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This paper reports a comparative study of shear banding in BMGs resulting from 
thermal softening and free volume creation. Firstly, the effects of thermal softening 
and free volume creation on shear instability are discussed. It is known that ther-
mal softening governs thermal shear banding, hence it is essentially energy related. 
However, compound free volume creation is the key factor to the other instability, 
though void-induced softening seems to be the counterpart of thermal softening. 
So, the driving force for shear instability owing to free volume creation is very dif-
ferent from the thermally assisted one. In particular, long wave perturbations are 
always unstable owing to compound free volume creation. Therefore, the shear 
instability resulting from coupled compound free volume creation and thermal 
softening may start more like that due to free volume creation. Also, the compound 
free volume creation implies a specific and intrinsic characteristic growth time of 
shear instability. Finally, the mature shear band width is governed by the corre-
sponding diffusions (thermal or void diffusion) within the band. As a rough guide, 
the dimensionless numbers: Thermal softening related number B, Deborah number 
(denoting the relation of instability growth rate owing to compound free volume and 
loading time) and Lewis number (denoting the competition of different diffusions) 
show us their relative importance of thermal softening and free volume creation in 
shear banding. All these results are of particular significance in understanding the 
mechanism of shear banding in bulk metallic glasses (BMGs). 

metallic glasses, shear bands, diffusion, instability 

1  Introduction 

Bulk metallic glasses (BMGs) have attracted large interest due to their unique physical, mechanical, 



 

and chemical properties[1－3]. Localized shear bands are particularly important in metallic glasses, 
because they are observed under various loadings and may limit the application of bulk metallic 
glasses as structural materials[4]. For a long time, there have been two types of mechanism pro-
posed to explain shear bands in BMGs: the creation of free volume[5－8] and thermally assisted 
softening[9,10]. Both have had some subtle evidence analytically, experimentally and numerically. 
For instance, early in the 1970s, Spaepen and his co-workers indicated that shear-induced dilatation 
could reach dynamic equilibrium with no temperature rise[5,7]. Pampillo and others[11,12] provided 
experimental evidence for such a structural change at shear bands.  

Experimentally, Bruck, Rosakis and Johnson[13], and Hufnagel et al.[14] reported the dynamic 
compressive behavior of Zr41.25Ti13.75Cu12.5Ni10Be22.5 at strain rates of 102 to 104 s−1 by using a split 
Hopkinson pressure bar. A high-speed infrared thermal detector was used to determine whether 
adiabatic heating occurred during dynamic deformation of the metallic glass. They found that “no 
adiabatic heating occurs before yielding”. However, they observed that “temperature increases 
because adiabatic heating occurs after the onset inhomogeneous deformation”. Then, “temperature 
near the melting point may be approached within shear bands after the specimen has failed”. Re-
cently Lewandowski and Greer[15] showed that the temperature, over a few nanoseconds, could rise 
as high as a few thousand Kelvin, based on a fusible coating. However, they indicated that “nev-
ertheless, the temperature rise does not seem to control the shear band thickness. It is important to 
understand the mechanisms of shear banding and associated softening because these are the prin-
cipal factors limiting structural applications of bulk metallic glasses”. In the same issue, Spaepen 
wrote a note on this matter and raised the question: Must shear bands be hot in metallic glasses?[16]. 

In numerical studies of their MD simulations, Falk and Shi[17] demonstrated that “strain local-
ization occurs in this system despite a lack of a measurable decrease in density”. But they pointed 
out that “this may be an artifact of the simulation”. “Density fluctuations and small system size 
prevent us from directly detecting density changes smaller than approximately 3%. However, this 
does indicate that density changes in the shear band region can be quite subtle and may not be the 
most salient detail of the process that leads to localization”. Nevertheless, “nanometer sized voids 
are observed to form dynamically during the localization of strain”.  

Theoretically, a number of works analyzed shear instability and localization owing to free 
volume creation (Steif et al. 1982, Huang et al. 2002)[7,8]. However, the shear instability relevant to 
both thermal softening and free volume creation was reported only recently, such as by Dai et al. 
(2005)[18].  

Based on these references, this paper intends to make a comparative study of the effects of 
thermo-softening and free volume creation on shear banding in BMGs. In accord with the analysis 
of the two mechanisms and their magnitudes, their relative importance at different stages of shear 
banding, i.e. instability, growth and mature feature, is demonstrated. 

