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Direct numerical simulation of transition flow over a blunt cone with a freestream Mach number of 6, Reynolds

number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order

weighted essentially nonoscillatory scheme for the convection terms of theNavier–Stokes equations, togetherwith an

eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations,

including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum

amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition

locations on the cone surface agree well with each other for both cases. Transition onset is located at about 500 times

the nose radius in the leeward section and 750 times the nose radius in thewindward section. The frequency spectrum

of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear

stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth

rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs

earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance

waves in the leeward section, but because the growth start location of the dominating second-mode wave in the

leeward section is much earlier than that in the windward section.

Nomenclature

A = disturbance amplitude
��i = amplification rate, �1=A��@A=@s�
Cf = skin-friction coefficient, ��@ �u=@y�w=�1=2�1u21�
Ma1 = freestream Mach number
Ren = Reynolds number based on the blunt cone’s head

radius and freestream parameters, �1u1rn=�1
Rez = Reynolds number defined by the distance in the axial

direction, �1u1z=�1
r, �, z = coordinates in the radial, circumference, and axial

directions
rn = blunt cone’s head radius
p = pressure
pw = wall pressure
s = surface distance from the leading edge of the cone,

normalized by rn
Tw = wall temperature of the blunt cone
T1 = freestream temperature
u1 = freestream velocity
yn = distance to the wall, normalized by rn
y� = distance to the wall, normalized by the wall unit
� = nominal thickness of the boundary layer
�1 = freestream viscosity
�h = half-cone angle
�1 = freestream density
! = dimensionless angular frequency, 2�frn=u1

I. Introduction

B OUNDARY-LAYER flows over flying vehicles determine the
characteristics of aerodynamic force and aerodynamic heating.

It is crucial to correctly predict the laminar-turbulent transition in the
boundary layers for the aerodynamic designs, thermal protections,
and flying vehicle control. Because blunt or sharp cones are typical

leading shapes of the supersonic and hypersonic vehicles, transition
flows in the supersonic or hypersonic boundary layers around blunt
cones or sharp cones are of great interest in aerospace engineering.
Many flight [1] and wind-tunnel experiments [2] for boundary-layer
transition of blunt or sharp cones have been conducted, with
emphasis on the measurement of transition locations. Horvath et al.
[2] conducted experimental investigations on 5-deg half-angle cones
in a conventional wind tunnel and a quiet Mach 6 wind tunnel, and
the influence of tunnel noise was studied by comparing transition-
onset locations obtained from a conventional tunnel test to that
obtained from a quiet-tunnel test. The comparison shows that the
transition-onset Reynolds number under low-disturbance conditions
was a factor of 1.3–1.6 greater than thatmeasured in the conventional
hypersonic tunnel or in the quiet-tunnel run “noisy.” In addition,
leading bluntness, angle-of-attack, and wall-roughness effects on
transition-onset location are also discussed in report of Horvath et al.
Experimental results show that leading bluntness significantly
affects the transition location. The increasing of leading bluntness
can retard the transition location, but the effect will be reversed when
the bluntness exceeds a threshold. The effect of bluntness on the
transition location is considered to associate with the entropy layer
generated by the leading bow shock. The true mechanism, however,
is still not clear now.

Transition mechanisms of supersonic or hypersonic boundary
layers are much more complicated than those of incompressible or
low-speed boundary layers. According to Mack’s [3] theory, in
addition to the first instability mode (counterpart of Tollmien–
Schlichting waves), there are higher acoustic instability modes with
higher frequencies in supersonic or hypersonic boundary layers. In
contrast to the unstable oblique first mode in low-speed boundary-
layer flow, the two-dimensional second Mack mode is dominated in
hypersonic boundary layers, which has been confirmed in
experiments for hypersonic boundary-layer flows over sharp or
blunt cones (Stetson andKimmel [4,5] andMaslov et al. [6]). Stetson
and Kimmel [5] carried out hypersonic boundary-layer stability
experiments of a blunt cone with a 7-deg half-angle and 0-deg angle
of attack (AOA), and fluctuation spectrums at different locations
were measured. The experiments of Stetson and Kimmel [4,5] show
that the unstable second modes are dominant disturbance waves,
with significant superharmonic waves.

The transition mechanism of the supersonic or hypersonic
boundary layer is not well understood yet, and no method is capable
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of predicting transition locations accurately without relying on
empirical parameters. The most widely used transition prediction
method is the eN method, which suggests that the transition occurs
when the amplitude of most unstable disturbance grows eN times.
Here, N (usually between 9 and 11 for an incompressible boundary
layer) is a number from the experiment. As addressed by Zhong and
Ma [7], the limit of the eN method is that it does not consider the
initial amplitude of disturbance, whereas the transition process
depends on the initial disturbance. The properties of initial
disturbance (including the amplitudes, frequencies, wave numbers,
and other parameters) can be better understood through the study of
receptivity [7,8]. Zhong and Ma [7], Ma and Zhong [9,10], and
Zhong [11] studied the receptivity of supersonic boundary layers to
freestream disturbance. According to the investigations by Zhong
andMa [7],Ma andZhong [9,10], andZhong [11], there is a family of
stablewavemodes in the supersonic boundary layer in addition to the
well-known unstableMackmodes. These stable wavemodes play an
important role in the receptivity process through resonant
interactions with both fast sound waves and unstable Mack modes.
Zhong [11] also found that freestream fast sound waves play a major
role in the generation of boundary-layer stability waves, rather than
the entropy waves and vorticity waves. Tumin [12] developed an
instability-mode analysis tool named the multimode decomposition
method and used it in the receptivity of the hypersonic boundary
layer to blow-and-suction perturbation [13,14]. Although the eN

