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In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier—
Stokes equations coupled with the energy conservation equation are solved by the finite-difference
front-tracking scheme. The axisymmetric model is adopted in our simulations, and the drops are
assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the
classical initial condition with a uniform temperature gradient. The detailed discussions and physical
explanations of migration phenomena are presented for the different values of (1) the Marangoni
numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities
and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers
may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also
discuss the influence of initial conditions on the thermocapillary migrations. © 2008 American

Institute of Physics. [DOI: 10.1063/1.2965549]

I. INTRODUCTION

The migration phenomena of bubbles or droplets in liq-
uids are very interesting topics in material science, chemical
engineering, and fundamental research. Under the zero-
gravity condition, if the temperature gradient of the back-
ground fluid is nonzero, bubbles or droplets will move be-
cause the variance of interfacial tension on the drop can
produce a shear stress on both sides of the interface. As a
result, the bubbles/drops will move from the cold side to the
warm side of the background fluid. Such motion is termed
thermocapillary migration.

Throughout this paper, symbols with subscript 1 denote
the physical coefficients of the continuous phase and those
with subscript 2 are the values of the bubble/drop. The inter-
facial tension is normally treated as a linearly decreasing
function of temperature,

g=0p+ (TT(TO—T),

where oy is the interface tension at a reference temperature
Ty, and

or=—(do/dT) = const.

The reference velocity U for the motion, obtained by balanc-
ing the thermocapillary stress on the interface of the bubble/
drop with the viscous stress, is defined as

U=|oy| VTR u, (1)

where R is the radius of the bubble/drop, VT the temperature
gradient imposed on the external fluid, and w the dynamic
viscosity. Besides the fluid densities, the most important fac-
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tors in the thermocapillary migration are the Reynolds num-
bers (Re) and Marangoni numbers (Ma) of the bubble/drop
and the continuous phase. We have the following six nondi-
mensional numbers characterizing the problem:
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where v, k, p, and C, represent the kinematic viscosity, the
thermal diffusivity, the density, and the specific heat, respec-
tively. Moreover, an important relation on some of the pa-
rameters above is given as'

where ky is the thermal conductivity.

The first study on the thermocapillary migration of
bubbles and droplets was carried out by Young et al? [re-
ferred to as the Young—Goldstein—Block (YGB) theory]. In
their work, Re; and Ma,; are sufficiently small compared to
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FIG. 1. The schematic diagram of the axisymmetric model for the Ma-
rangoni migration.

unity, and hence the inertial terms in the Navier—Stokes
equations and the convective transport terms in the energy
equation can be neglected. The migration velocity of the
drop in the YGB theory is

Voo = 2U ®)
veR” (24 3o ) 2 + kgl k)
Later, wusing the matched asymptotic method,

Subramanian®* extended the YGB theory to high-order result
for small Ma; when Re;=0 and found that the correction to
the result Eq. (8) is zero at O(Ma,) and the first nonzero
correction appears at O(Ma%). In addition, they concluded
that the heat convection may reduce the scaled migration
velocity of the bubble. Balasubramaniam® analyzed the situ-
ation of a gas bubble when Re,; is zero or infinite and ex-
tended these results to situations of large values of Ma,.
Balasubramaniam and Subramanian® studied the effect of the
convection inside the drop with large Ma,; and found that the
variation of temperature along the drop surface leads to a
linear increase in drop migration velocity when the value of
Ma, increases.

Since the work of YGB, numerous experiments on ther-
mocapillary migrations were performed on the ground. Most
of them, with relatively large drops, have been conducted on
liquid pairs of nearly matched densities to reduce the effect
of gravity.779 Xie et al. performed a microgravity shaft ex-
perimental study of a drop Marangoni migration at interme-
diate Re; of 0(10)." They found that the drop migration
velocities are much smaller than those of the YGB theory.
On the fourth Shen—Zhou spaceship, Xie et al. carried out
experiments with larger values of Re; (up to 300) and Ma,
(up to 5500)."

There are also lots of numerical studies on this subject.
Szymczyk and Siekmann'? first calculated the steady migra-
tion of bubbles. Shankar and Subramanian'” used the veloc-
ity field of the Stokes solution in energy equation, with val-
ues of Ma; up to 200. Balasubramaniam and Lavery14
simulated bubble migrations in the cases of Re;
€[1077,2000] and Ma, € [1077,1000], and they concluded
that Marangoni numbers have larger influence on the migra-
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FIG. 2. Time evolutions of drop migration velocity and their comparison
with Nas (Ref. 17). Here, Re;=5, Ma; =20, «=0.5, f=2.0, £&=0.5, and
v=0.5.

tion velocity than Reynolds numbers do. The extended work
of Ref. 14 revealed that the scaled velocity of a liquid drop
initially decreases as Ma, increases, but increases after Ma,
reaches a certain value (around 50-200). Note that their
simulations were performed chiefly for certain experimental
systems.15 Unlike our analysis in this paper, their discussions
on values of Ma; were based on the fixing of the experimen-
tal materials instead of the fixing of the other five nondimen-
sional numbers.

