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ABSTRACT

In this paper, equations calculating lift force of a rigid circular cylinder at lock-in in uniform flow are deduced in
detail. Besides, equations calculating the lift force on a long flexible circular cylinder at lock-in are deduced based on
mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthermore, an
approximate method to predict the forces and response of rigid circular cylinders and long flexible circular cylinders at
lock-in is introduced in the case of low mass-damping ratioc. A method to eliminate one deficiency of these equations is
introduced. Comparison with experimental results shows the effectiveness of this approximate method.
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1. Introduction

Vortex-induced vibration (VIV) of circular cylindrical structures in steady uniform flow is of prac-
tical interest to deep-sea exploitation and other fields of engineering. The need to understand VIV has
lead to a large number of fundamental studies. Feng (1968) used a flexible cylinder with one degree of
freedom in a wind tunnel to investigate cross-flow vibration at a relatively large mass-damping ratio (the
product of mass ratio and damping ratio) 0.255 and Reynolds numbers between 1.0 x 10* and 5 x 10%.
Brika and Laneville (1993) performed a series of thorough experiments in a wind tunnel with a flexible
circular tube allowed to vibrate only in the transverse direction in a range of relatively low Reynolds
number from 3.4 x 10° to 1. 18 x 10* and at mass-damping ratios from 0. 170482 for small amplitudes
to 0. 4108 for larger amplitudes. At lower mass-damping ratios smaller than 0. 05, Khalak and
Williamson (1996, 1997a, 1997b, 1999) performed a series of experiments in a water channel to
study VIV of rigid cylinders. Some important phenomena such as bifurcations, two amplitude branches
of resonance (Feng, 1968; Brika and Laneville, 1993) at high mass-damping ratio and three amplitude
branches of resonance (Khalak and Williamson, 1996, 1997a, 1997b, 1999) at low mass-damping
ratio, jump from one branch to another, abrupt change of phase, different vortex shedding modes,

hysteresis loop, intermittently switching mode were observed.

* This work is financially supported by the National High Technology Research and Development Program of China (863
Program, Grant Nos. 2006AA097301 and 2006AA09A103-4), the National Natural Science Foundation of China
(Grant No. 10532070) and the Knowledge Innovation Program of the Chinese Academy of Sciences ( Grant No.
KICX2-YW-102)

1 Corresponding author. E-mail: wangyimailbox @ yeah . net



372 WANG Yi/ China Ocean Engineering , 22(3), 2008, 371 - 384

On the basis of experimental observations, Sarpkaya (1979) and Bearman (1984) showed that for
a rigid cylinder constrained to move in the transverse direction the displacement and lift force at lock-
in can be approximated by a sinusoidal function with a phase angle ¢. From above approximation,
several important relations are found through lmear theoretical analysis (Khalak and Williamson,
1996; Govardhan and Williamson, 2000) . However, the equations describing these relations have not
been verified with experimental results.

In this paper, these equations are deduced in detail and simplified forms of these equations are
also given in the case of low mass-damping ratio. Equations used to calculate phase are also given.
Furthermore, an approximate method to predict the response and fluid force of rigid circular cylinders
and long flexible circular cylinders at lock-in in uniform flow is introduced in the case of low mass-
damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with

experimental results shows the effectiveness of this approximate method and these equations.
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Fig. 1. The relationship among f*, U” and U” in the Fig. 2. Frequency versus mass ratio of a circular cylin-

lock-in range when (m* £) is very low. m* is der undergoing VIV at the lower branch. @
mass ratio; ¢ is damping ratio; S is the Strouhal Govardhan (2000) A Khalak (1999) [] Hover
yumber; horizontal lines represent the lower (1998) © Anand (1985) (Govardhan and
branch. (Govardhan and Williamson, 2000). Williamson, 2000) -

2. Frequency

According to experimental results in the case of low mass-damping ratio, Govardhan and
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Williamson (2000) gave the relationship between frequency ratio and reduced velocity for circular

cylinders at lock-in in Figs. 1 and 2. The following information can be obtained from Figs. 1 and 2:
(1)Mass ratio m” <10.0

fr o= U"/5.75, when 5.75f5. > U* = 1/t (1)

£ = fi = /ﬁ%, when 9.25ffwe > U* = 5.75f (0 (2)

where reduced velocity U™ = U/(f,nD), mass ratio m” = m/my, and frequency ratio f~ = f/f o=

/ nE My , m is the mass of the cylinder; my is the displaced mass of fluid; m, is the added mass;

m+m,

[ is the frequency of a circular cylinder at lock-in; fp is the natural frequency of a cylinder in still wa-

ter and f,p = L VvV k/(m+ my); k is the linear spring constant; St is the relevant Strouhal number
2x

when lock-in starts and St = f,,D/U; f, is the vortex shedding frequency of a body at rest; U is in-
flow velocity; D is the diameter of the cylinder.