method has many shortcomings, it remains one of the most powerful
approaches of transition prediction. By using the eN method, Su and
Zhou [15] calculated transition locations of the hypersonic boundary
layer over a blunt cone with a freestream Mach number of 6 and a
Reynolds number defined by cone radius 10,000. The results of Su
and Zhou show that the wall-temperature condition has a great effect
on the transition location, and the second-mode waves play a
dominating role in the boundary-layer transition with the isothermal
wall, whereas the first mode waves dominate the transition of the
boundary layer with the adiabatic-wall condition.

Because of developments in computational techniques and
hardware, direct numerical simulation (DNS) is becoming a more
and more important tool in the study of turbulent flows and
transitions [16]. Unlike Reynolds-averaged Navier–Stokes or large
eddy simulation, no artificial assumption of turbulence or transition
is needed in DNS. Because of complexity, DNS of the compressible
turbulent boundary layers started just recently. In the beginning,
DNS cases are temporally evolving boundary layers (Guarini et al.
[17] and Maeder et al. [18]) and then spatially evolving ones. Rai
et al. [19] performedDNS for a spatially evolvingflat-plate boundary
at freestream Mach number 2.25 by using a fifth-order upwind-
biased finite difference scheme for convection terms and a fourth-
order central-difference scheme for viscous terms. Pirozzoli and
Grasso [20] performed the same DNS case later by using a seventh-
order weighted essentially nonoscillatory (WENO) scheme for
convection terms and a fourth-order Pade scheme for viscous terms.
They investigated the effects of the numerical scheme’s resolution on
the mean velocity. Compared with a temporally evolving DNS, the
spatially evolving DNS does not need slow growth or extended
temporal assumptions and thus minimizes any uncertainty or
artificial assumption [20]. The authors previously performed direct
numerical simulations of a spatially evolving boundary layer over a
blunt wedge [21] withMa1 � 6 and boundary layers over flat plates
[22–24] with the freestreamMach numbersMa1 � 0:7, 2.25, and 6.
The mean pressure gradient and compressibility effects on the
coherent structure were studied in these reports.

Shock waves pose severe challenge to the DNS of compressible
turbulent flows (Moin and Mahes [16]). The numerical methods
designed for incompressible flow become unstable in the DNS of
compressible turbulence with shock waves, and negative pressure or
temperature often occurs in the simulation. According to the authors’
experience, even in the case without large-scale shock waves in the
computing domain (such as flat-plate boundary layers), negative
pressure or temperature still could occur if the Mach number is high
and the numerical method is not robust. In the DNS of supersonic/
hypersonic boundary layers, negative pressure or temperature usually

occurs in the location-of-transition region at the streamwise direction
and occurs in the buffer layer (between the log-law region and the
viscous sublayer) at the wall-normal direction, because the strongest
disturbance exists in these regions. In recent years, high-orderWENO
schemes (Jiang and Shu [25]) have been widely implemented in the
DNS of compressible turbulence. Many modified or optimized
versions of WENO schemes have also been developed (Ren et al.
[26], Wang and Chen [27], Martin et al. [28], and Borges et al. [29]).
High-order WENO schemes show strong robustness and high
resolution in theDNS of compressible turbulence. However, there are
some shortcomings with this type of scheme. WENO schemes have
more numerical dissipation and are computationally costly than
conventional (not shock-capturing) finite difference schemes.How to
construct a robust finite difference scheme with high efficiency and
low numerical dissipation is still an open question.

Compared with DNS of flat-plate boundary layers, studies on the
DNS of supersonic/hypersonic boundary layers over cones are
seldom reported. In addition, most of the numerical studies on
supersonic/hypersonic boundary-layer flow over cones take the
assumption of axisymmetrical mean flow. In practice, however, the
mean flows around cones are not axisymmetrical, because of the
nonzero angle of attack, and the boundary-layer transition is strongly
affected by this axial asymmetry. Experimental research shows that
even a very small angle of attack (such as 1 deg) can affect the
transition locations of the cone boundary layer significantly (Horvath
et al. [2] and Stetson [30]). Most experimental studies show that the
transition location in the leeward section (the leewardmeridian plane)
occurs much earlier than that in the windward section (the windward
meridian plane), but the reason why transition occurs earlier in the
leeward section (or delayed in the windward section) is still unclear.
Crossflow is usually considered as an important reason that leads to
the different transition locations between the two sections. And a
simple explanation is that crossflow leads to the thickening boundary
layer in the leeward section and the thinning boundary layer in the
windward section, then leads to the higher growth rate of unstable
waves in the leeward section, and then leads to the earlier transition in
the leeward section. According to the DNS result of this research,
crossflow does lead to the thickening boundary layer in the leeward
section and the thinning boundary layer in the windward section.
However, according to our linear stability theory (LST) analysis, the
growth rate of unstable waves in the windward section is not lower
than that in the leeward section. The mechanism of how crossflow
affects the transition locations needs to be further studied, and more
investigations need to be done to address this mechanism.
Investigations based on DNS are deemed to be an important step
toward understanding themechanism of the effects of angle of attack.
However, to the authors’ knowledge, there is still no report forDNSof
the hypersonic boundary layer over cones with angle of attack.