Numerical simulations on the three-dimensional ther-
mocapillary motion of deformable viscous drops were re-
ported by Haj-Harir et al. 16 They used the level-set method
to catch the interface and found that the strong heat convec-
tion may retard the thermocapillary motion of the drop be-
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FIG. 3. The migration velocity of drop plotted vs time for three grids of
96 X288, 64X 192, and 32X96; Ma;=100, Re;=1, a=1, B=0.5, é=1,
and y=1.
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FIG. 4. The comparison of temperature fields between results from different computational domains at 7=26. Here, Ma; =100, Re;=1, a=1, 8=0.5, é&=1, and
v=1. The sizes of domains are (a) 6R X 6R; (b) 6R X 12R; (c) 6R X 18R; (d) 6R X 36R.

cause the isotherms get wrapped around the front surface of
the drop and reduce the surface temperature gradient.
Nas'”'® calculated the thermocapillary interaction of multi-
drops with the front-tracking finite-difference methods.
Despite the efforts mentioned above, it is still unclear
what kinds of phenomena might happen when different sets
of nondimensional numbers are adopted, and this will be the
focus of this paper. In addition, we restrict our discussions
within the scope of nondeformable drops because even the
deformation of the large drop is negligible.lg’20 Section II
describes the governing equations and numerical schemes,
respectively. In Sec. III, starting from a traditional initial
condition in this field, we present a benchmark simulation
based on which we carry on further discussions. In Sec. 1V,

we outline the migration phenomena of drops with different
sets of nondimensional numbers. Finally, the influences of
initial conditions are discussed in Sec. V.

Il. GOVERNING EQUATIONS AND NUMERICAL
METHODS

In our investigation, the spherical drop is surrounded by
the continuous phase in a cylindrical container. As shown in
Fig. 1, the symmetric axis of the container is taken as the
z-axis in a cylindrical coordinate system, and the temperature
varies linearly in the z-direction initially. The drop migrates
from the rest and is assumed to keep its spherical shape
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during the whole process. The governing equations of the

problem under the zero-gravity condition can be written
121,22
as

V-u=0, )
% +V - (puu)=—Vp+ V- u(Vu+Viu)-F, (10)
pCp[%+V-(uT)]:V-(kHVT), (11)

where p represents the pressure, u or (u,w) the velocity vec-
tor, and 7T the temperature. F7 is the integral over the inter-
face of the drop (S), which results in a force that is smooth
and continuous along the interface,

Fo= f oM S(X — Xiperace)dS - t, (12)
s

where ( is twice the mean curvature, J a three-dimensional
delta function, n the interface unit normal vector pointing
outward from the drop, and t the unit tangent vector.

The nondimensional quantities are defined as

=l

=u/U,

|

p=plpy, m=p/py,  ky=kplky,

r=r/R, 7Z=2zR,

>, p=p/(p,U%), T=TI|VTIR),

=

(13)

C,=C,/C,, F7=F7R/(p,U").

Thus we have the full nondimensional equations in our
numerical simulations,

—+—-+—=0, (14)

Ipir) N b_lﬁ(ﬁﬁ) N Wa(ﬁﬁ)

ar ar a7
op 1(_ &{la(ﬁi)} P a,a(aﬁ &ﬁ)
iy fheesl W72 Bl Rl I v (gl iy
dr Re or| r dr oz or\or or
ol ow i _
+if<f+—f))—<F°>,, (15)
dz\dr oz
dpw) _dpw) _d(pw)
+u +w
or or 0z
ap 1] 1&(_&»7) Fan a,a(aw aﬁ)
=——+- il |+ [ =+
dz Re; ror\ or 0z ar\ or Jdz
a;z(aw aw) _
+——+— ] -(F9)., 16
Z\ % az} ) (16)
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FIG. 5. Time evolutions of migration velocities between results from differ-
ent computational domains (Ma,; =100, Re;=1, a=1, B=0.5, {=1, and
y=1).
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+(9_Z<kHﬁ_Z)] (17)

The boundaries except the symmetrical axis are treated
as no-slip walls, and the temperature is fixed on the walls
throughout the simulations,

Tle—eyr=To/(VTIR) +2y/R, (18)
Tle g = To/(VTIR) + 2y/R, (19)
T|;=,0,R =Ty/(|[VT|R) + z/R, (20)
]z=zoyr = Wlz=yr =0, 21
ez g = Wlz=z g =0, (22)
’7|7=r0/R = W|F=r0/R =0. (23)

In the calculation, we always set the vertical position of ini-
tial drop center at z=0, and 7|, is the initial temperature of
continuous phase at z=0. Notice that T, is not always the
temperature of the drop center in this paper because some of
our simulations (in Sec. V) do not use the classical initial
conditions.
On the symmetric axis, we have
_ ow
=0, ill=0, — =0. (24)
7=0 Ir | 7=

i
or

For most simulations except those in Sec. V, the classical
initial conditions used in most literatures are adopted,
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FIG. 6. A typical velocity field (a) in the laboratory reference frame and (b) in the reference frame moving with the drop.

