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Abstract: The assumption of constant rock properties in pressure-transient analysis of stress-sensitive reservoirs can cause
significant errors in the estimation of temporal and spatial variation of pressure. In this article, the pressure transient response of the
fractal medium in stress-sensitive reservoirs was studied by using the self-similarity solution method and the regular perturbation
method. The dependence of permeability on pore pressure makes the flow equation strongly nonlinear. The nonlinearities associated
with the governing equation become weaker by using the logarithm transformation. The perturbation solutions for a constant pressure
production and a constant rate production of a linear-source well were obtained by using the self-similarity solution method and the
regular perturbation method in an infinitely large system, and inquire into the changing rule of pressure when the fractal and
deformation parameters change. The plots of typical pressure curves were given in a few cases, and the results can be applied to well

test analysis.
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1. Introduction
Numerous experiments have proved that the
formation of oil reservoir and the fracture network

distribution of fractured reservoir are fractal structures.

Therefore, the flow theory of fractal reservoir has
been developed and applied to oilfield. Fluid flow in
hydrocarbon reservoirs and ground water aquifers
have been ftraditionally studied by assuming the
formation permeability is constant®,  These
assumptions in the fluid flow analysis have given
good results in many situations, but with increasing
exploitation of petroleum and geothermal resources
from low-permeability and fractured formations, these
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assumptions need to be re-evaluated. Kikanit"
presented the flow model for cylindrical flow systems
of deformed media. A perturbation technique was
applied to determine the approximate solution and
analyze the flow characteristics of deformed media
reservoir. Yeungm considered the spherical flow
problem of deformed media reservoir. A simple
technique was applied to obtain approximate solutions,
but the error is large. The generalized pseudo pressure
function was introduced to characterize the gas flow
in pressure-sensitive reservoir”!. The flow analysis for
stress-sensitive reservoirs with double porosity was
studied"®"®. But the flow analysis for stress-sensitive
fractal reservoirs has not been performed. Radial and
spherical flow in homogeneous reservoir are special
cases of fractal reservoir!! (d ;=2 or 3, and

0=0). In this article, the fractal and deformed
characteristics of stress-sensitive reservoir are
considered. A permeability modulus is introduced to



derive the radial flow equation for the stress-sensitive
fractal reservoir. The perturbation solutions for a
constant pressure production and a constant rate
production of linear-source well are obtained by using
the self-similarity solution method and the regular
perturbation method in an infinitely large system, and
inquire into the changing rule of pressure when the
fractal and deformation parameters change.

2. Flow equation

The following assumptions
constructing the mathematical model:

(1)The permeability is stress-sensitive , that is, it
depends on pore pressure.

(2)The porous medium is the fractal system with
similar structure, the fractal permeable network
embedded in impermeable Euclidean matrix, where
the fractal network dimension isd, , and the Euclidean

are made in

matrix dimension is (d =1,2,3).
The permeability modulus is defined as'™

= — — 1
ykdp M

The parameter ¥ plays a very important role in
the system where changes in effective stress affect the
permeability. Basically, it measures the dependence of
formation permeability on pore pressure. For practical
purpose, ¥ can be assumed as a constant.

Thus the permeability of fractal reservoir varies
exponentially with pore pressure

dp-6-d
k = koe_y(Po_P) (Lj (2)

7

w
where k, , p, are initial permeability and initial

pressure respectively, r, r, are the radial distance

from well and the radius of wellbore respectively, and
@ is the fractal diffusion exponent. ‘

The continuity equation for the flow of a
single-phase liquid in an isotropic and fractal
reservoir can be given by assuming fluid to be slightly
compressible and using Darcy’s law, which is

10 kdp, _d(gp)
—— ———— N —— 3

rar(rp,u ar) ot ®
where p = p(p) isdensity,and K is viscosity.

Expanding Eq.(3) under the assumption of
pressure-dependent rock properties leads to
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where
Yopop ™ gpop’

dy-d
o= g Cna(Po=P) r
o .

Then, assume y>>c¢,, then Eq.(4) becomes

2 2
or* r or or
6
Poc [LJ er<po—p)_a£ )
k, \r, ot
where
ct = cL +cma

For the case of production of fluid at a constant
rate from an infinite reservoir into wellbore, the
dimensionless groups are defined as

=21€k0h(po—p) t = kyt
D ] 1)
7 ? Guer,’
I _ Mgy
PP 2mkoh

Under the constant-pressure production condition, the
dimensionless groups are defined as

Py~ P {o= kot

Pp= > s
° Dy — P, ° ¢o.ucfrw2

r
p =;—’ a,=y(p,—p,)
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In dimensionless coordinates, Eq.(5) becomes

) 2
9 Pp +£Q‘D_D_ab(_ap_DJ =raea"”"§& (6)

or,>  r, or, or, b ot,

3. The line-source solution for deformed fractal

reservoir

The mathematical model is made of Eq.(6) and
initial and boundary value conditions.