{2)Mass ratio m”* =10.0

When m ™ =10.0, the cylinder almost directly turns into the lower branch as soon as lock-in or

synchronization starts and f* = fi,,,=~1.0, i.e.

x _ * _ m’ + 1.0 * *
5 = flower = A/ 054" when 9.25fie > U™ > 1/8t. 3)

3. Added Mass

Sarpkaya (1978, 2004) and Vikestad et al. (2000) pointed out that the added mass m, is not
equal to the ideal added mass and can change from positive to negative in the whole lock-in range of
VIV. Wang et al. (2007) gave the following estimation formulas of added mass coefficient for a circu-
lar cylinder at lock-in.

3.1 Mass Ratio m* <10.0
When 5.75fjower > U” >5.0, the added mass coefficient C, = m,/mp can be obtained:

where G =

C, = ’"—G;“—l -m* when S5.75ffwe> U* > /St (4)
.fl:wer_ 1'0 * .
(U™ =5.0) +1.0. Strouhal number St is close to 0.2 when 100000 >

5. 75 tower = 1/ St
Re >200 (Roshko, 1954; Femando and Hassan, 2005).

* * M * * . m+m * +1.0
When 9.25f1oves > U™ 2 5. 75 her» because f* = firers ;.e.\/’“mi’ =\/;’ 054"

The added mass coefficient is ‘
C, =-0.54, when 9.25fj > U" = 5.75f 1er (5)
3.2 Mass Ratio m”* >10.0
C, =-0.54, when 9.25f%.. > U* > 1/St (6)
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Egs. (4) ~(6) are the semi-empirical formulas for the added mass of a circular cylinder at lock-

in.
4. Transverse Force

4.1 Single-Degree-of-Freedom
A spring-mass-damping model shown in Fig. 3 is adopted to study a circular cylinder at lock-in.
The equation of motion is
my + ¢y + ky = Fy(t)
Fy(t) is the lift force of fluid and y is the displacement of the cylinder.

Fig. 3. Spring-mass-damping model.

Above equation can be changed into another form:
miy + 28wy + wlyl = Fy(t), (7

k . . c
where wg =,/ — , damping ratio {, = ]
@o =y » damping ratie Lo =
At lock-in, a good approximation to the displacement and lift force (Sarpkaya, 1979; Bearman,

1984) is

y = Asinwt, Fy(t) = Fysin(wt + $), (8)
where @ =2nf.
Substituting Fy(t) = Fy[sinwtcos $ + coswtsin $] into Eq. (7), one can obtain:
miy + 28woy + wiy! = Fy[sinwtcos ¢ + coswtsin ¢].
According to Eq. (8), sinwt = - AL_ULZ and cos wt = E‘Lu . The lift force of fluid may be split into
. . . .. Fycos $. .
two components. One in phase with the cylinder acceleration is - YR and the other in phase

Fysin $.
with velocity is y::’ ¢y (Vikestad et al ., 2000). Eq. (7) then becomes

Fycos $.. Fysin $.
sz Yy + Aw Y.

m{y +2§owo_’}" + (U(z)}’} = -

Above equation can also be changed into
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Fycos 9.

[m + Ao? 1y + 2mowey + mwiy =

Fysiﬂ ¢ .
Aw 7~

According to the definition of added mass, the expression of added mass is m, = Fyeos ¢

sz
(Willden and Graham, 2001). Above equation can be changed into another form
. : Fysin ¢.
(m + my)y + 2mlowey + mwgy = —Yj—:—,ﬂy. (9)
Substituting ¥ = Asin «t into Eq. (9). Equating sine and cosine terms, one can obtain
~(m + my)w® + mw) = 0, (10)
Fysin ¢
2Lowom = LAUT (11)
In addition,
Fycos $
m, = ;w—z (12)
2m§0w0 ) .
In the case of m,#0, tan ¢ = can be obtained from Eqs. (11) and (12), i.e.
arctan( 2m” Sofo. ), when C, >0
Cof”
$=) tofs
L" + arctan(%), when C, <0

( 26/ m” + Co/ m™ + Cy

arctan( C ), when C, >0

_ ] (13)
2 * *+ C
7+ arctan( C«/m * C(’;«,/m * Ay, when C.<0

. . - c _ m” . . _ma . .
in which, C—2m—§0 /———“m, T G m is ideal added mass, CA—mD is ideal added

mass coefficient, and C, =1.0 for a circular cylinder.