il = Wlip =0, (25) perature field outside of the drop and the initial velocity field
of the entire domain) remain the same as the above.
Tl = Ty/(IVTIR) + 2/R. (26) In the following, symbols without bars above are

adopted to denote nondimensional values. It should be men-
For simulations in Sec. V, initial temperature fields inside the tioned that p, u, C - and kg are constants within each kind of
drops are constant, while all other conditions (the initial tem- fluids in the calculation, and that a smooth function is
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FIG. 8. Scaled temperature distribution along the drop interface for various
time: Ma; =500, Re;=1, a=1, B=0.5, £&=1, and y=1. 0 is defined as the
angle from the interface to the drop center. #=0 corresponds to the top of
the drop, and 6= to the bottom of the drop.

adopted to reduce numerical oscillations along the interface
(see Ref. 23 for more details).

We adopt the finite-difference method to solve the sys-
tem above. The equations are discretized by second-order
center-difference methods on fixed, regular, staggered
Marker-and-Cell grids. The time integration adopts the ex-
plicit forward Euler scheme. The Navier—Stokes equations
are solved by the projection method with the front-tracking
method to catch the interface,m’25 and additional computa-
tional grids are introduced to explicitly mark the position of
the interface. In the calculation, the interface tension is con-
verted into a body force with an interpolation function,”® and
the variables on the fixed grid can also be transferred onto
the interface grid. More details of the numerical methods are
presented in Ref. 23.

Our numerical solver yields results which fit the analyti-
cal outcomes of YGB in Ref. 23. To further validate our
code, we compare our unsteady results to Nas’s work."”
From Fig. 2, it can be observed that the trends on the migra-
tion velocity of two simulations are quite similar: a slight
decrease in the velocities occurs before their reaching the
steady values in both cases. In Nas’s work, the deformation
of the drop is considered; hence, the value of the migration
velocity is slightly smaller than ours.

We also test our code when large Marangoni numbers
are adopted on three resolutions. Figure 3 shows that the
velocity curve seems to converge when grids become finer,
and the difference between 96 X288 and 64X 192 is
below 3%.

Finally, it is essential to discuss the role of computa-
tional domains. In practice, simulations are always carried
out on the smallest possible domains and with the lowest
possible resolutions to save CPU hours. Therefore, it is in-
teresting to know what kinds of differences will be caused by
various domain sizes in this study.
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FIG. 9. Time evolutions of drop migration velocity as Ma; =500, Re,=1,
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We conducted simulations with the same set of param-
eters (Ma; =100, Re;=1, a=1, B=0.5, (=1, and y=1) on
four kinds of domains: 6R X 6R, 6R X 12R, 6R X 18R, and
6R X 36R. The resolution of each simulation is chosen to
make the density of the grid unchanged when the domain
size varies, so the resolutions of the four runs above are 64
X 64, 64 X128, 64 X 192, and 64 X 384, respectively. The re-
sulting temperature fields in the four runs are almost identi-
cal (Fig. 4), except that the T=1 isotherm in r<1 region of
Fig. 4(a) does not overlap with the interface as those of Figs.
4(b)—4(d). On the other hand, there is a noticeable difference
in the migration speed plot (Fig. 5), and the velocity of the
6R X 6R run is 5% lower than those of larger-domain runs.
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FIG. 10. Time evolutions of drop migration velocity with different values of
Ma,;: Re;=1, a=1, and B=1.
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Throughout the paper, all computed domains, except
those of the runs shown in Figs. 4 and 5, are 6R X 18R,
which should be large enough to avoid any boundary effect.

lll. ABENCHMARK SIMULATION AND BRIEF
DISCUSSION ON ITS INITIAL CONDITION

Throughout this study, the time step is 0.0005 and the
resolution is 128 X 384. The initial drop center is 6R above
the bottom, which is fairly far away from the boundaries.
The first objective of this study is to analyze the unsteady
thermocapillary migration of an isolated viscous drop when
the Marangoni number is large. In the meanwhile, the large
Ma investigation will also serve as a benchmark to facilitate
further discussions in the next two sections.

In the following simulation, we adopt Ma;=500, Re,;
=1, a=1, B=0.5, £=1, and y=1. Once the simulation starts,

the surface tension will drive the drop liquid near the inter-
face from the warm side to the cold region. A pair of vortices
are formed inside the drop, which can be seen from the ve-
locity field in the reference frame moving with the drop
[Fig. 6(b)].

To the problem when Ma is large, the influence of heat
convection is more important than that of heat diffusion, and
the velocity field is strongly coupled with the temperature
field. So in order to understand the phenomena in the drop
migration, it is very important to analyze the evolution of the
temperature field. At the beginning of the migration, the tem-
perature varies linearly in the z-direction from the cold wall
at the bottom to the hot wall on the top [Fig. 7(a)]. The
vortices inside the drop will disturb the initial temperature
field, and the isotherms outside of the drop will bend down-
ward near the interface [Figs. 7(b) and 7(c)]. If the heat con-
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vection effect is strong enough, the cold liquid inside the
drop can reach the upside of the drop before being warmed
up by its surroundings, and then move down along the inter-
face. And the temperature field will form an “eye” pattern
around =50 [Figs. 7(d)-7(f)]. The entire process is even
clearer in the movie associated with Fig. 7.