2  Governing parameters and temporal-spatial scales 

In accord with continuum mechanics, the system of equations governing the simple shear involving 
thermal softening and free volume creation is as follows: 

 
2 2
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where t is the time, y is the axis vertical to shearing, ρ the density, γ the shear strain, γ  the shear 

strain rate, τ the shear stress, θ  the temperature, ξ the free volume fraction, κ the thermal diffusivity, 
Cv the specific heat, K the fraction of plastic work converted into heat, D the diffusivity of free 
volume and G the combined rate of generation and annihilation of free volume. Actually, the 
equations are the momentum equation, the energy equation (thermal diffusion), the free volume 
diffusion and the thermo-plastic constitutive equation, respectively. In order to analyze shear in-
stability, we define some variables based on homogeneous deformation as follows: Strain hard-
ening ( / )Q τ γ= ∂ ∂ , strain rate hardening ( / )R τ γ= ∂ ∂ , thermal softening ( / )P τ θ= − ∂ ∂ , free 
volume softening ( / )F τ ξ= − ∂ ∂ , compound creation of free volume (in accord with the definition 

of compound damage made by Davison and Stevens 1972[19]) ( / )G Gξ ξ= ∂ ∂ , and other two free 

volume related variables ( / )G Gθ θ= ∂ ∂  and ( / )G Gτ τ= ∂ ∂ . Based on the data available, here-
after, we qualitatively assume all these variables be positive, though some variables may not al-
ways be. For instance, it is reported that there is strain rate softening for strain rates greater than 
3×103/s−1 in Zr metallic glasses[13]. To facilitate the following analysis and estimation of shear 
banding, Table 1 lists some typical values of these parameters and variables of BMGs. It is worthy 
to note that the order of magnitude of free volume creation G and its derivative Gξ  is just a rough 
estimate from references and more accurate knowledge of the function is badly needed. 
 
Table 1  Parameters and the range of variables 

         Property    Value         Ref. 
Density ρ (kg·m−3) 5.9×103 Conner et al. (2000)[20]

Specific heat cp (J·kg−1·K−1) 532, at θg  Conner et al. (2000)[20]

Viscosity (kinetic) ν (m2·s−1) 
∼10−3, at 1000 K 

10−3, θ <θg 
Conner et al. (2000)[20]

Wang et al. (2004)[3]

Thermal diffusivity κ (m2·s−1) 3.5×10−6 Conner et al. (2000)[20]

Free volume diffusivity D (m2·s−1) <10−16 Wang et al. (2004)[3]

Free volume creation Gξ (s−1) ∼>100 Huang et al. (2002)[8]

Free volume ξ  ∼10−2 
Liu et al. (2005)[21,22]

Huang et al. (2002)[8]

Strain at yielding γ  10−2 
Conner et al. (2000)[20]

Liu et al. (2005)[21－23]

Strain rate γ  (s−1): static  
                    dynamic  

∼<10−3 

∼103 
Conner et al. (2000)[20]

Liu et al. (2005)[21,22]

 
Linear perturbation to the system of governing eqs. (1 －) (4) gives the following characteristic 

equation for α[24]:  
  (5) 4 3 2

4 3 2 1 0 0.a a a a aα α α α+ + + + =

Importantly, α is the reciprocal of characteristic time and describes the exponential growth (when α 
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has a positive real part) or decay (all real parts of α are negative) of perturbations eαt+iky, where k is 
the wave number. For the coupled case, i.e. involving both thermal softening and free volume 
creation, the coefficients ai of eq. (5) are  

 4 1,a =  (6) 

  (7) 2
3 [ ( ) ] /v va C Dk G C G Fξ τβ ρ ρ ρ= + − + ,vC

2 ,

ρ

,ρ

  (8) 2 2 2
2 [ ( ) ] / va k Dk G k G F K G F Cξ τ θω ρβ ρλ γρ ρ= + − + +

  (9) 2 2 2 2
1 [ ( ) ] / ,va k Dk G Qk K G F Cξ θω λ τ= − + −

  (10) 4 2 2
0 ( ) / va k Q Dk G Cξλ= −

where  and 2 2
vK P k RC kβ γ λ= + + 2 .vRk C Q K Pω λ ρ τ= + −  

Clearly, at the short wave limit (wave number k→∞), uniform deformation always remains 
stable. This is due to the fact that its characteristic equation has the following coefficients: 

 4 1,a =  (11) 

  (12) 2
3 ( )v va RC C D kλ ρ ρ= + + / ,vC

,v

,

.