In addition, from Eq. (11) the relation between lift and amplitude can be deduced:

T 2mww()§0
Y= sing
or written in another form:
C 47(3’” COf fo 0 4
Y ’
U*%sin ¢
— Fy
where Cy = —1—— , p being the density of fluid.
) — pU*D
/ C /
Substituting §o = m’ +,, A and fo = m’ tCA into above equation leads to:

— 4Tt3(m + CA)Cf
Cr = U*%sin ¢ (14)
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This is the equation given by Khalak and Williamson (1996, 1999, 2004) for a rigid circular
cylinder at lock-in. However, they do not give any detail of deduction.

At lock-in, experiments show that the amplitude of lift coefficient Cy and the amplitude of vibra-
tion A* are time-dependent (Morse and Williamson, 2006). Sometimes Cy is substituted with Cypp,
(t) and A ™ is substituted with A, (1), where subscript ‘mms’ means root mean square value. Then
Eq. (14) can be written in another form:

47 (m* + COY”
U*%in ¢
Because Cy=+2Cy(t), and A* =~/_2y:m, the following equations can be obtained from Eq.

(14):

Cyms(t) = Ar (t). (15)

2272 (m* + CA)C}”A*

CYrms = U *Zsin ¢ (16)
4T[3(m* + CA)gf* *
or Cyms = U sin ¢ Y s - 7
Because sin $ ~tan $ in the case of low m* {, sin ¢z2§\/m +I ga\l/m * CAwn be obtained
from Eq. (13). Substitute it into Eq. (16), and then the simplified form of Eq. (16) is
V2 m* +CA|ca|f*A, (18)

Crome = Ut/ m* + C,
4.2 Application to A Long Flexible Circular Cylinder at Lock-in

A long flexible circular cylinder can be analyzed with finite element method. Experiment ( Brika
and Laneville, 1993) showed that variation of phase ¢ along a long flexible circular cylinder at lock-in
is very small. Therefore, every element of the long flexible circular cylinder can be considered to be
under single-degree-freedom VIV with the same phase $ and not affected by the variation of the vibra-
tion amplitude along the long flexible circular cylinder. From Egs. (14) and (16) one can deduce that
the lift force along a long flexible circular cylinder is in direct proportion to the amplitude along a long
flexible circular cylinder.

Since the lift along a long flexible circular cylinder has a mode similar to the amplitude along a
long flexible circular cylinder in uniform flow, which is also shown by Evangelinos et al. (2000), lin-
ear theory can also be applied to a long flexible circular cylinder at lock-in. At lock-in, vortex shed-
ding frequency is equal to the natural frequency of a long flexible circular cylinder with added mass
taken into consideration. @ is mode shape vector and the element which reflects the largest amplitude
along the circular cylinder should be 1.0. For example, the middle element of the 1* mode shape vec-
tor @ should be 1.0 for a long flexible circular cylinder with two simply supported ends. The first or
the last element of the 1* mode shape vector @ should be 1.0 for a long flexible circular cylinder with
only one built-in end.

The equation of a long flexible circular cylinder undergoing linear vibration is
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IMIX + {CIX + {KIX = {fi.(0)]
where X = @Asin(wt). A is the largest amplitude along the cylinder, { M} is mass matrix, | C]} is
damp matrix, and | K} is stiffness matrix.
Assume the lift {f,(¢)} = { F }sin(wt + $),
{MIX + {CIX + 1K) X = {Filsin(wt + $)
i.e. IMIX + {CIX + | K| X = {Fy}sin(wt)cos ¢ + | F;}cos(wt)sin .
As sin(wt) = ~ @"X/(@"®Aw?) can be obtained from X = @Asin(wi), the following equa-

tion

{F T ) . ,

(191 + o7 pa ot #)X + [CLX 4 [KIX = [Fylcos(wn)sin $
can be obtained.
According to the definition of added mass, added mass matrix is
{Fl@T
M = g g

then (M} + IMDX + {CIX + {K} X = { Flcos(wt)sin $.