The variance of the temperature field will lead to the
variance of the temperature on the interface. Figure 8 shows
the evolution of scaled temperature distribution along the
interface. In the beginning, the temperature curve is only
related to the vertical position and varies as a cosine function
of @ (the solid curve in Fig. 8). From r=1 to t=8, there is a
dropdown of the temperature at #=0. At the beginning of the
simulation, although the drop migrates from the cold region
to the hot region as a whole, the temperature on the top of
the drop still decreases due to the cold fluid rising from
lower part of the drop. After r=26, the #=0 point will also
become hotter because the system starts to go to equilibrium.
On the other hand, the temperature at 6= keeps increasing
throughout the whole simulation because of the hot drop-
liquid from the top and hotter surrounding continuous phase.
In general, the average difference of the temperature along
the interface of the drop becomes smaller and smaller, and
the temperature at the interface is almost a horizontal line at
t=26. Because the interface tension o is a linear function of
temperature, when the temperature gradient at the interface
decreases, the drive force will reduce too. Figure 9 shows the
time evolution of drop migration velocity, indicating an ob-
vious increase-decrease process. Apparently, the overshoot is
due to the decay of the drive force from 7=0 to =26. The
migration velocity decreases around =8, when the tempera-
ture at f= experiences a dramatic increase and the tem-
perature at the drop interface is almost a horizontal line af-
terwards (Fig. 8).

There have been several previous reports on the over-
shoot phenomena of migration velocities. Oliver et al. calcu-
lated the transient thermocapillary motion of a gas bubble.”’
They assumed that the gas bubble behaves as a constant vol-
ume void. Instead of solving the Navier—Stokes equations
directly, the pseudo-steady-state velocities from Ref. 28 were
adopted in their calculations. Although no physical explana-
tion was given, there are obvious increase-decrease processes
in the time evolutions of speeds in their paper. By solving the
combination of Navier—Stokes equations and energy equa-
tion, a numerical investigation of the gas bubble was re-
ported in Ref. 29. In the cases of bubble migrations, the
effects of deformations are more important.lg’20 However,
from the discussion above, we know that the overshoot phe-
nomena are mainly caused by the redistributions of tempera-
ture fields inside drops, and the influences of temperature
redistributions in bubbles are much smaller because the den-
sities of gases are much lower than those of liquids. As a
result, the overshoot phenomena in their report are not as
obvious as those in our simulations (e.g., see Figs. 8 and 9 in
Ref. 29 and Fig. 9 in this paper). Also, similar phenomena
have been reported in a numerical study of dlrops,'7 which
merely shows slight fluctuations because Ma numbers are
smaller there.

However, in practice, if is difficult to have an initial con-
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FIG. 12. Scaled temperature distribution along the drop interface for various
time: Ma;=1, Re;=1, a=1, and B=1. See the caption in Fig. 8 for the
definition of 6.

dition in experiments like what we adopt in this paper. In
real experiments, drops are normally injected into continuous
phases (see, e.g., Ref. 11). The initial velocities of drops
cannot be exact zero. Moreover, no matter how short an in-
jecting process is, the interface tension will inevitably take
the time to drive the liquid inside the drop, and the tempera-
ture cannot be exactly linear along the z-direction, especially
for large values of Ma. In this section and the following
section, besides its easy implementation, we adopt such ini-
tial condition because of the tradition in related researches
(see, e.g., the references in Sec. I). In Sec. V, we will extend
our discussions to simulations starting from some other ini-
tial conditions, which are more reasonable from the view
point of experiments.

IV. THE INFLUENCE OF NONDIMENSIONAL
NUMBERS

In this section, we will discuss what the above initial
condition will lead to for different sets of the six most typical
nondimensional numbers in the drop thermocapillary migra-
tion problem (Ma;, Re;, a, B, & and y). When we analyze
the effect of one nondimensional number, the other five will
be fixed to make the discussion easier. For each nondimen-
sional number, when necessary, the situations for different
values will be discussed.

It is also interesting to investigate how the final migra-
tion speeds are influenced by the nondimensional numbers.
In this paper, most small values of Ma; (<100) and a few
large values of Ma, runs are calculated until the final steady
states are reached, but most runs of large values of Ma, are
terminated around #=30 to =100, depending on the targeted
nondimensional numbers.

To simplify our discussions, we let §=1 and y=1 in the
first two subsections (Secs. IV A and IV B).
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FIG. 13. The scaled drop migration velocity vs Ma;, Re;=1, a=1, and
B=1.

