoni ef-
fect) in a liquid–porous system. This problem has received signifi-
cant attention since the pioneering works of Horton and Rogers [6],
ll rights reserved.
on the Rayleigh convection in the liquid–porous system with a ri-
gid upper boundary. In recent years, several investigators have
studied the Marangoni convection in the liquid–porous system.
Desaive and Lebon [12] firstly used Brinkman’s model to study
the onset of thermal convection in this system. They reported that
the critical depth ratio corresponds to the transition from a liquid
layer dominated (short wave) mode to a porous layer dominated
(long wave) mode. The critical depth ratio is much smaller in the
thermocapillary case (Maranogni convection) than in the buoyancy
case (Rayleigh convection).

The instabilities of Marangoni convection and Rayleigh convec-
tion have been investigated in many previous works. However, little
research has been devoted to the interaction between Rayleigh and
Marangoni effects in a fluid–porous system. Thus, for a liquid–por-
ous system subjected to a vertical gradient of temperature, the fol-
lowing question should be asked. If one can obtain an analogy of
the Marangoni-Rayleigh instability to Eq. (1) for a liquid–porous
case? The relation between the critical Rayleigh number and the
Marangoni number for a liquid–porous system is linear, or
nonlinear?

Motivated by these previous works and the unknown problem
mentioned above, we aim to study the onset of convection driven
by the Rayleigh effect combined with the Marangoni effect, espe-
cially how these two effects interact under different coupling modes.

2. The problem formulation and solution procedures

We consider a homogeneous porous layer of thickness dp

underlying an incompressible liquid layer of thickness dl. The
combined layers are infinite in the horizontal directions x, y. The z
direction is opposite to the gravitational acceleration. The interface
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between the fluid and the porous medium is at z = 0. The bottom of
the porous layer is a rigid wall maintained at a constant tempera-
ture. The upper boundary is a heat insulating and non-deformable
free surface where Marangoni effect can be taken into account.
The temperatures of the bottom and upper boundaries are Tb and
Tu. We use the Brinkman model [13] to describe the porous medium.
The governing equations include the continuity, momentum, and
energy equations. For the liquid layer, the controlling equations are:

r � ul ¼ 0 ð2Þ
@ul

@t
þ ul � rul ¼ �

1
ql
rpl � g½1� blðT l � T0Þ�ez þ mlr2ul ð3Þ

@T l

@t
þ ul � rT l ¼ jlr2T l ð4Þ

For the porous layer, the controlling equations are:

r � up ¼ 0 ð5Þ
1
/
@up

@t
¼ � 1

ql
rpp � g½1� blðTp � T l0Þ�ez

þ le

ql
r2up �

ml

K
up ð6Þ

ðqcÞp
@Tp

@t
þ ðqcÞlðup � rTpÞ ¼ vpr2Tp ð7Þ

In these equations, the subscripts l and p denote quantities of the
liquid layer and the porous layer, respectively. u denotes the veloc-
ity, p the pressure, T the temperature, t the time, q the density, l the
dynamic viscosity, m the kinematic viscosity, v the heat conductiv-
ity, jl the thermal diffusivity of the liquid, jp is defined as vp/(qc)l, b
the thermal expansion coefficient, / the porosity, c the specific heat
capacity, K the permeability, g gravitational acceleration. le is the
‘effective viscosity’ in the porous medium which is chosen to be
equal to the dynamic viscosity of liquid.

To study the stability of thermal convection, the plan is to line-
arize the equations with respect to a known reference state, i.e., a
motionless liquid only with heat conduction. We choose separate
length scales for the liquid layer and the porous layer so that both
layers are of unit depth in dimensionless form. For the liquid layer,
the length is scaled by dl, the temperature by DTlm l/jl, the time by
d2

l =jl, the velocity by ml/dl. For the porous layer, the length is scaled
by dp, the temperature by DTpml/jp, the time by d2

p=jp, the velocity
by ml/d p. Here DTl and DTp are the temperature differences in the
liquid layer and the porous layer. The disturbances are decom-
posed into normal modes proportion to exp[kl t + iklx] and exp[kp

t + ikpx] in the liquid and porous layers. Here k is the time growth
factor, k is the wave number. Eliminating the pressure fields, the
k
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Fig. 1. (a) Critical overall Rayleigh number versus overall wave number for different de
different depth ratios.
dimensionless linearized normal mode equations for the perturbed
variables read as:

klPr�1
l r2

l W l ¼ r2
lr2

l W l � k2
l RalHl ð8Þ

klHl ¼ W l þ r2
l Hl ð9Þ

kpPr�1
p /�1Dar2

pWp ¼ KDar2
pr2

pwp � r2
pwp � k2

pRamHp ð10Þ
kpGHp ¼ Wp þ r2

pHp ð11Þ

At (z = �1), the boundary is a rigid and perfectly heat conduction wall:

Wp ¼ 0;DWp ¼ 0;Hp ¼ 0 ð12Þ

At (z = 1), the upper surface with surface tension is assumed to be
non-deformable and heat insulating:

W l ¼ 0;DHl ¼ 0;D2W l þ Malk
2
l Hl ¼ 0 ð13Þ

At the interface (z = 0), continuity of normal and tangential veloci-
ties, temperatures, heat flux, and normal momentum and tangential
momentum are expressed as:

hWp ¼ W l; h
2DWp ¼ DW l; �2Hp ¼ hHl ð14Þ

�DHp ¼ DHl ð15Þ
Dah4KðD3Wp � 3k2

pDWpÞ � h4DWp

¼ DaðD3W l � 3k2
l DW lÞ ð16Þ

ðD2 þ k2
l ÞW l ¼ Kh3ðD2 þ k2

pÞWp ð17Þ
Here D ¼ d

dz ; rl ¼ D2 � k2
l ; rp ¼ D2 � k2

p. Here all the symbols
refer to dimensionless variables. The dimensionless parameters in
the above equations include: For the liquid layer, the Rayleigh num-
ber defined as Ral ¼ blgðT int � TuÞd3

l =mljl, the Marangoni number
defined as Mal ¼ rTðT int � TuÞdl=lljl, the Prandtl number
Prl ¼ ml=jl. Here T int is the temperature at the liquid–porous inter-
face. For the porous layer, the Rayleigh number defined as
Rap ¼ blgðTb � T intÞdpK=mljp, the Prandtl number Prp ¼ ml=jp.
The Darcy number Da ¼ K=d2

p, the depth ratio h ¼ dl=dp, the
dynamic viscosity ratio K ¼ le=ll, and the volume heat capacity ra-
tio G ¼ ðqcÞp=ðqcÞl; � ¼ vl=vp.

These equations and boundary conditions determine an eigen-
value problem which can be solved by Chebyshev tau method
[14,15]. In our calculation, we choose / = 0.3, � = 0.7, Da =
9.0 � 10�6, Pr = 6.0, K = 1.0, G = 10.0.

3. Results and discussion

In this section, we will focus on the interaction between the
Marangnoni effect and the Rayleigh effect for different coupling
k
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modes. In our problem, the depth ratio h is a major parameter
determining the stability modes of the liquid–porous system. In
order to compare the results of a porous–liquid system with a pure
liquid, we will present our results in the form of the overall
Rayleigh number, Marangoni number and wave number for com-
bined layers. The overall Rayleigh number and the overall Marang-
oni number for the combined layers are defined as:

Ra ¼ gblðTb � TuÞðdl þ dpÞ3

mljl
;

Ma ¼ rTðTb � TuÞðdl þ dpÞ
mljl

ð18Þ

The relations between the liquid wave number kl, the porous wave
number kp and the overall wave number k are:

kl

dl
¼ kp

dp
¼ k

dl þ dp
ð19Þ

Fig. 1(a) presents the marginal curves of the pure Rayleigh case with
a free upper surface. In this figure, for small depth ratio the long
wave instability is dominant, and the porous mode convection
occurs. With the increase of the depth ratio, the short wave branch
becomes more unstable. When short wave mode convection occurs,
the circulation is confined in the liquid layer. The critical depth ratio
corresponding to such a transition from a long wave mode to a short
wave mode is 0.14. The marginal curves of the pure Marangoni case
are shown in Fig. 1(b). For pure Marangoni case, similar transition
has also been found. The critical depth ratio for pure Marangoni
problem is 0.045.
k
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Fig. 2. (a, b, and d) Critical overall Rayleigh number versus overall wave number for diff
overall Rayleigh number versus overall Marangoni number with the depth ratio h = 0.10
We use hR and hM to denote the critical depth ratio for pure
Rayleigh and pure Marangoni problems, respectively. The Rayleigh
effect is dominant in the long wave region when h < hR, and in the
short wave region when h > hR. When h ¼ hR, the Rayleigh effect
influences the instability in both the long wave and the short wave
regions. For the Marangoni effect, similar situation exists. For the
porosity / = 0.3, the critical depth ratio hM = 0.045 in thermocapil-
lary case and hR = 0.14 in gravitation case. Three typical coupling
modes of the Rayleigh effect and the Marangoni effect are found
in our problem.

For h < hM , both the Rayleigh effect and the Marangnoi effect
mainly operate in the long wave region, so the coupling instability
occurs in the long wave region.

