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The Pearson instability was suggested to discuss the onset of Marangoni convection in a liquid layer of
large Prandtl number under an applied temperature difference perpendicular to the free surface in the
microgravity environment. In this case, the temperature distribution on the curved free surface is non-
uniform, and the thermocapillary convection is induced and coupled with the Marangoni convection.
In the present paper the effect of volume ratio of the liquid layer on the critical Marangoni convection
and the corresponding spatial variation of the convection structure in zero-gravity condition were
numerically investigated by two-dimensional model.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Pearson’s theoretical analysis, by means of small-disturbance
theory, indicated that Marangoni convection can be induced in
a fluid layer of infinite extension heated from the liquid–solid
boundary at the bottom, when the Marangoni number is larger
than a critical value Mac [1]. This phenomenon suggested a
new instability mechanism in a fluid system, which is different
from Rayleigh instability [2], and it plays an important role in
the engineering applications. Many works have been devoted
to the investigation of Marangoni convection in liquid layers.
Most works assumed that the free surface is planar and non-
deformable, and focused on the structure of Marangoni convec-
tion in liquid layers with different aspect ratios [3,4]. These
works analyzed the influence of lateral slippery boundary condi-
tion and indicated that the time-periodic convection exists in
some cases. Dijkstra et al. investigated the surface tension driven
cellular patterns in three-dimensional boxes. Their results were
summarized as a map in the x- and y-aspect ratio plane of the
preferred modes, and discussed the effect of boundary conditions
[5–7]. Surface tension plays an important role in the micro-size
fluid dynamics, for example in thermal management of elec-
tronic devices, food processing and chemical engineering. The
Marangoni convection and heat transfer in thin liquid films
heated on walls with topography and with mobile gas–liquid
interface was investigated [8]. If the substrate has a structure
ll rights reserved.
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on its upper surface, the convection prevails for any temperature
difference. It is found that the substrate structure modifies the
flow patterns and affects the heat and mass transfer in the liquid
film. The investigation on thermocapillary flows under an in-
clined temperature gradient was conducted by Oleg and Alexan-
der [9]. The results brought to light the importance of the
horizontal temperature gradient on the formation and the devel-
opment of convective regimes in a plane liquid layer heated
from liquid/solid boundary at the bottom.

The geometric simplification of planar and non-deformable free
surface adopted in the aforementioned investigations is not real in
practice. The free surface of a liquid layer in the microgravity envi-
ronment is curved in general due to weaker static pressure than
that on the ground and stronger surface tension. Thus, even if
the applied temperature gradient is perpendicular strictly to the li-
quid layer, there is a temperature difference along the curve free
surface, which means the thermocapillary convection and the
Marangoni convection coexist and interact with each other in the
microgravity environment.

In the present paper, we investigate the coupled thermocapil-
lary convection and Marangoni convection in a fluid layer of finite
extension with a curved free surface in the microgravity environ-
ment by using two-dimensional numerical simulation. The effect
of volume ratio of the liquid layer on the critical Marangoni
number is studied in detail. The physical model and mathematical
formulation of the problem are given in the next section. In Section
3 we describe the numerical method and the code validation. The
computed results are presented in Section 4. The last section is the
discussion.
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2. Physical model and mathematical formulation

As shown in Fig. 1, a two-dimensional cavity is partially filled
with 10 cst silicon oil (Pr = 105.6). The liquid layer is surrounded
by an ambient gas with temperature Te (25 �C). The heights of
the liquid layer at both lateral sides are h0 = 3 mm and the length
of the liquid layer is l = 55.5 mm. By heating the bottom of the con-
tainer up to a given value Tb, a vertical temperature gradient is set
up in the liquid layer. Heat is transferred from the liquid to the gas,
and the heat transfer coefficient is q at the free surface. Both side
walls are assumed to be thermally isolated. The liquid is consid-
ered as incompressible with constant viscosity and thermal diffu-
sivity, and Boussinesq approximation is adopted. The surface
tension r on the free surface is a linear function of the temperature
T, and �or/oT is assumed to be constant. The free surface is de-
scribed as y = h(x). The height h0 of liquid layer at both lateral sides,
the temperature difference DT = Tb � Te, velocity Ur = jor/oTjDT/l
and pressure lUr/h0 are used as the typical units to scale the length,
temperature, velocity and pressure, where l is dynamic viscosity.

Introducing the non-dimensional vorticity vector x = (xn,xh,xB)
and stream function vector w = (wn,wh,wB), which are defined as

r� w ¼ V ; ð1Þ
r �r� w ¼ x: ð2Þ

The non-dimensional equations and boundary conditions can
be expressed by using vorticity x and stream function w. The mass
conservation equation is satisfied automatically. The momentum
conservation equation and energy conservation equation can be
expressed respectively as Eqs. (3) and (4) as follows:

ox
ot
þ V � rx� x � rV ¼ 1

Re�
r2x; ð3Þ

oH
ot
þ V � rH ¼ 1

Ma�
r2H; ð4Þ

where H ¼ T
DT is non-dimensional temperature.