A. The influence of Ma
1. The influence of Ma,

Figure 10 presents the time evolutions of drop migration
velocity for different values of Ma;, and the rest values are
fixed at Re;=1, =1, and B=1. For different values of Ma,,
the initial migration velocities increase roughly at the same
speed before r=2.0. After t=2.0, the migration velocity of
the drop will reach a steady value directly when Ma, is small
(e.g., Ma;=1), without any oscillations in the process. How-
ever, there are obvious increasing-decreasing processes in
the time-speed plots of large values of Ma;, and the decreas-
ing degrees become larger for larger values of Ma,.

Figure 11 shows the temperature fields of different val-
ues of Ma, at t=28, and the influence of Ma, is much clearer.
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The evolution of Ma;=10 is made into a movie [associated
with Fig. 11(b)] to have a comparison with that of Ma,
=500 (the movie associated with Fig. 7).

There is almost no difference between the initial and the
final temperature contour plots for small values of Ma,. The
contour lines in Fig. 11(a) are almost straight just as those in
the initial temperature field [Fig. 7(a)]. Throughout the Ma,
=1 simulation, the gradients of the temperature distribution
along the interface are almost identical for the same 6 (Fig.
12). In another word, while the drop is heated up by the
surrounding fluid during the migration, VT(6) remains the
same along the interface throughout the simulation and the
surface-tension variance along the interface calculated with
Eq. (13) also remains the same.

When Ma; becomes larger, the contour lines of the tem-
perature outside the top of the drop will wrap around the
drop. Eventually, the final temperature along the interface is
almost a constant for different values of @ (Fig. 8). Hence, in
the case of a larger Ma,, the mechanism driving the drop
becomes weaker shortly after the onset of the drop, which
leads to a lower drop speed. Figure 13 shows the scaled drop
migration velocities at r=28 versus Ma, (scaled by Vygg). It
is clear that the scaled migration velocities decrease with
increasing values of Ma,.

Figure 14 gives the time evolutions of drop migration
velocities for different values of Ma; when the fixed values
of Re; are 20 and 40. The other two values are still fixed at
a=1 and B=1. Similar to Fig. 10, all large-Ma curves have
increase-decrease processes in the early stages, and larger
Re; numbers lead to longer velocity-fluctuation periods.
When Ma, is big enough (Ma;=500), or the heat convection
is big enough compared to the heat diffusion, the migration
velocity will experience an extra oscillation before reaching
the steady state [Fig. 14(b)].
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(b) Re,=40

FIG. 14. Time evolutions of drop migration velocity with different values of Ma;. a=1, 8=1, and Re;=20,40.
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FIG. 15. The temperature field at r=28, Ma,; =100, Re,=1, a=1, (a) B=2, (b) B=1, and (c) B=0.5.

2. The influence of B

When the condition of the external fluid is fixed, the
property ratio B stands for the reciprocal of Ma,. Here, we
only focus on the situation when Ma; =100, Re;=1, and «
=1 to make the discussion concise. In Fig. 15, the tempera-
ture fields of three values of B at r=28 are shown. For
smaller thermal diffusivity ratio (8) or larger Ma, number,
the heat convection inside the drop is stronger. In the case of
B=0.5, the cold fluid has been pushed to the top of the drop
before it is heated up [Fig. 15(c)], leading to a bigger reduc-
tion of the migration velocity. Unlike the temperature
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FIG. 16. The scaled drop migration velocity at =28 vs thermal diffusivity
ratios (B), Ma,; =100, Re;=1, and a=1.

contours of the smaller values of B at r=28, those of S
=2.0 [Fig. 15(a)] have not changed so dramatically com-
pared to the initial ones [Fig. 7(a)] because the heat diffusion
is the major mechanism, and the corresponding velocity is
much larger since the capillary driving force keeps very
strong throughout the simulation. The scaled migration ve-
locities at t=28 versus thermal diffusivity ratios (B) are
shown in Fig. 16, and it is clear that the migration speed
increases with the increasing $. In this sense, the role of the
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FIG. 17. Time evolutions of drop migration velocity with different thermal
diffusivity ratios, 8=2 (—), B=1 (- -), B=0.5 (- - -), Ma,; =100, Re,=1,
and a=1.
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FIG. 18. Time evolutions of drop migration velocities with different values of Re,. a=1, f=1, and (a) Ma, =1, (b) Ma,; =20, and (c) Ma;=100.

Ma, (or 1/p) is the same as that of the Ma, we have dis-
cussed in Sec. IV A 1.

The migration velocities with different thermal diffusiv-
ity ratios are shown in Fig. 17. Despite the different values of
B, it always takes some time for cold liquid near the bottom
of the drop to be transferred to the top. For this reason, the
curves in Fig. 17 almost converge together in the beginning
period. When the heat convection begins to take effect, the
interface temperature of the drop is influenced by the fluid
inside the drop, and the differences of the migration veloci-
ties for different values of 3 appear.