For hM < h < hR, the Rayleigh instability occurs in the long
wave region, and the Marangoni effect mainly operates in the short
wave region. Coupling instability changes from a long wave mode
to a short wave mode with the increase of the Marangoni number.

For h > hR, both the Rayleigh effect and the Marangnoi effect
mainly operate in the short wave region, so the coupling instability
occurs in the short wave region.

To understand these three typical coupling modes, we present
the marginal curves of the Rayleigh number versus the wave num-
ber with different Marangoni numbers for several typical depth ra-
tios h = 0.02, 0.10, 0.3.

For h = 0.02, the instability occurs in the long wave region
and corresponding convection is dominated by the combined
layers. In the case of h � 1; Ral � Oðd3

l Þ and Mal � OðdlÞ are
more lower than the critical values. Therefore, the liquid domi-
nated mode is inhibited by the combined layers dominated
k
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mode. The marginal curves of the Rayleigh number versus wave
number are shown in Fig. 2(a). All curves correspond to the
combined layers dominated mode. The Rayleigh number de-
creases with the increase of the Marangoni number. This means
the Marangoni effect reinforces the Rayleigh convection domi-
nated by the combined layers. The locus of the critical Rayleigh
number and the Marangoni number is a straight line
Ra=Ra0 þ Ma=Ma0 ¼ 1, being similar to the case reported by
Nield [5] for the Rayleigh–Maranogni convection in a pure li-
quid. Here Ra0 is the critical Rayleigh number of pure Rayleigh
convection and Ma0 is the critical Marangoni number for pure
Marangoni convection.

For h = 0.10, the coupling mode is somewhat complicated. The
Marangoni effect plays role mainly in the short wave region cor-
responding the liquid layer dominated mode, whereas the
Rayleigh effect plays role mainly in the long wave region corre-
sponding the combined layers dominated mode. The marginal
curves of the Rayleigh number versus the wave number are
shown in Fig. 2(b). For zero Marangoni number, the long wave
branch is the most unstable. In this case, the combined layers
dominated mode convection occurs as soon as the Rayleigh num-
ber reaches the critical value. We can see that for all wave num-
bers, the Rayleigh number decreases with the increase of the
Marangoni number. The critical Rayleigh number decreases more
in the short wave region than in the long wave region. For larger
Marangoni numbers, the short wave branch gets more unstable
than the long wave branch. In this case, the liquid dominated
mode of convection occurs. In Fig. 2(c), the relation between
the critical Rayleigh number and the Marangoni number is pre-
sented for the case of h = 0.1. The relation between the critical
Rayleigh number and the Marangoni number of a porous–liquid
system with h = 0.1 is segment linear, being different to the clas-
sical Rayleigh–Marangoni case of a pure liquid. For the left line
segment (solid), the minimum in the long wave branch is smaller
than that in the short wave branch, this means the convection is
the combined layers dominated mode. For the right line segment
(dashed), the minimum in the short wave branch is smaller than
that in the long wave branch and the convection is dominated by
the liquid layer. Ma=Ma0 ¼ 0:696 is the critical point switching
from the combined layers dominated mode to the liquid layer
dominated mode for h = 0.1. With the increase of the Marangoni
number the combined layers dominated mode has the tendency
to change into the liquid dominated mode with the convection
diminishing in the porous layer. In this transition, the convection
in the porous layer is weaken by the presence of Marangoni ef-
fect, and diminishes as soon as the liquid layer dominated mode
occurs. This result is qualitatively consistent with Saghir’s report
[16] that the Marangoni convection enhances the flow in the
liquid layer and weakens the buoyancy convection in the porous
layer.

As shown in Fig. 2(d) for h = 0.3, the long wave branch disap-
pears for all Marangoni numbers. The convection is dominated
by the liquid layer when instability occurs. The porous layer only
influences the heat boundary condition at the liquid–porous inter-
face. In this situation, the convection reduces to the classical
Rayleigh–Marangoni case. The relation between the critical
Rayleigh number and the Marangoni number is linear.
4. Summary

A linear instability analysis is proposed to study the thermal
convection in a liquid–porous system. We find three typical cou-
pling modes when the Rayleigh effect is combined with the
Marangoni effect. For h < hM , the combined layers dominated
instability (long wave mode) occurs. The Marangoni effect en-
hances the flow in both layers. For hM < h < hR, the combined
layers dominated (long wave) mode changes into the liquid dom-
inated (short wave) mode with the increase of the Marangoni
number. The Marangoni effect enhances the convection in the li-
quid layer and weakens the flow in the porous layer. For h > hR,
only the liquid dominated convection occurs. The Marangoni effect
has no influence on the flow in the porous layer.
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