  (13) 2 2
2 [ ( ) ] /va R RC D k Cλ ρ λ ρ= + +

  (14) 6 2
1 / va RDk Cλ ρ=

  (15) 6 2
0 / va QDk Cλ ρ=

Obviously, only the last two coefficients a1 and a0 have the highest order k6. Hence, α has a nega-
tive solution only: 

 / .Q Rα = −  (16) 
So homogeneous deformation is stable under very short wave perturbations and the characteristic 
time to relax to the stable deformation is 1/ /

RQ

t α= = R Q

Q

. Hence the relaxation time tRQ is an 

intrinsic time scale for the material under consideration. In particular, all the variables relevant to 
softening, such as thermal softening P, void softening F, as well as compound creation of free 
volume Gξ, do not appear in the characteristic equation at the short wave limit.  

Actually, the parameters and variables involved in the process imply several time and length 
scales. The relevant time scales are: The relaxation time , the external time scale /RQt R=

ex /t γ γ=  and the time related to compound free volume creation 1/Gt Gξ= . Later, we will see 

that tG is closely related to the instability growth owing to the free volume creation. From the 
definitions, one can notice . From Table 1, ex~RQt t ex /t γ γ=  is in the order of 101 or 10−5 s 

under quasi-static or dynamic loadings, respectively, and 1/Gt Gξ=  is in the order of 100 s and 

may vary with strain rates. Importantly, these time scales lead to some time-related dimensionless 
numbers. Deborah number is the most popular and important time-related dimensionless number: 

 
ex

relaxation time .
observation time

t
De

t
τ= =  (17) 

De 1 implies that one can see the asymptotic state of the intrinsic relaxation, but when De 1, 
one can see the very early stage only. Clearly, one can see the whole relaxation process, only when 
De∼1.  
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For the case under consideration, the following two Deborah numbers may be relevant to our 
discussions. The first is 

 
ex

~ (1),RQt
De O

t
=  (18) 

indicating that the relaxation to stable deformation matches the external loading. The second is 

 
ex

~G
G

t
De

t Gξ
.γ

γ
=  (19) 

According to the order of magnitude listed in Table 1, DeG may be in O(1) for quasi-static 
process and may be much greater than O(1) under dynamic loading. Hence, as shown later, shear 
banding governed by free volume creation is preferred under static loading, but may be invisible 
under the dynamic one. Again, we should stress that the statement is based on the data listed in 
Table 1, but accurate data of Gξ  are badly needed, otherwise the route of shear banding can hardly 
be clarified. 

On the other hand, at a fixed time scale, for instance, the relaxation time tRQ, there are three 
length scales, corresponding to three different diffusions (viscosity, heat and mass). They are 

2 2 2
D

R Rl l l
Q Qν κ

DR
Q

ν κ
= = = , since generally the kinetic viscosity ν > heat diffusion κ > free 

volume diffusion D, seen in Table 1. Incidentally, the above mentioned short wave approximation 
requires  

 2
2

min

1 1~k .
Dtl

 (20) 

Also, the Lewis number 

 1.Le
D
κ

=  (21) 

This demonstrates that the characteristic length scale related to thermal diffusion is greater than 
that of the free volume one at a fixed time scale. As shown later, one can notice that these time and 
length scales will appear and play essential roles again and again, at various stages during shear 
banding.  

The other important issue is that the above parameters constitute one dimensionless number 
relevant to energy, that is   

 .
v v

KP K PB
C Q C Q

τ τγ θ
ρ ρ θ γ

Δ
= =

Δ
 (22) 

This number indicates how much the thermal softening PΔθ takes over the strain hardening Qγ, 
owing to the temperature rise Δθ resulting from plastic work τγ. 

We will come back to the implications of these time and length scales as well as dimensionless 
numbers later. 

3  Comparison of shear banding due to free volume creation and ther-
mal softening 

3.1  Shear instability 

Firstly, the shear instability is examined due to thermal softening and free volume creation, re-
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spectively. Later for simplicity, we use T-instability for that owing to thermal softening and 
V-instability for that owing to free volume creation. For either T- or V-instability, their corre-
sponding characteristic equations become a cubic equation: 

 3 2
2 1 0 0.a a aα α α+ + + =  (23) 

Then, in accord with the Routh-Hurwitz criterion for stability, as soon as any of the following three 
inequalities violates, instability may occur, 

  (24) 2 0,a >

 2 1 0 0,a a a− >  (25) 

  (26) 0 0.a >

For the case of thermally-assisted softening,  
  (27) 2 2

2 / ( ) /v va C K P k RC kβ ρ γ λ ρ= = + + ,vC

,v

.