B. The influence of Re
1. The influence of Re,

In the former studies of the drop migration problem, the
role of Re; has not drawn too much attention because the
variance of Re; has much smaller influence on the final
steady migration velocity than that of Ma, does. In the fol-
lowing, however, we will show that the unsteady migration
processes of drops are very different for varying values of
Re,, especially in the cases of large values of Ma,.
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FIG. 19. The scaled drop migration velocity vs Re;, Ma;=1, 20, and 100.
The values of the velocities related to the Ma=100 runs are from the states
at r=28 instead of the final states.

The major difficulty in the simulations of this subsubsec-
tion is to remove the influence of the reference velocity. The
following is a comparison of the definition of Re; and U:

RU RU
Re;=—= b1 s
vy M
M

Consequently, to make the reference velocities in this sub-
subsection unique within each figure, we have to change the
values of VT in the meanwhile of changing Re; so the value
of VT'/ p, is fixed.

Phys. Fluids 20, 082101 (2008)
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FIG. 21. Time evolutions of drop migration velocities with different kine-
matic viscosity ratios: =2 (—), a=1 (- -), @=0.5 (- - -); Ma;=100,
Re =1, B=1.

Figure 18 show the time evolutions of drop velocities
under different values of Re;. The most obvious difference
between Fig. 18 and the corresponding pictures in the previ-
ous subsection (Figs. 10, 14, and 17) happens at the begin-
ning part of the simulations. Different values of Re; show
nontrivial influence on the beginning part of the simulations.
On the other hand, although simulations of different values
of Ma, or B have quite different drop velocities at the later
stages, the initial migration processes of them are close to
each other.

To have a better understanding of the impact of Rey, it is
necessary to understand the mechanism of the thermocapil-
lary migration. The force driving the drop is actually the
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FIG. 20. The temperature field at =28, Ma,; =100, a=1, B=1; and (a) Re,;=1, (b) Re,;=10, (c) Re,;=40.
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FIG. 22. The scaled migration velocities vs (@) at =70, Ma; =100, Re,
=1, and B=1. The line indicates the least squares fitting of the numerical
data.

counterforce when the interface tension drives the back-
ground liquid near the interface through the effect of viscos-
ity. The viscosity force of the background liquid can be
viewed as the driving force and the resistance of the drop
migration simultaneously. From Fig. 18, it is clear that the
simulation with the smaller Re, tends to move slower at the
late stage of the simulation because the resistance is larger
{the three Ma,=1 runs are exceptions [Fig. 18(a)], but actu-
ally the final parts of their speed curves are very close to
each other}. On the other hand, at the beginning of the simu-
lations, there is no difference between the interface tensions
of different values of Re; because their initial temperature
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distributions are the same. Smaller values of Re; mean larger
viscosities and drops will have larger acceleration in the be-
ginning. Hence, compared to larger values of Re;, smaller
Re, drops can reach their maximum velocities within shorter
periods.

When Ma, is small [Fig. 18(a)], there is no fluctuation
before migration velocity reaches the equilibrium state. The
temperature contours of the steady states of different Re,
runs show similar patterns; therefore, if Ma, is small, Re;’s
effect on the final velocity of the drop is also rather small.
For example, when Ma;=1 the steady migration velocities
are almost identical for different values of Re; [Fig. 18(a)],
and the only difference is the migration time to reach the
steady state.

In the case of Ma;=20 [Fig. 18(b)], the difference of
steady migration velocities for different values of Re; ap-
pears, and larger values of Re; also need more time to reach
the steady states. The variation of the scaled drop migration
velocity for different values of Re; is shown in Fig. 19. It is
clear that the scaled migration velocities slightly increase
with increasing values of Re;, which is similar to the results
in Ref. 16, and these increasing rates of final speeds are
higher for larger values of Ma;. The Ma;=100 runs have not
been calculated long enough to reach their final states, but
we can roughly draw the similar conclusions.

Generally speaking, the temperature contours of differ-
ent values of Re; at the late stages are quite close to each
other. Subtle difference in temperature field can be found
near the top of the drop when Ma, is fairly large (Fig. 20).
The cold region inside the drop is closer to the top of the
drop for larger Re;, and the continuous phase just above the
drop is also affected, leading to the bending down of the
isothermal lines [Fig. 20(c)].
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FIG. 23. The contour plots of temperature for simulations with £=0.5 (Re;=1, Ma;=100, =1, =1, and y=1).
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FIG. 24. The contour plots of temperature for simulations with £=1 (Re;=1, Ma,; =100, @=1, B=1, and y=1).

2. The influence of «

When the condition of the external fluid is fixed, the
property ratio « stands for the reciprocal of Re,. From the
discussion on the role of Re;, we find that Reynolds numbers
can greatly affect the migration evolution of the drop when
Ma, is large; therefore, in this subsubsection, the Ma, is
fixed at 100 to have a brief view of the properties of a.

Figure 21 shows the velocity evolutions for three values
of a. It seems that comparing with other five nondimensional
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numbers (May, Re;, B, & and ), « has the largest influence
on the migration history of the drop.