()The flow problem of fluid in an infinite
reservoir with the constant rate production is as
follows:

2
__azpD +_ﬂ_.a’l_aD (_ap_D] = rDBC“DPD _ap_D

or,> 1, or, ar, o,
(M
Pp(r,0)=0 ®)
lim (e 9Py = 1 ©)
rp—0 rD
limp, =0 (10
Rewrite the unknown function as
1
Po(rpstp)=——M[l-a,n(r;,1,)] an
op
Equations (7)-(10) can be simplified as
2 o
a_?+_ﬂ_a_77=__’b - iﬂ_ (12)
or, r,or, (-ayn)ot,
n(r,,0)=0 (13)
. an
1 F_Ty=_1 14
Lim(r; o, ) (14
lim 77 =0 (15)

Ip—>oo

The strong nonlinearities in Eq.(7) are thus
considerably weakened in Eq.(12) and are restricted to
the coefficient of the nonlinear term on the right side
only.

Introduce a parameter perturbation in «, by

defining the series
1 =1+ Tl + 0l + - (16)

and expanding the coefficient of the partial derivative
on the right side in a binomial series with the
stipulation thata,77<1, we obtain the zeroth-order

approximate equation

2
__8 20 +£%=rgé77_0 a7
ar, 1, or, a1,

The initial and boundary value conditions are also
Eqs.(13)-(15).

In order to obtain the zeroth-order approximate
solution, the following transforms are introduced:

2“? 1 4 2_?
u=d, ’ﬂo,x=d—rD’,tl=df 7t 18)
f

The zeroth-order approximate initial and

boundary value problem become

6+2

0 7“4 du _odu

ox * Bx) o1,
2842 )

i 4 M __

£1£)ng ™ 1 4£>0

limu=0 £ >0

X0
u|, ,=0 0<x<oo

The above zeroth-order approximate initial and
boundary value problem can be seen as the continuous
source problem. First, we solve the instantaneous
source problem corresponding to the continuous
source problem.

The instantaneous source problem is formulated
with Eqgs.(19)-(22)

d 2‘%2 du, _ou
= —)==— 19
P >
2672
limx %}’%0 £,>0 (20)



limu=0 @n
|,l_0 5(x) 0<x<oo 2)

where J(x) is the Dirac- d function

Let us seek similarity solutions of Eq.(19) subject
to conditions (20), (21) and (22) by introducing the
similarity transforms
u=wp)y", p=x;", m>0 23)
Substituting transforms (23) into Eq. (19), we find that
similarity demands that

df 1 24
== _.V
m=—— 24

For d. >0, 6>0 , m>0 is

satisfied. Use of transforms (23) and Eq.(24) reduces
Eq.(19) to the ordinary differential equation

the requirement

2"‘ dw
—(——)— =— — 25
%+£d(p) S Ty @
subject to
2—& d
limp * d—::—= (26)
Two integrations give
d 6+2
w(p) = w, exp| —(—) pdf o))

o+2

with w, the value of w(p)atp=0.
We complete the solution by noting that

f u(x)dx =1

SO

[ ordp=1

That is,
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W ={f exp[—(l—V)zpﬁ}dp} =

[(1 I)HV F(l—v)]_ (8)

As Duhamel’s principal, we secure the continuous
source solutions by integrating the instantaneous
source solution with respect to ¢

1
u= E W, exp [—(1 —v): pl~v ] 7074y, =

1
W, f 7% exp {—(l ~v) xive! } d,

Making transform y = (1-v)? x"—”t,_ ' gives

1
u=w[(1=v)’x= T [Ty exp(-y)dy =

1
wol(=V)’ x> T (v, y) (29)

where 7'(a,y) isthe incomplete Gamma function
Inserting Eqs.(28) and (29) into Eq.(18), we get

6+2-d, 6+2
" [ e

} 30
@+2yrd-v) (0+2)°t,

=

(2)The problem of fluid flow in an infinite
reservoir with the constant pressure production is as
follows:

2
a—ZpD +£a’l_a % =p Y0P a’l
or,> ryor, C{or, P o1,
Pp(75,0)=0
lim 1 Pp =1
limp, =0

By using transform (11), the above flow problem
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is simplified as

BrD I arD (1 —apn) oty

”(rD ’ O) = 0 (32)

limp =17 (33)

rp—0 '

li_r{l n=0 34)
(a) Zeroth order:

The zeroth-order approximate equation is also
Eq.(17), The initial and boundary value conditions are
given by Eqs.(32) (33) and (34)

Making use of transformation expressed by Eq.(35)