  (28) 2 2 2 2 2
1 / ( ) /v va k C k Rk C Q K P Cω ρ λ ρ τ ρ= = + −

  (29) 4 2
0 / va Qk Cλ ρ=

Though instability depends on a complicated combination of variables, a simple indication of the 
instability can be deduced at the adiabatic limit[25]: 

 .  (30) VK P C Qτ ρ>

This is exactly the requirement of dimensionless number B > 1. Therefore, T-instability is essen-
tially an energy related one. On the other hand, for the case of free volume creation, 

  (31) 2 2
2 ( ) /a Dk G Rk G Fξ ρ= − + + ,τ

, 2 2
1 [ ( )] /a k Q R Dk Gξ ρ= + −  (32) 

 2 2
0 ( )a k Q Dk Gξ / .ρ= −  (33) 

One can easily see that the term (Dk2−Gξ) plays a key role in instability, since only this term can 
change the sign of the coefficients. Clearly, provided (Dk2−Gξ) is negative, instability may occur, 
i.e. 

 k2 < Gξ /D. (34) 
So, long wave perturbations k2<Gξ /D always lead to instability. This is very different from thermal 
softening. Also, this is not energy related, but relevant to the so-called compound creation of free 
volume Gξ. Or say, the compound creation of free volume Gξ (with dimension of inverse time) is 
the power to motivate the instability, other than the softening owing to free volume F. In this aspect, 
the key role of compound creation of free volume Gξ in V-instability is similar to that in damage 
localization[26,27]. For very long wave perturbation (k→0), even slight compound creation of free 
volume Gξ can trigger the instability. For instance, for a small test piece (10−3 m), as long as Gξ > 
Dk2∼10−16/10−3×2∼10−10 s−1, the instability will appear. So, it seems that the free volume creation 
provides an easier way for instability to occur than thermal softening.  

Now we can turn to the coupled case, eqs. ( －6) (10). Notice that the coupling effect appears in 
the term of ω (Dk2−Gξ) in coefficient a1, as the case of thermal softening. However, unlike the case 
of thermal softening, there is a key term (Dk2−Gξ) in the coefficient a0, like the case of free volume 
creation. Therefore, for the coupled case, the instability may appear more likely as that owing to 
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free volume creation. It is noted that, although the momentum and energy equations are incorpo-
rated into the govern equation group for the coupled thermal softening and free volume creation 
problem, whether instability occurs or not is not explicitly related to the thermal softening ac-
cording to eq. (34). A question naturally arises: Does thermal softening exert no influence on the 
initiation of shear banding instability? The answer is opposite. Actually, these factors markedly 
influence instability in the dynamic case[18]. 

3.2  Growth time of shear instability 

As soon as instability occurs, how fast it grows is the other key issue for shear banding. Again, we 
examine the problem from perturbation approximation to get the estimation of growth time sepa-
rately.  

For T-instability, the approximate growth time can be estimated as[18,25]

 instability
/1/ .

( ) /( ) 1 1
RQ

v

tR Qt
KP C Q B

α
τ ρ

≈ = =
− −

 (35) 

Obviously, at an early stage, i.e. 0 < B−1 1, it grows very slowly. However, provided B − 

G

1 be-
comes O(1), the growth will accelerate to the order of tRQ, namely the relaxation time scale. 

On the other hand, for V–instability, the instability growth would be  
 instability 1/ 1/ .Gt t ξα≈ = =  (36) 

So, the growths in the two instabilities are quite different. From the data in Table 1, the corre-
sponding time might be tG ∼100 s. This seems to be able to compare with the time scale tex∼101 s for 
static tests, but too long for dynamic tests with time scale tex∼10−5 s. If so, combined with the dif-
ference of instability occurrence, a probable picture of shear instability might be as follows. At first, 
compound free volume creation triggers the instability and governs its early stage. Afterward, shear 
banding may be governed by free volume creation, provided the loading time is long enough in 
comparison with the intrinsic time scale tG (like static loading) and there is still not enough plastic 
strain to trigger thermal instability. Or it may appear as a thermo-assisted one at a later stage, once 
thermal softening can accelerate instability growth with the increase of plastic deformation, espe-
cially for the short loading time (μs－ms) under impact (see eq. (35)). Certainly, the most uncertain 
issue involved in the estimation is the magnitude of the compound free volume creation G(ξ ). Now, 
we turn to bandwidth estimate, to see if there is a further verification of the picture. 