For the two-dimensional problem, the boundary conditions are
as follows:

x ¼ 0 and x ¼ ‘=h0 : w ¼ 0; x ¼ o2w
ox2 ¼ 0;

oT
ox
¼ 0;

y ¼ 0 : w ¼ 0;
ow
ox
¼ 0; T ¼ Tb: ð5Þ

At the free surface y = h(x)/h0:
Fig. 1. A sketch of liquid layer with curved free surface.
w ¼ 0; ð6Þ
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� oT
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¼ LT; ð8Þ

where L = qh/k,k notes thermometric conductivity of the liquid and
q is the rate of heat loss per unit area from the upper surface. The
vorticity at the free surface is determined from equilibrium of tan-
gential stress (7), in which S points the tangential direction. Eq. (8)
means that the rate of heat supply to the surface from the liquid
must equal to the rate of heat loss from the surface to its upper
environment. L depends on the efficiency of the process for transfer-
ring heat from the surface. The value of q depends on the circum-
stances, and we shall retain it as a parameter in the subsequent
calculation.

The following equilibrium of normal stress is used to calculate
the shape of the free surface.

ðP� P1Þ ¼
2

ð1þ h02Þ
h02

oU
ox
� h0

oW
ox
þ oU

oy

� ��
þ oW

oy

�
� h00

Ca � ð1þ h02Þ3=2 ;

ð9Þ

where U and W are, respectively the non-dimensional velocities in
the directions x and y, and the dynamic deformation of the free sur-
face during heating process is negligible. The free surface at both
the left and right boundaries locates at y = 1, which means the
method of controlling the height of the liquid layer at the interface
of solid and liquid is adopted. The initial condition may be obtained
from the static case without applied temperature difference and
convection. The initial shapes of the free surfaces are different for
the liquid layers with different volume ratio. The shape of the free
surface and the volume of the liquid layer with a certain volume ra-
tio are fixed in the calculating process.

3. Numerical method and code validation

Eqs. (1) and (4) with the initial and boundary conditions are
solved by using the finite element method. The numbers of the cell
are 121 � 21 in the directions x,y, respectively, and the calculated
domain is divided in to 4800 triangular elements with 2541 nodes.
The shape of the free surface is determined according to the vol-
ume ratio by using Eq. (9) with U = 0, and W = 0.

A hybrid finite element method of fractional steps has been
used to solve the governing Eqs. (3) and (4) with boundaries (5)–
(8). In order to account the non-linear convection effect the charac-
teristic procedure is used for convection operator, and the finite
element method for diffusion calculation. The hybrid method of
fractional steps was first suggested by Vanenko [10], and the hy-
brid finite element method of fractional steps was presented by
Wu for numerical modeling of the pollution in aquatic environ-
ment in 1985. Stability analysis in detail and a two-dimensional
sample for checking the divergence and precision were report in
the paper Wu [11]. Since the method is a hybrid scheme of frac-
tional steps on irregular triangular grids, which is stability, simplic-
ity and flexibility in handling complex geometry, therefore, it is
applied to simulate the thermocapillary-Marangoni convection of
the liquid layer with different volume ratio in the present paper.

The present program is used to calculate the thermocapillary
convection in a square container for comparing with the results ob-
tained by Carpenter and Homsy. The results are shown in Table 1,
where, �wmin is the minimum of stream function in the region, and
xcore is the vorticity at point (nc,fc). The non-dimensional velocity
at n = 0.5 and f = 1 is pointed by u(0.5,1). Nusselt number is defined
as NuðfÞ ¼

R 1
0 Ma ow

of H� oH
on

� �
df. The results obtained by the hybrid

finite element method of fractional steps are coincident with those



Table 1
Comparison of Carpenter’s results [12] and present results: (A – results of Carpenter and Homsy, B – results of present paper)

Grid Re �wmin xcore nc fc u(0.5,1) Nux=0 Nux=1

Pr = 1
A 64 � 64 1.0 � 104 3.23 � 10�3 �6.97 � 10 �2 0.58 0.62 2.96 � 10�2 4.36 4.40
B 64 � 64 1.0 � 104 3.20 � 10�3 �7.10 � 10 �2 0.58 0.63 2.95 � 10�2 4.34 4.32

Pr = 10
A 64 � 64 1.0 � 103 2.60 � 10�3 �10.0 � 10 �2 – – 2.30 � 10�2 3.79 3.83
B 64 � 64 1.0 � 103 2.75 � 10�3 �9.56 � 10 �2 – – 2.47 � 10�2 3.97 3.86