Substituting X = @A sin(wt) into above equation and equating sine and cosine terms, one can obtain
(- ({M} + IMD)o? + wiiMl]D =0
{Cl®Aw = | F,}sin ¢

where wy is the 1* natural angular frequency.
F, @7
@ DA $.
From above two equations, the following two equations can be obtained:
D" ClPAw = @T{F}sin $;
DM, PAw? = DT F,lcos $.
From the above equations one can obtain

Dicld  2m DL Df

In addition, {Ma} =

tan ¢ =¢°T{Ma}(1)w = o7 C, O
So,
( 2m*¢T|§0}‘pfo*)
, arctan( ‘DT{Ca“Pf* s when C, >0
= <
t (2m*q>T%§0!q>f0*) hen C. <0
Ln + arctan q”ri Ca}q’f* , when a <
( T * *
arctan(ij {ﬂ@\/;"r + CA\/m + Cﬂ) , when C, >0
o'iC,lo
= 1
T » *
T+ arctan(zq) {C}¢J$r]g}%[m + Ca) , when C, <0
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where { C,} = C,{ I} is a diagonal matrix of added mass, { ¢} = {1} is the diagonal matrix of damp-
ing ratio. Above equation tums into

arctan(zt\/m + (‘(;“\/m + CA) , when C, > 0
$ = ’ (19)
T+ arctan(ngm + %‘ﬁ + CA) , when C, <0

which is the same as Eq. (13).
| Cl DA
sin ¢ °’

then the amplitude of lift coefficient is

In addition {F =

o ZiCi(DAw%nDz 2{C} DAw %T{Dz

{EL} = = = . )
sin ¢ %pUle sin $oU? DI —;_‘TCDZ sin $U* Dy
1 52
21Cl @Aw 4 nD” [Cl@AfD o 1 _ 216l w®AfD? |
sin UD mp my ~ sin U2 mz sin $U°D
21 Lol wo@AfPD? |, 21l we®fPm™ A" 4Pt Ll Dfyfm ™ A
= m = =
sinpU *2f2,D? sin $U *2f% sin U *2f%,
_ e Gl S
- U”*sin ¢ ’

where [ is the length of a finite element, mp, is the displaced fluid mass of a finite element, damping
ratio matrix { {o} = { C|/(2muw,) and m; is the mass of a finite element.

Thus, the root mean square of lift coefficient along the long flexible circular cylinder is

mwém*wolrbfof .
ICers} = ¢
sm

Substituting { &} = {¢h/ —— m” + CA and fg —,/ s A into above equation leads to

220 (m* + cottier,
U*?%sin ¢
The lift distribution along a long flexible circular cylinder can be worked out with Eq. (20).

20/ m* + Ca/m* + C,

Since sin $ ~tan $ in the case of low m* {,sin ¢ ~ C.i can be ob-

{Crmet = (20)

tained from Eq. (19). Substituting it into Eq. (20), one can obtain the simplified form of Eq.
(20);

N2rd/ m* +CA|le
UV m* + C,

iCLm.sl = (21)

which is similar to Eq. (18).
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4.3 Dynamical Instability Area
When m ™ =10.0, a circular cylinder can be approximately considered to be in the lower branch
as soon as lock-in or synchronization starts and added mass coefficient is C,= -0.54.
When m* < 10.0, added mass may tum from positive into negative. From Eq. (4) one can ob-
tain added mass coefficient C, =0 when reduced velocity is

. 5.75 Fiower — 5.0( m* 4+ 1 )
Up =—— —{ //—— ~-1.0]+5.0 22
’ flower -1.0 m* i) ( )

Phase jump and amplitude jump between upper branch and lower branch also occurs when re-
duced velocity U™ is equal to U7 (Williamson and Govardhan, 2004) . This is roughly shown in Fig.
4.

Ca=0

28 2P ‘! 2p

mode mode , mode

Ca>1.0 Ca>0 1 (Ca<0

< UPPER |

. . s ]
Fig. 4. Overview diagram of the low-m”™ § JUMPIN
type of response. ovom'ax‘:
]
INITLAL /,

The amplitude and phase do not have one value in the intermittent switching region from upper
branch to lower branch (Morse and Williamson, 2006) , which is shown in Fig. 5. So, the switching
region where C, is close to zero is a dynamical instability area.