3.3  Width of shear bands 

Since most experimental observations are post-mortem patterns of shear bands, it is useful to get 
some estimation on mature shear bandwidth and to make comparison to the observations. Based 
on basic eqs. (1)－(4), the late stage steady equations and band-like solutions for the two cases 
are (to facilitate comparison, the following two columns corresponding to thermal softening and 
free volume creation, respectively):  
T-banding: 

 
2

2 0,K
y
θλ τγ∂

+ =
∂

 (37a) 

 ( , ), 0,g
y
τγ τ θ ∂

= =
∂

 (37b) 
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V-banding: 
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y
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 (38b) 

 d ,
2 ( , , )d

m

m

Dy
G

ξ

ς ξ

ς
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where λ=ρ Cvκ is thermal conductivity, y is the coordinate vertical to the band and subscript m 
denotes the value at the center of the band. Clearly, there is a similarity between thermal and free 
volume diffusions in the steady solutions. However, the difference is distinctive: Their integrands 
are different. One is the strain rate, namely external time scale, and the other is the free volume 
creation G, namely an intrinsic one. Then an oversimplified but simple expression of the shear 
bandwidth in the two cases could be written as 

 
** *

T * *~ ~
*
vC

K
ρ θ

* ,γ γδ κ κ
γ τ γ γ

 (39) 

 
*

V *~ D
G

,ξδ  (40) 

where * denotes the values within the band. From the data available in Table 1, δ T ∼μm and δ V 

∼nm, respectively. The existing experimental results have shown that the shear bandwidth in 
BMGs is ≤10－20 nm[28]. Obviously, the thermal shear band width is much larger than the ex-
perimentally measured shear bandwidth. But the shear band resulting from free volume creation 
can match the experimental results well. The comparison between δ T and δ V demonstrates that 
free volume creation may be the key factor to shear banding in BMGs. Note that δ T/δ V is quite 
relevant to Lewis number, except involving different time scales for different diffusions, /γ γ  
and ξ/G, respectively. For the coupled case, the instability may appear more likely as that owing to 
free volume creation, but thermal softening does exert influence on the initiation of adiabatic shear 
banding instability. The shear bandwidth may lie between δ T and δ V, i.e. T T+V Vδ δ δ> > . 

3.4  Comparisons of the calculated shear bandwidth 

Whether is it thermal softening or free volume creation plays a key role on shear banding in 
BMGs? Although the preliminary confirmation from the instability criterion demonstrates that, as 
the compound free volume creation over its diffusion, the shear instability can occur and lead to 
shear banding, the existing experimental methods cannot measure those key parameters related to 
shear banding now, especially for G. Only the shear bandwidth and qualitatively increased free 
volumes in the mature shear bands can be observed by HRTEM. Therefore, numerical computa-
tions have become a valuable mean to study shear banding in BMGs. The closely related picture 
of shear banding could be deduced by the comparison between numerical and experimental re-
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sults. Based on the governing eqs. (1)－(4) for one-dimensional simple shear of BMGs, the shear 
banding is computed under thermal softening, free volume creation and coupled thermal and free 
volume creation-softening, respectively.  

The initial value of free volume concentration is set and its evolution is ignored in the compu-
tation of the thermal softening case. Oppositely, the temperature keeps constant and the evolution 
of free volume concentration must be accounted in the free volume creation case. In the coupled 
thermal and free volume creation-softening case, the evolutions of both temperature and free 
volume concentration are computed. The computation results for the three cases are given in Fig-
ure 1. Clearly, the mature shear bands under these cases have their own apparent characteristics. 

Firstly, the shear band resulting from thermal softening is much wider than that resulting from 
free volume creation or the coupled case. Among these results, the width of shear band resulting 
from free volume creation is almost equal to that from the coupled case, i.e. . 
This is closely equal to the experimental observations

10 ~ 10 nmDw l≈
[28]. However, the width of shear band re-

sulting from thermal softening is  and is much larger than that from the 
experimental observations. The significant difference among T-shear band, V-shear band and 
experimental results indicates that free volume creation is the key factor to shear banding in 
BMGs, not the thermal softening. The fact that the shear strain in the shear band resulting from 
the coupled case is larger than that from free volume creation demonstrates that adiabatic heating 
promotes the formation of shear bands in BMGs. Secondly, the shear strain in the shear band re-
sulting from free volume creation is larger than that from thermal softening at the same whole 
deformation, demonstrating that free volume creation-softening is more intensive than thermal 
softening, and will easily lead to damage or failure of BMGs. This tendency may be one of the 
reasons leading to brittle fracture of BMGs. 