Pr = 30
A 64 � 64 0.25 � 103 2.18 � 10�3 �9.96 � 10 �2 – – 1.78 � 10�2 3.34 3.37
B 64 � 64 0.25 � 103 2.15 � 10�3 �9.33 � 10 �2 – – 1.74 � 10�2 3.51 3.41

Pr = 50
A 74 � 74 0.20 � 103 1.96 � 10�3 �9.07 � 10 �2 – – 1.53 � 10�2 3.59 3.57
B 64 � 64 0.20 � 103 2.09 � 10�3 �9.13 � 10 �2 – – 1.74 � 10�2 3.81 3.62
B 74 � 74 0.20 � 103 2.12 � 10�3 �9.03 � 10�2 – – 1.72 � 10�2 3.84 3.64

B
0 100 200 300 4000

1

2

3

4

5

6

α

8α2

L=0

L=1

L=2 L=4 L=6

18.5/6=3.083

128.46

Fig. 2. The comparison with Pearson’s results.
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5104 Z.M. Tang et al. / International Journal of Heat and Mass Transfer 51 (2008) 5102–5107
given by Carpenter. The similar results calculating by two kinds of
different grids are given in Table 1 for the fluid of Pr = 50.

The present code is used to search the critical Marangoni num-
ber Mac of a 10 cst silicon oil liquid layer with a planar free surface
heated from below. The liquid layer is 3 mm in height, 55.5 mm in
length, and the related aspect ratio is l/h0 = 18.5. The parameter
L = 1 is adopted. The result gives the critical temperature difference

DTc = 1.93 �C, which corresponds B ¼ jor=oTjbh2
0

qmj ¼128.46. There is a
convective flow upward at the central line of the liquid layer.
The liquid layer includes 6 flow cells, therefore, the ratio of cell size
to layer thickness, i.e. the dimensionless flow cell size, a = 18.5/
6 = 3.083. Fig. 2 shows the marginal stability curves given by Pear-
son in the case of fixed conducting liquid/solid boundary (1958).
Pearson’s results were given by the curves for L = 0, 2, 4, 6, and
the curve L = 1 can be evaluated from the curves L = 0 and L = 2,
as shown by the dashed line in Fig. 2. It is obvious that the values
of B and a calculated by the present code agrees well with Pear-
son’s result, which provides a good validation for the code.

4. Numerical results

Fig. 3 shows the stream lines and isotherms of the liquid layer
with non-deformed free surface. The side walls are adiabatic and
impermeable but slippery. The volume ratio V/V0 = 1, where V is
the practical volume of liquid layer and V0 is the volume of liquid
layer with planar free surface. In Fig. 3, the applied temperature
difference DT changes from 1.5 �C to 2.5 �C. A pair of rolls appears
at first near the side walls and then the roll pairs evolved one by
one when the temperature difference DT is increased.

The maximum dimensionless vertical velocity Wc at central line
of the liquid layer with different volume ratio is shown in Fig. 4,
where Wc = W0h/m, W0 is the dimensional velocity and m is the kine-
matic viscosity of liquid. The solid dots in the Fig. 4 correspond to
the critical points of emerging Marangoni convection for liquid lay-
ers of different volume-ratios. It is shown that the maximum up-
ward (or downward) velocity Wc at a given line is nearly zero if
the temperature difference is lower than the critical value DTc,
otherwise it increases sharply. It is obvious that the critical tem-
perature difference (critical Marangoni number) of emerging
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Marangoni convection depends on the volume ratio of the liquid
layer. The larger the volume ratio, the lower the critical tempera-
ture difference (or critical Marangoni number).

We need to discuss how to determine the critical temperature
difference or critical Ma number for the onset of Marangoni con-
vection in the liquid layer of finite extension with a convex or a
concave free surface. In case of infinite liquid layer heated from be-
low, Marangoni convection appears when a critical value of the
Marangoni number (Mac,) is exceeded, and regular flow rolls arise
suddenly in the whole liquid layer. The upward velocity W at the
place between two rolls becomes large obviously. In the planar li-
quid layer of finite extension, due to the effect of the side walls a
pair of convective roll emerges at first in the region near the side
walls, even the boundaries are slippery which means zero shear
stress applied on the boundary. The number of convective rolls
gradually increases and the rolls gradually fill up the liquid layer
with the increase of the temperature difference. The critical state
is defined at the moment when Marangoni rolls appear at both
sides of the symmetric axis in the liquid layer, and the related tem-
perature difference is called critical temperature difference DTc.
The central upward velocity increases suddenly at the critical state,
therefore, the z-direction velocity W is used as a criterion to judge
quantitatively whether the Marangoni convection is excited. Fur-
thermore, the velocity W changes between positive value and neg-
ative value alternatively although it is nearly zero in the sub-
critical state. When W changes from negative (positive) to positive
(negative) and then increases sharply, the applied temperature dif-
ference is defined as DTc in the planar liquid layer of finite exten-
sion. For present case, the critical temperature difference is
1.93 �C, and related Marangoni number equals 392. There are six
pair rolls in the whole liquid layer in the critical state. Then the
strength of the rolls and rolls number increase with increasing DT.