From the definition of « [Eq. (4)], it is known that larger
values of @ mean larger viscosities inside drops. Larger vis-
cosities mean weaker fluid convections. Smaller velocities
inside more viscous drops lead to lower speeds outside the
drops because of the continuity of the velocities near the
interfaces; as a result, more viscous drops have smaller mi-
gration velocities.
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FIG. 25. The contour plots of temperature for simulations with £=2 (Re;=1, Ma,; =100, a=1, B=1, and y=1).
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FIG. 26. The time evolutions of mi-
gration velocities for three runs in dif-
ferent drop densities. Re;=1, Ma,;
=100, a=1, B=1, and y=1 (dash-
dotted line: £€=0.5; dashed line: é=1;
solid line: £=2).
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FIG. 27. The contour plots of temperature for simulations with different values of y at t=29.0 (Re;=1, Ma, =100, a=1, B=1, and £=1).

(a) y=0.25 (b) v=0.50 (c) =1 (d)y=2.0 (e) y=4.0
16— 16— 16— 16— 16—
15 s o ]
14 M 4 -
13 13ﬂ 13
11 11f L
10 10f 110
9 9/\ 9
8 8—/\— 8
6t 1 et 1 et 1 et 16
T4 0 1 0 1 % 0 1 T 0 °

FIG. 28. The contour plots of temperature for simulations with different values of y at t=74.0 (Re;=1, Ma,; =100, a=1, B=1, and ¢=1).
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FIG. 29. Scaled temperature distributions along drop interfaces for different
drop specific heats at t=20. Re;=1, Ma,; =100, a=1, B=1, and {=1. See the
caption in Fig. 8 for the definition of 6.

When « is small, the smaller viscosity leads to stronger
vortices inside the drop, there is more obvious undulation in
the migration velocity due to the stronger heat convection
effect (Fig. 21). In the case of a=0.5, the velocity experi-
ences an up-down-up process at the beginning part of the
simulation.

The plot of scaled migration velocities versus kinematic
viscosity ratios («) at t=70 is given in Fig. 22. The migration
velocity indicates obvious decrease when « increases.

C. The influence of &

In experiments, it is difficult to have enough micrograv-
ity time in the drop tower, and it is very expensive to perform
experiments in the space. The cheapest way to get long-time
microgravity condition in experiments is the so-called

Phys. Fluids 20, 082101 (2008)

density-match methods, which choose pairs of drops and
background liquids with equal densities.” For this reason, it
is quite necessary to study the situation when the value of ¢
is fixed to 1.

However, the role of ¢ in thermocapillary migrations is
also very interesting. The biggest difference between the
drop and the bubble is the different ratios of the drop/bubble
density to that of the background fluid. The bubble means
that £ is in the order of 1072 or 1073, while the drop means &
is O(1). It is apparent that the flow inside the drop will also
influence the drop migration, and for this reason the phenom-
ena associated with drops may be more complex than those
of bubbles. It is impossible to discuss all situations corre-
sponding to all possible values of ¢ while having the vari-
ances of Re;, Ma,, a, B, and 7y considered in one paper. In
the following, we will only make the value of ¢ vary around
1, and all other nondimensional parameters remain the same:
Re;=1, Ma;=100, a=1, B=1, and y=1.

It is predictable that the lighter drop will move faster
when the status outside of drops is fixed. On the other hand,
migration velocities are also determined by temperature dis-
tributions along the interface. The influence of & is much
more obvious if we compare the isothermal lines at t=10 of
the three runs. We will concentrate on the contour lines with
T="7 (or level 4 described in the legends) of the three tem-
perature contour plots. In the case of £=0.5, the T=7 line
wraps almost half of the interface [Fig. 23(a)]. The overlap
part between the interface and the 7=7 line becomes obvi-
ously smaller when & becomes larger [é=1: Fig. 24(a); &
=2: Fig. 25(a)], indicating larger temperature variance along
the interface. Therefore, although the lightness of a drop can
reduce its inertia, it can also make the redistribution of tem-
perature inside the drop easier, leading to smaller driving

FIG. 30. The time evolutions of mi-
gration velocities for five runs with
different drop specific heats. Re =1,
Ma;=100, a=1, B=1, and &=1: (1)
solid-circle line: y=0.25; (2) dash-
dotted line: y=0.5; (3) dashed line: y
=1; (4) solid line: y=2.0; (5) solid-
cross line: y=4.0.
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FIG. 31. The isotherm plots of Run A.

force on the drop. For this reason, the doubling of the drop
density does not lead to the halving of the migration speed.
As indicated in Fig. 26, the speed of the £=0.5 run at =50 is
only 11.5% faster than that of é=1, and the speed of the &
=1 run at =50 is only 21.6% faster than that of £=2.

Phys. Fluids 20, 082101 (2008)
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FIG. 32. The isotherm plots of Run B.