In this paper, the DNS of supersonic blunt-cone boundary-layer
transition with a freestream Mach number of 6 and a 1-deg angle of
attack was performed to study the mechanism of the transition. The
frequency spectrum of disturbance waves at different locations are
analyzed and compared with the LST. The different growth routes of
dominating disturbance waves between the leeward and windward
sections are studied and the reason why transition is delayed in the
windward section is given.

II. Flow Conditions and the Numerical Method

Consider the supersonic boundary-layer flow around a blunt cone,
as shown in Fig. 1. Flow conditions are as follows: Ren � 10; 000
(where Ren � �1u1rn=�1 is the Reynolds number defined by
freestream parameters and blunt cone’s head radius rn), the
freestream Mach number Ma1 � 6, AOA� 1 deg, the half-cone
angle �h � 5 deg, the freestream temperature T1 � 79 K, and the
wall temperature of the blunted cone Tw � 294 K.

Numerical simulations in this paper consist of two steps: the first
step is laminar (steady)flow simulation, including the bow shock and
without any perturbation, and the second step is unsteady simulation
of transition flow. The steady-flow solution is used as the mean
profile for LST analysis and is also used as the initial and boundary
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conditions for the unsteady simulation. The code Hoam-OpenCFD,
developed by the authors, is used in this simulation. In this code,
compressible Navier–Stokes equations are solved numerically by
using a high-order finite difference method:

l) Convection terms are split by using Steger–Warming splitting
and are discretized with a seventh-order WENO scheme [25].

2) An eighth-order central finite difference scheme is used for the
viscous terms.

3) A third-order total-variation-diminishing type of Runge–Kutta
method [25] is used for time advance.

The computational domain of unsteady (transition) simulation in
the circumferential direction spanned from the 0-deg meridian plane
to the 360-deg plane. To get high mesh resolution in the interested
regions and to reduce the computing cost, computational mesh is
condensed around the section �� 0 deg (leeward section) or ��
180 deg (windward section), with a span of 45 deg (see Fig. 2). This
means that two independent computation cases are performed: the
mesh for one case is condensed around the leeward section, and the
mesh for another case is condensed around the windward section.
From circumference two-point autocorrelations in the turbulence
region, the computational domain in a 45-deg range is wide enough
to ensure low two-point autocorrelations in circumference. The
computational domain of unsteady (transition) simulation in the axial
section is also shown in Fig. 2. The whole computational domain is
located inside the bow shock (see Fig. 1). The upper boundary in the
axial section is a line with a 8.5-deg tile angle to z axial, and the
computational domain in the wall-normal direction contains more
than 10 times the boundary layer’s thickness. The streamwise

computational domain, mesh number, and mesh resolution (in wall
unit) is shown in Table 1, in which z is the coordination in the axial
direction (see Fig. 1) and the length is normalized by the cone’s head
radius.

Boundary conditions for simulations of unsteady flow are as
follows:

1) For the inflow boundary and upper boundary (see Fig. 2), time-
independent conditions are obtained from steady simulation of the
first step.

2) A nonreflecting boundary condition [31] is used on the outflow
boundary in the streamwise direction.

3) A periodical boundary is used in the circumference direction
(�� 0 and 360 deg).

4) For the wall boundary, an isothermal wall temperature together
with assumption @p=@yn � 0 is used on the wall, and a second-order
one-side finite difference scheme is used to compute the wall
pressure.Wall blow-and-suction perturbations are used to trigger the
transition. The streamwise and circumference velocities are taken as
zero on the wall, and the wall-normal velocity on the wall is

vn �
�
vbs za � z � zb
0 otherwise

where vbs is thewall blow-and-suction perturbation velocity imposed
on the wall in the range of 90� za � z � zb � 100. In this research,
both multifrequency perturbation and random perturbation are
considered, and details of the perturbations can be found in Secs. III
and IV.

Fig. 1 Schematic of the supersonic boundary layer around a blunt cone.

Fig. 2 Schematic of the mesh for unsteady simulation in the axial section (top) and circumference section (bottom).
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Because no nonreflecting or absorbing boundary conditions are
used at the upper boundary, there are numerical fluctuation
reflections in this boundary. However, because the upper boundary is
far enough from the boundary layer (more than 10 times the
boundary-layer thickness), the numerical disturbances reflected from
the upper boundary are very weak in this case. In the temporal DNS
of the boundary layer, with the periodical boundary condition
assumed to be in streamwise direction, a well-designed nonreflecting
or absorbing upper boundary condition is critical, even though the
upper boundary is far enough, because reflecting waves will be
amplified repeatedly through the streamwise periodic condition. For
the spatial DNS in this research, reflected waves of the upper
boundary are not so serious if the upper boundary is far enough
(Adams [32] and Egorov et al. [33]). Moreover, as addressed by
Adams [32], the mesh coarsening toward the upper boundary lets the
numerical diffusion of the discretization scheme act as a filter that
removes spurious wave reflections from the boundary. In our DNS,
the numerical dissipation on the very large grid space near the upper
boundary absorbs the reflection waves. The authors tested the
reflection waves from the upper boundary and found that the
fluctuation near the upper boundary layer is very small and the
computational domain is not polluted by nonphysical reflection
waves from the upper boundary (see Sec. VI).