The streamline patterns and isotherms of the liquid layer with
convex free surface (V/V0 = 1.5) are shown in Fig. 5. Two cells ap-
pear in the whole region in the sub-critical state induced by the
thermocapillary convection driven by the surface tension gradient,
and new pair of cells grows and splits from the original pair grad-
ually. When the maximum normal velocity W at the symmetric
axis of the liquid layer changes from negative to positive, the DT
is defined as DTc. For present case, DTc = 0.955 �C and Mac = 194.
Three pair rolls appear in the critical state. Fig. 6 shows that the
cells appear near the walls at first, and then evolve towards the
symmetric axis of the liquid layer with concave free surface
(V/V0 = 0.7). When the maximum normal velocity W at the
symmetric axis of the liquid layer changes from positive to
negative, the DT is defined as DTc. Here, DTc = 4.66 �C and related
Mac = 946.7. Nine pair rolls appear in the critical state.

The critical temperature difference DTc and critical Marangoni
number Mac change with the volume ratio V/V0 (Fig. 7a and b). The
related curve is divided into two branches. The left branch corre-
sponds to V/V0 < 1, and the right one corresponds to V/V0 > 1. The
curved free surface introduces the non-uniform temperature distri-
bution on the free surface, and then induces the thermocapillary
flow. Correspondingly, the bifurcation structure and critical temper-
ature difference are changed. There is a bifurcation sequence
depending on the volume ratio. The rolls appear firstly near the side
wall and then evolve towards the symmetric axis in the planar and
concave liquid layer. In case of concaved liquid layer of V/V0 = 0.7,
there are 9 pairs of rolls in the critical state and only 6 pairs rolls in
case of the planar liquid layer. There is a pair roll appears first in
the whole liquid region due to the thermocapillary convection and
new cells are grow gradually from the original cells and split to form
new pair in convex liquid layer with V/V0 = 1.5. There are three pairs
of rolls in the critical state. The different bifurcation structure and
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critical temperature difference for liquid layers of different volume
ratios are due to two reasons. One reason is the different configura-
tion of the liquid layer. The height of the concave layer is lower than
h0, therefore, the corresponding critical temperature difference is
higher than that of the planar liquid layer, and the number of the roll
pairs is increased. The height of the convex liquid layer is higher than
h0, so the corresponding critical temperature difference is lower than
that of the planar liquid layer, and the number of the roll pairs is de-
creased. The other reason is the thermocapillary convection in the
concave and convex liquid layers. For the concave one, the minimum
height of liquid layer and the maximum temperature at the free sur-
face are at the symmetric axis. The thermocapillary flow is from the
symmetric axis to the side walls at the free surface. For the convex
one, the situation is opposite. The thermocapillary convection will
influence the critical temperature difference or critical Marangoni
number. However, the main influence on the critical temperature
difference is from the liquid layer configuration. Therefore, the rela-
tionship curve in Fig. 7 is divided two branches, which shows that the
larger the volume ratio, the lower the critical temperature
difference.

5. Discussion

In the present paper, the influence of the volume ratio of a li-
quid layer on the Pearson’s cells was studied in a two-dimensional
numerical simulation model. The relationship curve of the critical
applied temperature difference or critical Ma number and volume
ratio consists two branches separated by V/V0 = 1, i.e. V/V0 > 1 and
V/V0 < 1, due to the configuration of liquid layer and thermocapil-
lary convection. However, the main influence is from the former.
The numerical results also revealed that a pair of cells appears at
first in the whole region or near the lateral walls depending on
the system configuration, and then new pairs of cells evolve grad-
ually to cover the whole region with the increasing temperature
difference. These phenomena are quite different from the linear
stability analysis results, in which a series of regular flow cells ap-
pears at the critical temperature difference.

It is worthy noted that in the linear stability analyses, the mar-
ginal curves can be obtained by solving an eigenvalue problem
involving the parameters of Ma, L, and the critical conditions are
independent of Pr. However, the critical Ma number and the con-
vective structure will definitely be influenced by Pr number in
the practical problem. The influence of Pr number on the Pearson’s
cells is necessary to be studied by the numerical simulations and
experiments in the future.
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