D. The influence of y

In the experiments of thermocapillary migration, the spe-
cific heats of both liquids are normally very close to each
other. For example, in the widely adopted vegetable oil and
silicone oil experimental system, the specific heats of two
liquids are very close (vegetable oils vary from
1to1.38kJ/Kg°C; DOW-Corning DC200 5cs: C

P
=1.34 kJ/K g °C). This is the reason why we assume y=1
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in the other parts of the paper. On the other hand, the role of
v is also very interesting. We will make the value of y vary
around 1, and all other nondimensional parameters remain
the same: Re;=1, Ma; =100, a=1, B=1, and é=1.

The major difference on the temperature contour plots
with different values of y can be found in the contour lines
below the drops. The temperature contour lines are all
straight at the beginning of the simulations, and the migra-
tion of drops will then change those lines surrounding the
drops. For smaller values of 7, the contour lines soon be-
come straight again after drops pass, but not for those larger
values of . At t=29, the contour line near the drop-starting
point of the y=0.25 run (z=6.0) has already become straight
again [Fig. 27(a)], but that of the y=4.0 run does not re-
straighten until =74 [Fig. 28(e)]. When 1y is larger, the spe-
cific heat of the drop is also higher, which means that the
background liquid will consume more energy to heat the
drop up. As a result, when 7 is larger, it will take more time
for the temperature field below the drop to re-establish the
originally constant temperature gradient.

Larger specific heats also mean that the temperature
fields inside the drops are less influenced by the temperature
fields of the background liquids, so the temperature differ-
ences along the interfaces are not so dramatic (e.g., Fig. 29),
and accordingly the drops move more slowly (Fig. 30).

V. THE INFLUENCE OF INITIAL CONDITIONS

Since many experimental studies related to thermocapil-
lary migrations involve transient phenomena, it is worth-
while to investigate the influence of initial conditions. Nor-
mally, people will inject the drop from a container with
constant temperature into the bottom of the experimental
field. If the injecting and releasing processes of the drop are
very short, it is reasonable to assume the initial temperature
inside the drop is a constant.

In this section, we consider four runs with the same set
of parameters: Re;=1, Ma,; =100, a=1, 8=0.5, é=1, and y
=1. Most initial conditions remain the same as those before,
and the only difference is the initial temperature field inside
the drop:

run A: Tlg=To/(|VTIR) - 1, (27)
run B: Tl =Ty/(|VT|R), (28)
run C: Tl =Ty/(IVTIR) + 1, (29)
run D: Tleg=To/(|VTIR) + z/R. (30)

It is clear that run D still starts from the classical initial
condition [see Eq. (26)], while the initial drop temperatures
of Runs A, B, and C are constant. Since we define z=0 at the
drop center, the initial drop temperatures of runs A, B, and C
are actually the initial temperatures at the bottom, in the
center, and on the top of the drop in run D.

It is predictable that the initial conditions of our simula-
tions will not affect the final steady motion since all nondi-
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FIG. 33. The isotherm plots of Run C.

mensional numbers are the same. All temperature fields look
like the same after T=40 (see the last two plots of Figs.
31-34).

There is obvious difference in the time evolution of the
migration speeds of four runs (Fig. 35). Because the initial
temperature variances of the three new runs (Runs A-C)
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along the interface are much smaller than that of the tradi-
tional one (run D), the new runs show much smaller fluctua-
tions in migration velocities at the beginning of the simula-
tions.

It should be noticed that the temperature contours of the
background liquid of run A have quite similar shapes
throughout the simulation (Fig. 31), which means that the
driving force of the drop is almost a constant. Hence, run A
has the smallest fluctuation in the time-speed plot (Fig. 35).

Although the overshoot phenomenon in migration veloc-
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FIG. 35. Time evolutions of drop migration velocities with four different
initial conditions.

ity has been reported several times in previous numerical
studies, and there is some real physical mechanism behind
this phenomenon as discussed earlier in this paper, so far as
we know, there have not been any experimental publications
claiming to have observed this phenomenon. Hence, maybe
the new initial conditions in this subsection are more suitable
to be adopted to explain the results from experiments in the
future.

VI. CONCLUSIONS

In this paper, we numerically investigate the thermocap-
illary migration phenomena of nondeformable spherical
drops. To sum up, we can conclude the following.

e The values of Ma, and Ma, (or 8) have obvious influ-
ence on the velocity of the drop. Large Ma number can
significantly change the temperature distribution on
the interface of the drop, resulting in the undulation of
the drop velocity.

* Re, has direct impact on the migrating process, while
it has almost no impact on the final velocity. When
Ma, is fairly large, the increase in Re; leads to slightly
bigger final velocity.

* Re, or « is the most important factor in our study
because it has obvious influence on both migrating ve-
locity and migrating process, and the enlargement of
the drop speed caused by bigger Re, is higher than
linear growth.

The changes on the value of £ and y combined with the
variance of four other parameters (Re;, Ma,, a, ) have not
been fully discussed to avoid the lengthiness of this paper. In
the future, before starting to work on the real three-
dimensional migration of the drop and the interaction
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between multidrops, we need a thorough investigation on the
situations associated with more possible values of the six
nondimensional numbers discussed in this paper, and also
longer simulation times to reach the final steady states in all
cases.
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