+2
re

-
Y (0+2)t, 33)

reduces the initial-boundary value problem of partial
differential equation to the boundary value problem of
ordinary differential equation as follows:

d7]0+(1+1 v)d770=
dy® y dy
1;3(}770—1

lim7, =0

Yo

which has the solution
=G fy _(M)e_ydy +C,

Using the initial and boundary value conditions, we
get

1
')

C,=0,C =

And the solution is given by

I'(v,y)
Ly 36
N ) (36)

(b) First order:

o'm B on oy O
9 PO _ o o0h 9o
ot o, PG )

7(r,0)=0

lim 7, L
==
2

rp—0

limn, =0

7p—r00

By using Eq.(35), the above equation is expressed as

d2 1-v_ dn, dn,
+(1+ L= -1, —= 37
+(1+ ) O " dy (37
where
dn, 1 -0-9)g-y [
1 =Y I'v,y) (38)
‘dy  [TWF
Substituting Eq.(38) into Eq.(37) yields
d? n ‘a +1 v)dn, _
dy” y
L eIy, ) (39)
[r»r

Equation (39) can be solved by the method of
variation of parameters. The homogeneous solutions
dare

u] =—F(V’y)9 u2=1

where u,and u, are intermediate solution values.
Let

h(y)= y eI (v,y)

r ( 9l

The Wronskian of the homogeneous solutions is given
by

U u
1 2
W = =

_ y—(l—V)e—y

’
v



The general solution to Eq. (37) is given by

m =GO (»)+C,(»)u,(y) (40)
where
hu 1

C C'(»)d 2 dy=— .
0)= [ Clondy= [ -2 dy= TOF

yI'(v,y)-T'(1+v,»)]+C, (41)
and

C =

o= [ CoMy= j’ Ldy= mv)]z

(-, F -2y’ T(v,y)+
2% (v, 2y} +C, 42)

Substitutiﬁg Egs.(41) and (42) into Eq.(40) and using
boundary conditions lead to

1-2v
27V Ir2v) 4 1

C,=0, C,=

[FMF  2r)
Thus, on simplification, the first-order solution
becomes
m= T2 M(2v,2y) -y e T(v,y) -
' [F( 3

27 rv)+[ T w)P
2I°(v)

r'y,yl (43)

4. Discussion »
The transformation given by Eq.(11) can be
rewritten as

1
Pp =——In[l- a7, -, +O(@})]

2

Figure 1 demonstrates the variation of
dimensionless pressure with time for different values
of ¢, namely, 0.01, 0.1, 0.2 and 0.5. It can be seen
that the pressure curves are not closely related to the
magnitudes of ¢, in the initial stage. With time

increasing, the effect of ¢, become larger and larger.
With the lincrease of a),
decreases. Figure 2 shows the temporal pressure
changes for the various value of d,. A general trend
is that pressure is increased faster for the smaller value
of d, . The effect of d, is smaller in the initial
stage, In the transitional stage, the pressure curves
start diverging from each other depending on the
relative magnitude of d,, and the effect of d,
becomes the largest. In later stage, the effect of
d_ becomes smaller and smaller.

, the dimensionless pressure

107 g=12,5,=5,0=05

Fig.1 Semi-logarithm plots of pressure versus time depending
on &,

Fig.2 Semi-logarithm plots of pressure versus time at
different d,

Figure 3 exhibits the temporal variation of the
pressure at different radii close to the well bore for
two different values of «,. In the initial stage, the

variation of the pressure is smaller at different radii
closer to the well bore. With time increasing, the
differences between the pressure curves of fractal
reservoir and the pressure curves of stress-sensitive
fractal reservoir oncreases. Stress sensitivity in a
variety of reservoir situations could be important and
needs to be taken into account. Figure 4 shows that
magnitude of the pressure curves at any radial
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distance would depend not only on the values of «,),

(e.g.,
at t, =107 ), the difference between the pressure

but also on time ¢, . For smaller ¢,

curves for the values ), is smaller. For larger ¢,
(e.g., att, =10*), the difference between the pressure

curves for the values «, is larger. At any time, the

difference between pressure curves would increase
with increasing distance from the well bore. At large
distances, however, pressure curves tend to
uniformity., and the effect deformed
parameter ¢, died out.

of the

Fig.3 Semilogarithm plots of pressure versus time at different
radii

Fig4  Semilogarithm plots of pressure versus radius at
different times

5 Conclusion

(1) Fractal dimensions have been introduced to
the flow equation of fluids in fractal reservoirs. The
flow model has more extensive adaptability compared
with the traditional ones.

(2)The similarity solutions for the flow models of
fluid in fractal reservoir with both the constant rate
production and the constant pressure production have
been obtained by using similarity solution method.

(3) The perturbation solutions for a constant

pressure production and a constant rate production of
linear-source well have been obtained by using the
regular perturbation method in an infinitely large
system.

(4) With time increasing, the effect of «,
With
dimensionless pressure decreases.

becomes remarkable. increasing @, ,
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