The DNS was performed on supercomputers DeepComp 6800 in
the Supercomputing Center at the Chinese Academy of Sciences and
Dawning 4000A in the Shanghai Supercomputing Center; 128–256
CPUs were used for the DNS cases.

III. Code Validation

A. Comparison Between Different Codes

To test our code, we compare the results of our code with the
results of another code that uses a different numerical method.
Figures 3a and 3b show the steady wall pressure in the leeward
section and windward section, respectively. The solid line denotes
the current computation and the symbol denotes the corresponding
results from a shock-fitting computational fluid dynamics code [34].
The horizontal coordinate s denotes the cone surface location, and
the relation between s and z shows as follows:

s�
�
cos�1��z� z <� sin��h�
�z� sin��h��=�cos �h� � 1:0038z� 0:0875 z >� sin��h�

(1)

The agreement between the two results validates our code. Because
of the small attack of angle, the difference between wall pressure in

the leeward section and that in the windward section is not obvious
(the maximum difference is about 3% of the stagnation pressure).

B. Comparison with the Axisymmetrical Simulation

To further verify our code, we simulate steady flow of Mach 7.99
flow over a blunt cone with a 0-deg angle of attack. Flow conditions
of this case are

Ma1 � 7:99; Ren �
�1u1rn
�1

� 33; 449; �h � 7 deg

AOA� 0 deg; adiabatic wall; T1 � 54:474 K

Zhong and Ma [7] gave a high-quality numerical solution of this
steady boundary-layer flow by using Zhong’s [35] high-order shock-
fit method, and their numerical solution is well validated compared
with both experimental results (Stetson et al. [36]) and other
numerical results (Herbert and Esfahanian [37]). To test our code, we
compare our result with the results of Zhong and Ma [7]. Our steady
numerical simulation is carried out on ameshwith 1600 (streamwise)
�160 (wall normal) �8 (circumference) grid points. Because the
attack of angle is zero, the steady flow is two-dimensional
(axisymmetrical), and the mesh number in circumference does not
affect the numerical accuracy. Figures 4 and 5 show steady pressure
and temperature distributions along the cone surface, respectively.
Those two figures show very good agreement between our numerical
results and the results of Zhong andMa [7]. Unlike wall pressure, the
numerical result of wall temperature is very sensitive to numerical
accuracy, especially to the accuracy of boundary conditions and
boundary schemes. Figure 6 shows the good agreement in tangential
velocity profiles across the boundary layer at a surface location of
s� 94.

IV. Steady-Flow Profiles and the Crossflow

Figure 7 shows steady profiles of density, stream velocity, and
temperature in the leeward section and in the windward section at the
locations z� 100 and 300. This figure shows a very big difference of
mean flow profiles between those in the leeward section and in the
windward section, even when the angle of attack is only 1 deg. The
thickness of the boundary layer in the leeward section is more than
twice that in the windward section.

Figure 8 shows the streamline patterns in the surface k� 10, 20,
and 40, where k� 10means the 10th grid from the wall (the wall is
k� 1). The distances to the wall at z� 80 are k� 10 and yn � 0:1
(about 5% of �), k� 20 and yn � 0:24 (about 12% of �), and k� 40
and yn � 0:62 (about 31% of �), where yn is the distance to the wall

Table 1 Mesh parameters

Case Computation domain in streamwise direction Mesh number (streamwise � wall normal � circumference) �x� �y�w r��� (z� 500)

Leeward 75< z < 800 1800 � 80 � 300 21.3 1.0 8.6
Windward 75< z < 1000 2100 � 80 � 300 23.2 1.0 8.6

Fig. 3 Steady wall pressure in the leeward section (left) and in the windward section (right).
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(normalized by the head radius) and � is the nominal thickness of the
local boundary layer. The streamlines in Fig. 8 show very clear
crossflow in the bottom region of the boundary layer. And the
crossflow is thought of as the main reason that leads to different
profiles of boundary layers between the leeward section and the
windward section.

V. Linear Stability Theory Analysis

Using the mean profiles obtained from the three-dimensional
steady numerical solution, LST analysis is conducted to study the
instability modes. According to LST, disturbance waves have the
following expression:

f 0 � f̂�yn�ei��s��z
0�!t� (2)

where f0 � 	�0; u0; v0; w0; T
T is the disturbance offlowand f̂�yn� is its
eigenfunction; �, �, and ! are the streamwise wave number,
spanwise wave number, and frequency of disturbance waves,
respectively; z0 is the local spanwise coordinate; ��i ��Im��� is
the growth rate of the disturbance wave; and ��i > 0 means an
unstable wave. The growth rate is a function of ! and �. In our LST
analysis, a finite difference code SAYR [15] is used. In the parameter
plane �!; ��, there are some distinct regions that satisfy the unstable
condition��i�!; ��> 0. The region with the lowest ! relates to the
first unstable mode and the region with higher! relates to the second
mode. The second mode’s growth rate reaches its maximal value
when �� 0, and so the second mode is thought of as a two-
dimensional mode, whereas the first mode is a three-dimensional
mode. By searching in the parameter plane �!; ��, the growth rates
��i of the most unstable first and secondmodes are given in Table 2,
where z is the axial location normalized by the nose radius. This table
shows that the growth rate of the unstable second mode is much
higher than that of the first mode, especially in the windward section.
The higher growth rate indicates that the second mode will dominate
the transition.