When m ” { is in a small quantity, it can be concluded from Eq. (11) that sin $ should alse be
in a small quantity. So lcos $1~1.0 can also be obtained. When added mass m,~0, lcos ¢ is
close to zero according to Eq. (12). Thus, Egs. (11) and (12) cbnflict with each other when C,~
0. Linear theory is no longer valid in this region. This is the reason that Eqs. (11) and (12) conflict
with each other when C,~0. Eqgs. (13) ~ (18) and Eqs. (19) ~ (21) are no longer valid in this re-
gion either.

Since C,=~0 appears at lock-in only when m* <10.0, dynamic instability area appears only un-
der the condition m* <10.0. When m* >10.0, the influence of dynamic instability area can be ne-
glected.

5. Amplitude

From the Griffin plot for the circular cylinder only in transverse VIV (Griffin, 1980; Khalak and
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Upper Branch Lower Branch

Fig. 5. Amplitude, lift and phase in the intermittent switching region from upper branch to
lower branch, where Ty = 1/f,4(Morse and Williamson, 2006).
Williamson, 1999; Govardhan and Williamson, 2000), the following empirical formulas can be ob-
tained under the condition (m* + C,) ¢ <0.05:
1. At the lower branch
A" =~ 0.6, (23)
2. At the upper branch
A* ~-0.3865 - 0.705lg[ (m" + CA)C], (24)
where A™ = A/D, A being the amplitude of the cylinder. Strictly, Eqs. (23) and (24) can be ap-
plied only to the peak amplitude, not the amplitude everywhere in the upper branch or the lower
branch. However, Eqs. (23) and (24) can be used as an good approximation because of the small
fluctuation of amplitude in the upper branch and the lower branch in the case of (m”* + C,) £ <0.05
(Govardhan and Williamson, 2000) .

6. Approximate Method

An approximate method for a circular cylinder with low mass-damping ratio at lock-in in uniform
flow is as follows:

Step 1. Calculate frequency ratio £~ at lock-in with Eqs. (1) ~ (3).

Step 2. Calculate added mass C, at lock-in with Eqs. (4) ~ (6).

Step 3. Calculate amplitude at A™ lower branch and upper branch with Eqs. (23) ~ (24). The
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amplitude of upper branch turns into the amplitude of lower branch at reduced velocity
U7 which can be obtained from Eq. (22).

Step 4. Calculate phase ¢ according to Eq. (13) or Eq. (19).

Step 5. Calculate the root mean square of lift coefficient Cy,, according to Eqs. (16) and (20)
or simplified Eqs. (18) and (21).

Step 6. Dispose of the deficiency of calculation in the dynamical instability area.

7. Comparison with Experimental Results of Rigid Circular Cylinders

7.1 Phase

(1) m* =3.3, m”* £=0.00858

Comparison with experimental results is shown in Fig. 6. Phase transition occurs at U7 =6.24
according to Eq. (22).

(2) m*=10.1, m”* £=0.0134

Comparison with experimental results is shown in Fig. 7. The calculation shows that ¢ = 177.1°
at U* =5.84 obtained from Eq. (13) is in good agreement with experimental results.

¥enment by Khalak and
200  Williamson (1999)
—eo- Calculation
P e S
160 17
120+
>
Fig. 6. m” =3.3, m™ {=0.00858. ;
’ 80 r
40+
o
1 1 1 1 1
5 6 7 8 9 10

7.2 Amplitude and Lift

When m”* =3.3 and m™ £ =0.000858, 4™ =0.6 at the lower branch and A* =0.99 at the
upper branch can be obtained according to Eq. (23) and (24). When m* =10.1 and m* { =
0.013534, A™ =0.6 at the lower branch can be obtained.

Comparisons among the calculated results given by Eq. (16), Eq. (18) and the experimental re-
sults given by Khalak and Williamson (1997a) are shown in Figs. 8 and 9. The results given by Eq.
(16) and simplified Eq. (18) are close to each other, indicating that simplified Eq. (18) can also
give good results in the case of low mass-damping ratio.

7.3 Disposal of the Deficiency

Fig. 8 shows that the difference between the calculated results and experimental results is large

near the dynamical instability area mentioned in section 4.3. Since linear theory is no longer valid in
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this region, Eqs. (13) ~ (18) and Eqgs. (19) ~ (21) can only give wrong results in this region.