Table 2 shows that the growth rate of the unstable second-mode
wave in the windward section is not lower than that in the leeward
section.And the delayed transition in thewindward section cannot be
interpreted simply by the lower growth rate of the unstable waves.
The reasons why transition is delayed in the windward section need
to be further studied.

VI. Transition Triggered by Weak Random
Blow-and-Suction Disturbance

DNS of transition flow triggered by random blow-and-suction
disturbance is conducted. On the wall, the wall-normal velocity is set
to be random numbers between �" and " in the range of 90� za �
z � zb � 100 and 0 outside this region. The disturbance amplitude is
set to be "� 0:01. This perturbation is spatially random-distributed
and stays temporally constant.

Figures 9a and 9b show the skin-friction coefficient Cf along the
streamwise direction in the leeward section and in the windward
section, respectively. The solid line denotes the result of theDNS and

Fig. 4 Steady wall pressure compared with the results of Zhong and
Ma [7].

Fig. 5 Steady wall temperature compared with the results of Zhong

and Ma [7].

Fig. 6 Tangential velocity profile along the wall-normal direction at

s� 94 compared with the results of Zhong and Ma [7].

Fig. 7 Profiles of density, streamwise velocity, and temperature in the leeward section and in the windward section; z� 100 (left) and 300 (right).
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the dashed line denotes the result of the laminar flow. The horizontal
coordinate z denotes the axial location (see Fig. 1) normalized by the
nose radius. The detach location between the solid line and dashed
line in Fig. 9a denotes that transition occurs at about z� 500
(transition onset) or Rez � 5 � 106. The transition peak is located at
z� 630 or Rez � 6:3 � 106 in the leeward section. Figure 9b
denotes that transition onset is located at about z� 750 or Rez �
7:5 � 106 and transition peak is located at z� 960 or Rez � 9:6 �
106 in the windward section. In Fig. 9, the theoretical values of
turbulent skin-friction coefficients are also plotted, and this figure
shows that our numerical result agrees well with the theoretical
result. Here, the theoretical values are computed by using Karman–
Schoenherr and Blasius formulations with Van Driest (VD) II
transformation (see Pirozzoli and Grasso [20] for details of the
theoretical formulas).

Horvath et al. [2] reported the experimental results for transition
locations of a Mach 6 flow over cones or flared cones with a 5-deg
half-cone angle and with different bluntnesses, angles of attack, and
Reynolds numbers. The report of Horvath et al. includes data
obtained in the NASA Langley Research Center’s Mach 6 low-
turbulence tunnel. Transition locations obtained in low-turbulence
tunnels are closer to those of an actual (flight) situation than those
obtained in conventional tunnels; therefore, transition locations
obtained in low-turbulence tunnels are more valuable for the design
of hypersonic vehicles. From the experimental results of Horvath
et al., it can be deduced that the transition-onset Reynolds numbers
should beRe� 4:2 � 106 in the leeward section andRe� 7:8 � 106

in the windward section for the quiet-tunnel test of a blunt cone with
the same half-cone angle (5 deg), the same angle of attack (1 deg), the
same freestream Mach number (Ma� 6), and nearly the same
bluntness as in our numerical simulation. Our numerical result
(transition-onset Reynolds numbers of Re� 5 � 106 in the leeward
section and Re� 7:5 � 106 in the windward section) agrees well
with the result of the Horvath et al. quiet-tunnel test.

A. Transition Flow Visualization

Figure 10 shows the distribution of instantaneous density in the
boundary layer of the leeward section. The density distribution in the

Fig. 8 Streamline patterns in the surface k� 10, 20, and 40 (distances to the wall at z� 80 of 0:05�, 0:12�, and 0:31�, respectively).

Table 2 Growth rates ��i of the most unstable LST modes

Leeward Windward
z First mode Second mode First mode Second mode

200 0.011 0.052 0.0025 0.057
400 0.012 0.043 0.0038 0.051
600 0.013 0.038 0.0036 0.046

Fig. 9 Distribution of Cf in the leeward section (left) and windward section (right).
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boundary layer stays laminar in the range of z < 370 and disturbance
waves can be found in the range of 370< z < 500. The strong
disturbance waves occur in the range of 500< z < 550 and the
density distribution became turbulent at z > 600. Figure 11 shows
the instantaneous density distribution in three wall-normal surfaces
(the surfaces normal to the generating line of the cone). The
intersection of these three surfaces to the wall are located at z� 500,
600, and 700, respectively. The spanwise (circumference)

visualization region of this figure is �22:5 deg<� < 22:5 deg
(�� 0 deg is the leeward section and �� 180 deg is the windward
section). Notable disturbance waves are observed near the leeward
section at z� 500, and the disturbance range extends to about 30 deg
(�15 deg<� < 15 deg) at z� 600 and then to the whole
visualization range at z� 700. This figure also shows highly
intermittent characters of the outer layer of the boundary layer.

Figures 12 and 13 show contours of the density disturbance �0 in a
wall-normal surface z� 700 and in the leeward section,
respectively, where �0 � �� ��; � and �� are instantaneous and
time-averaged density, respectively. In Figs. 12 and 13, 100 uniform
levels are plotted from theminimal value to themaximal value, and a
one-dimensional distribution of �0 on the line �� 0 deg on the
surface z� 700 is also plotted in Fig. 12. These twofigures show that
disturbance is very small near the upper boundary and that the
computational domain is not polluted by nonphysical reflection
waves from the upper boundary, which indicates that the upper
boundary condition is suitable.

Figure 14 shows instantaneous tangential (streamwise) velocity u
at a wall-parallel section (distance to the wall yn � 0:1 or y�n � 5)
around the leeward section for the visualization ranges of 200<
z < 800 and �22:5 deg<� < 22:5 deg. The disturbance waves stay
quasi-two-dimensional in the range of z < 450 and become strong
three-dimensional waves in the range of 500< z < 580. Associated
with the development of the unstable Mack second mode, cell-like
patterns are also found in the range of 500< z < 580. Such cell-like
patterns have already been observed in the hypersonic transition
boundary-layer experiments around a blunt cylinder at the Mach
number Ma� 8:9 by Fiala et al. [38] and in the DNS of the
hypersonic flat-plate boundary layer at Ma� 6 by Krishnan and
Sandham [39]. Figure 14 also shows that streamwise streaks are
formed in the range of 580< z < 700 and become very clear in the
range of z > 700.

Fig. 10 Distribution of density in the boundary layer of the leeward section.

Fig. 11 Distribution of density in the boundary layer at three wall-

normal surfaces.

Fig. 12 Contours of the density fluctuation�0 in awall-normal surface z� 700, together with one-dimensional distribution of�0 on the line �� 0�. (100

uniform levels are set from the minimal value to the maximal value).
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Figure 15 shows instantaneous streamwise velocity u at a wall-
parallel section (distance to the wall yn � 0:1) around the windward
section in the ranges of 400< z < 1000 and 157:5 deg<�<
202:5 deg. The disturbance waves stay quasi-two-dimensional in the
range of z < 700 and become strong three-dimensional disturbance
waves in the range of 700< z < 850. Streamwise streaks are formed
in the range of 850< z < 950 and become very clear in the range of
z > 950. Different disturbance wave structures between Figs. 14 and
15 indicate that the transition mechanism is different between the
windward section and the leeward section. Because themain propose
of paper is to answer the question why transition occurs earlier in the
leeward section or transition is delayed in the windward section, the
authors pay more attention to the growth of unstable waves in the
linear stage. The nonlinearmechanism of transition will be studied in
the near future.

B. Disturbance Waves in the Leeward Section

We record the time history of pressure and velocity fluctuations at
several fixed points in the leeward and windward sections for
frequency spectrum analysis. Figures 16a–16f show the frequency
spectrums of streamwise velocity fluctuation u0 at the six points
located in the boundary layer of the leeward section, where the
dimensionless angular frequency ! is defined by !� 2�frn=u1
and f denotes dimensional frequency. The normal distances of these
six points to the wall are yn � 1:4� 2:7 (normalized by the nose
radius), which are approximately 0:6–0:7 times the local boundary
layer’s thickness. Eigenfunctions of LST show that the unstable first
and second modes both have significant streamwise velocity
components at these locations, and thus streamwise velocity
fluctuations recorded at these points contain effects of both the first
and second modes.

Figure 16a shows the wide-bandwidth frequency spectrum of
streamwise velocity fluctuation at the point located at z� 100:3,
which is located just downstream of the perturbation region, and
disturbance waves here can be deemed as initial disturbance waves
for the transition. The amplitude stays at "� 1� 3 � 10�5 in the
low-frequency range ! < 2, decays in the range ! > 2, and stays at
about 10�6 in the high-frequency range ! > 4. From numerical
analysis, it can be seen that the initial disturbance in the boundary
layer (z� 100) includes a wide-frequency bandwidth of LSTmodes
at the level of 10�5. In the linear stage, these modes develop

independently. Stable waves will decay to zero, and unstable waves
are amplified. Figure 16b shows the spectrum at z� 200, where the
amplitude of low-frequency (! < 1:5) components grows
significantly, but the amplitude of high-frequency range does not
grow yet. At z� 300 (see Fig. 16c), several dominating frequencies
are formed. The most dominating frequency is !� 0:9, which is in
the unstable-frequency range of the second mode (see the neutral
stability curve of LST discussed later in this section). The amplitude
of this wave is about "� 5:5 � 10�4. In addition to this frequency,
there are some other frequency peaks in the low-frequency region
(! < 0:6), which is in the unstable-frequency range of the first mode,
with an amplitude of around "� 4 � 10�4.

At z� 400 (see Fig. 16d), the dominating frequency becomes
!� 0:79, with amuch higher amplitude of peak (!� 0:79) than that
of other frequency peaks. Because the frequency of thiswave is in the
unstable-frequency range of the second mode, this wave is a second-
mode disturbancewave.We compare the disturbancewaves between
DNS and LST mode to verify this, as shown in Fig. 17. The symbols
in Fig. 17 denote the disturbance of streamwise velocity obtained
from DNS: u0�yn� � u�yn� � �u�yn� at t� 3000:4 and z� 400 for
the leeward section from DNS, where u�yn� denotes instantaneous
streamwise velocity, �u�yn� denotes time-averaged streamwise
velocity, and yn denotes the distance to the wall normalized by the
cone’s head radius. The solid line in Fig. 17 denotes LST streamwise
velocity disturbance: u0�yn� � 0:033 � Re�û�yn�ei’�, where û�yn�
denotes the second mode’s eigenfunction at !� 0:79 and ’� 0:7
(phase angle), and Re�a� denotes the real part of complex number a.
Thisfigure shows generally good agreement between the disturbance
fromDNSand the second-mode disturbance fromLST,whichmeans
that the second-mode wave is the dominating disturbance in the
DNS. There is still some difference between the DNS and LST
results in Fig. 17, and the reason is mainly because the fluctuation of
LST is a single wave (the most dominated wave); however,
fluctuation of DNS is an integration of all disturbance waves,
including the most dominated wave and other waves. In addition,
another reason is that LST takes the assumption of parallelmeanflow
and linear disturbance, but there are no such assumptions in DNS.