Lower
branch
10 20 30 40 50 60 70 8 90 100 110
t/T,
Experiment by Khalak and Williamson (1999)
U=5.84
20f - -=---=- -~ s-ee e e st c e c e - 4 Lower
~ 180 branch
<~ 9} .
° OF oo e e e e s 4
—90 r D L iy ey - e - - = - —— -]
1‘0 20 30 40 50 66 70 8 90 100 110
t/T,
Calculation
Fig. 7. m* =10.1, m” £=0.0134,
—a—Experiment by Khalak and Williamson (1997a) —s—Experiment by Khalak and Williamson (1997a)
—+-Calculation with normal equation —¢—Calculation with normal equation
1.4 | ~4~Calculation with simplified equation 0.8 |-a-Calculation with simplified equation
]
1.2 0.7} \
L}
1.0 0.6f a
0.8 E
£ \ J o5
© 06 \
\. 04 "
0.4 “.‘17.\. \-
a ~
R SO 03} TN,
0.2 A s T~
. A \-\‘\‘
- 0.2} T
0.0 1 1 B | L ) L,
5 6 7 8 9 10 . 50 55 60 65 70 75 80 85
L/ U
Fig. 8. m” =3.3, m” £ =0.00858. Fig. 9. m* =10.1, m” §{=0.00134.

The approaches to get rid of the deficiency are proposed as follows:

1. Calculate U according to Eq.(22) when m* < 10.0.

2. Calculate U} =(1-5%) U3 and Uj = (1+5% ) U}

3. Phase between U; and Uy is equal to the phase at U; ; phase between Uz and U7 is
equal to the phase at Uy .
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4. C [ between U; and Ug can be obtained through linear interpolation between €, at U[
and C/ ., at Ug.

These approaches are shown in Figs. 10 and 11. If m* =10.0, there is no such deficiency.

200 F Upper Branch 200 - Upper Branch
‘/. 8- \ ,—f"’._' el —— g ——
160 - . 160 - P
! ]
! s
120 : ~ 120 i |
c ; mpl Y
S gt ; ® s} P
Ll ] 1
40 -Low(er Brarich 40 Lower Bf'anlt:h
of Al of oMt
o [
1 u 1 PN ! 1, [T { L s n ( L
5.0 55 6.0?6.5 7.0 7.5 8.0 8.5 9.0 9.5 5.0 5.;,6.0f 6.57.0 7.5 8.0 85 9.0 9.5
U, U A-5%)U U (1+5%)U",

Fig. 10. Disposal to the discontinuous point of phase at lock-in.

-=- Experiment by Khalak and Williamson (1997a) -s-Experiment by Khalak and Williamson (1997a)
1.4} -*Calculation with normal equation 1.4}-—*Calculation with normal equation_
: —+-Calculation with simplified equation . [—"Calculanon with simplified equation
1.2+ : 1.2
1.0 1.0+
08 :i> 0.8
: 2 0%
O 06} V0.6
0.4 0.4
02+ [ 0.2f |
0.0 Pl 0.0
1 31 l 1 L 1 1 ' l
5 /6 \L 8 9 10 5 {6 7 8 9 10
1.0-5%)U°; (1.0+5%)U", (1.0-5%)U", 1.0+5%)U,
U [/

Fig. 11. Disposal to the deficiency of the lift at lock-in.
8. Discussions and Concluding Remarks

Through the linear theoretical analysis for a circular cylinder at lock-in, equations for calculating
phase, lift coefficient of a rigid circular cylinder at lock-in are deduced in detail. Moreover, equations
for calculating the phase and the lift distributed along a long flexible circular cylinder at lock-in can al-
so be deduced through the linear mode analysis. Simplified forms of these equations are given too.

An approximate method to predict the response and fluid forces of rigid circular cylinders and
flexible circular cylinders at lock-in in uniform flow is introduced in the case of low mass-damping ra-
tio. One method to eliminate the deficiency in calculation is also given. Comparison with experimental
results of rigid circular cylinders shows the effectiveness of this approximate method.

The preconditions for the equations and the approximate method are m* =0.54, (m™ + C,) ¢
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<0.05, 9.25f},ec> U" =1/5t, and the circular cylinder only in transverse VIV,

Riser tubes and tension legs of deepwater platform at lock-in are mostly under nonlinear vibration
when aspect ratios are not large enough. Strictly speaking, above approximate method and equations
based on linear mode analysis of multi-DOF system can not be applied to them precisely. However, the
approximate method given in this paper is an effective method in the case of large aspect ratio since
there is no more other effective nonlinear theory used to analyse VIV of long flexible circular cylinders

now.
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