Figure 16e shows that at z� 500, the dominating second mode’s
amplitude grows to "� 0:025 and the frequency is !� 0:75, which
means that the disturbance is strong enough for nonlinear
breakdown. Figure 16e also shows a very strong peak at very low
frequency !� 0:04. The nonlinear effects are very obvious at the

Fig. 13 Contours of the density disturbance �0 in the leeward section. (100 uniform levels are set from the minimal value to the maximal value).
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start point of transition (close to z� 500), and the rapid growth of the
low-frequency disturbance is related to nonlinear mechanisms. The
mechanism of rapid growth for disturbance waves during the
nonlinear stage is beyond the scope of this paper, and the authors will
leave it to future study. Figure 16f shows the wide-bandwidth
spectrum at z� 700, where transition is happening.

Figure 18 shows the frequency spectrumof pressurefluctuations at
six points on the wall of the leeward section. Because the second
mode has a strong pressure fluctuation component on thewall but the
first mode’s pressurefluctuation component on thewall is veryweak,
the pressure fluctuation is mainly affected by the secondmode. From
this figure, the frequency of the dominated secondmodes at different
cone surface locations can be detected. This figure shows a
dominating frequency !� 0:72 at the location of z� 500 (the start
location of transition), and the wave with the frequency !� 0:72 is
deemed to be the dominating disturbance wave that triggers the
transition.

Figure 19 shows the neutral stability curve obtained by LST based
on the laminar numerical solution as the basic solution and the
evolution route of the dominating disturbance waves in the leeward
section. The symbols indicate dominating frequencies of the second-
mode disturbance waves obtained from data of DNS, and the dashed
line (growth route of !� 0:72) denotes the growth route of the
dominating disturbance wave that triggers the transition. Figure 20
shows the amplitude distributions of wall-pressure perturbations of
different frequencies along the cone surface in the leeward section.
An exponential growth of the dominating disturbance wave

(!� 0:72) can be found in the range of 200< z < 500 and the
growth rate approximately stays as a constant at this range. From
z� 200 to 500, the amplitude of the dominate disturbance wave is
magnified about 15,000 times, with a mean growth rate
��� ln 15; 000=�500 � 200� � 0:032.

C. Disturbance Waves in the Windward Section

Figures 21a–21i show the frequency spectrums of streamwise
velocity fluctuations in nine points located in the boundary layer of
the windward section. The distances of these nine points to the wall
are approximately 0:6–0:7 times the local boundary layer’s thickness
�. Figure 21a shows the frequency spectrum at z� 100:1 locating
just downstream of the perturbation region. It can be deemed as the
spectrum of initial disturbance. Figure 21a shows a wide-bandwidth
spectrum such as the initial spectrum of the leeward section. The
amplitude of the spectrum stays at "� 1 � 10�5 to 3 � 10�5 in the
low-frequency range ! < 2:5, decays when ! > 2:5, and stays at
approximately 10�6 in the high-frequency range ! > 4. At z� 200
(Fig. 21b), the amplitude of the low-frequency range ! < 0:6 waves
grows to 5� 8 � 10�5, whereas the amplitude of high-frequency
components decay to 1� 4 � 10�6. At z� 300 (Fig. 21c), the local
dominating frequencies are in the low-frequency region, and the
frequency spectrum shows three peaks in the frequency region
!� 0:1–0:3 with the amplitude of 2 � 10�4. The frequencies of
these three peaks are located in the unstable-frequency range of the
first mode. Figure 21c shows that there is another frequency peak in

Fig. 14 Streamwise velocity at a wall-parallel section (yn � 0:1), around leeward section.
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the range of 2:1< ! < 2:3 that is in the frequency range of the
unstable secondmode. The fact that the first mode is still dominating
at z� 400 (Fig. 21d) is different from the development of
disturbance waves in the leeward section. At the location of z� 500
(Fig. 21e), the amplitude of frequency in the first modes’ unstable-
frequency range grows slightly to "� 5 � 10�4, whereas the

amplitude of the second modes’ unstable-frequency range grows
rapidly to "� 1:6 � 10�4. At the location of z� 600 (Fig. 21f), the
second mode is stronger than the first mode, and at z� 700
(Fig. 21g), the second mode is dominating. There are some high-
frequency peaks at z� 700, and these peaks are the second-
harmonic and third-harmonic waves of the dominating disturbance

Fig. 15 Streamwise velocity at a wall-parallel section (yn � 0:1), around windward section.

Fig. 16 Frequency spectrums of streamwise velocity fluctuations u0 in the leeward section.
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wave, because the disturbance wave here is strong enough to show
nonlinear effects. At z� 750 (Fig. 21h), the spectrum shows very
strong low-frequency peaks, which indicates the effects of the
nonlinear mechanism. At z� 900 (Fig. 21i), the figure shows a
wideband frequency spectrum, which indicates the transition.

Figure 22 shows the frequency spectrums of wall-pressure
fluctuation p0w at different six points in the wall of the windward
section. Because the second mode has a strong pressure fluctuation
component but the first mode’s pressure fluctuation component is
very weak, the pressure fluctuation is mainly affected by the
second mode. This figure shows that there is a wide-spectrum
bandwidth at initial location z� 100:1, and the main second-mode
disturbance wave is shown clearly at z� 300 and becomes
dominating at z� 400, which is much later than that in the leeward
section.

Figure 23 shows the neutral stability curve obtained from LST
with the basic solution of the laminar blunt-cone solution and the
grow routes of disturbance waves in windward section. The dashed
line shows the grow route of disturbance waves. Figure 24 shows the
amplitude distributions of wall-pressure perturbations of different
frequencies along the cone surface in the windward section. This
figure shows an exponential growth of the dominate disturbance
wave (!� 1:6) in the range of 400< z < 700, with an approxi-
mately constant growth rate. From z� 400 to 700, the amplitude of
the dominating disturbance wave is magnified by about 7000
times, with a growth rate ��� ln 7000=�700 � 400� � 0:030. After

comparing the growth rate of the dominating waves in the windward
section and that in the leeward section (Fig. 20), we find that the
difference of the growth start location is very obvious, although the
difference of growth rate is not obvious. The growth start location of
dominating waves in the windward section (begins at z� 400) is
much later than that in the leeward section (begins at z� 200), which
answers the question why transition is much later in the windward
section.

Fig. 17 Comparison of velocity fluctuation u0 between LST and DNS.

Fig. 18 Frequency spectrums of wall-pressure fluctuations p0w in the leeward section.

Fig. 19 Neutral stability curve of the second mode and schematic of
grow routes of disturbance waves in the leeward section.

Fig. 20 Amplitude distributions of wall-pressure perturbations of

difference frequencies along the cone surface in the leeward section.
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Fig. 21 Frequency spectrums of streamwise velocity fluctuations u0 in the windward section.

Fig. 22 Frequency spectrums of wall-pressure fluctuations p0w in the windward section.
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VII. Transition Triggered by Weak
Multifrequency Disturbance

To test the dominating waves in the transition process, additional
DNS cases with multifrequency blow-and-suction disturbance are
conducted. The flow and computational parameters are the same as
the DNS in Sec. VI and only perturbation is different. In the DNS of
this section, multifrequency blow-and-suction perturbation is
imposed at the interval between z� 90 and 100. The perturbation
contains the waves with five frequencies: !� 0:1, 0.2, 0.3, 0.4, and
0.5. The amplitude of each wave is 1.25 times that for the adjacent
higher-frequency wave, and total amplitude is A� 0:01. These
frequencies are in the unstable range of the first mode.

Figures 25a and 25b show the friction coefficient in the leeward
and windward sections of this DNS. Figure 25a shows that the
transition onset is located at z� 500 and the transition peak is
located at z� 630 in the leeward section, and Fig. 25b shows that
transition onset is located at z� 750 and the transition peak is
located at z� 960 in the windward section. Transition locations in
these multifrequency-disturbance cases agree well with those in the
cases of random disturbance.

Figure 26 shows the frequency spectrum of streamwise velocity
fluctuations at the three different points at streamwise locations that
are 0:6–0:7 times the boundary layer’s thickness in the leeward
section. At z� 100:3, just behind the disturbance range, there are
five dominating frequencies: !� 0:1, 0.2, 0.3, 0.4, and 0.5. These
frequencies are the same as the initially imposed perturbation’s
frequencies, with an amplitude of about 10�4. These waves are all in
the frequency range of the unstable first mode. The amplitude in the
high-frequency range is at least one order smaller than that of the five
main frequency peaks. Figure 26 shows that the amplitude peak in
the unstable secondmode’s frequency range is significant at z� 200
and becomes dominating at z� 400. This result shows that even in
the case inwhich the initial disturbance offirstmode ismuch stronger
than the secondmode, the secondmode can still become dominating
at the downstream location, because the secondmode’s growth rate is
much higher than the first mode’s.

Fig. 23 Neutral stability curve of the second mode and schematic of

grow routes of disturbance waves in the windward section.

Fig. 24 Amplitude distributions of wall-pressure perturbations of
difference frequencies along the cone surface in the windward section.

Fig. 25 Distribution of Cf in the leeward (left) and windward section (right).

Fig. 26 Frequency spectrum of streamwise velocity fluctuation u0 in the boundary layer of the leeward section.
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VIII. Conclusions

Direct numerical simulation of transition flow around a blunt cone
with freestream Mach number M1 � 6, nose radius Reynolds
number Re� 10; 000, and AOA� 1 deg is conducted using a
seventh-order WENO scheme with an eighth-order central finite
difference scheme. The wall blow-and-suction disturbances
(including random perturbation and multifrequency perturbation
with maximum amplitude of disturbance velocity of 1% of
freestream velocity) are used to trigger the transition. Transition
locations for random-perturbation cases and multifrequency-
perturbation cases agree well with each other. The transition onset
is located at about 500 times the nose radius in the leeward section
(leeward meridian plane) and 750 times the nose radius in the
windward section (windward meridian plane).

The second-mode waves are deemed to be the dominating
disturbance that triggers the transition. It is found that the growth of
disturbancewaves in thewindward section starts much later than that
in the leeward section. Therefore, transition is more delayed in the
windward section than in the leeward section.
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