250 ~ 250 nmDw l≈

 

 
 

Figure 1  The computed results under thermal softening, free volume creation and coupled thermal and free volume crea-
tion-softening. 
 

4  Discussion 

The main differences of the two mechanisms of shear banding, i.e. thermo-softening and free 
volume creation, can be summarized as follows:  
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(1) Thermal assisted shear instability and its growth rate are governed by thermal softening 
and are energy related, i.e. B > 1; but the free volume instability is governed by the compound 
free volume creation Gξ > Dk2 and not energy related. This implies that the perturbations with 
long wave length k2 < Gξ /D will always lead to instability. So, V-instability may occur more eas-
ily than T-instability. Accordingly, the T & V coupled instability may appear more like 
V-instability. The analysis is different from Huang et al.’s model[8] which only focuses on 
quasi-static deformation and ignores temperature effects. So, their model can hardly provide the 
comparative understanding of shear banding with various time scales and temperature effects. 
Furthermore, considerable research works have demonstrated that the formation of shear bands in 
BMGs is a rate-dependent process[21,22,29－33]. Especially, the more obvious melting characteristics 
on the fracture surfaces in dynamic test than in the quasi-static case on BMGs[20－22] demonstrate 
the difference of temperature effect on the shear banding between static and dynamic cases. So, 
the coupled and comparative analysis, provided in this paper, on the shear banding with both 
adiabatic hearting and free-volume creations in BMGs is of scientific significance. 

(2) There are various characteristic time scales. Importantly, V-instability grows with its own 
“clock”, i.e. tG=1/Gξ; whereas T-instability grows with the relaxation time regulated by how far 

beyond instability, tRQ/(B − 1). So, the Deborah number 
ex

~ (1), dynami
~ ~

~ (1), static
G

G
Ot

De
Ot Gξ

γ
γ

<⎧
= ⎨

⎩

c
 

may be a measure of the observability of V-instability.  
To briefly sum up the above results on shear instability and its growth, Figure 2 gives a sketch. 

For simplicity, it shows situations under long wave assumption, also adiabatic assumption only. 
For the cases with B 1, shear band would appear more probably by thermal softening (the up-
per part of the sketch). On the other hand, only DeG ∼< 1 can allow V-instability to grow to be-
come visible during the loading time (left down corner of the sketch), though V-instability can 
occur on the whole plane of the sketch under long wave assumption. 
 

 
 

Figure 2 A sketch of shear banding owing to thermal softening (characterized by B) and/or compound free volume creation 
(characterized by DeG), under long wave assumption (also adiabatic assumption). The dashed line indicates the threshold for 
T-instability, i.e. B > 1; whereas V-instability (DeG > 0) does not need such a threshold. The two partially overlapped darker 
regions, denoting the growth fast enough to be visible, imply the two probable types of shear banding. 
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(3) The mature shear bandwidth δ is governed by corresponding diffusions within the band: 

thermal and free volume diffusions, T
*~
*

γδ κ
γ

 and V
*~
*

D
G
ξδ . Note that the time scales are 

different: The former depends on external time, and the latter on its own time scale ξ /G. Though 

the time difference is significant, as a rough guide, Lewis number 1Le
D
κ

=  implies the great 

difference of the band width. 
After taking the magnitudes of various parameters and variables of BMGs into account, a 

probable road map of shear banding in BMGs can be shown in Table 2. 
 
Table 2  A possible road map of shear banding in BMGs 

 Instability Growth Mature width 

B > 1 
adiabatic 
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−⎧>⎪
⎨
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 8
V ~ ~ 10  m  D Y

G
ξδ −  

  Y  observable; ?  hardly observable. 

 
(4) The computed results demonstrate that the width of shear band resulting from thermal sof-

tening is much larger than that of experimental observations. The significant difference between 
T-shear banding and experimental results indicates that the thermal softening is not the key factor 
to shear banding. While the width of shear band resulting from free volume creation is closely 
consistent with the experimental observations. The consistence of shear band width demonstrates 
that free volume creation is the key factor to shear banding. The fact that the shear strain in the 
shear band under coupled thermal and free volume creation-softening is larger than that under free 
volume creation demonstrates that adiabatic heating promotes the formation of shear bands in 
BMGs.  

(5) As the article mentioned, the most uncertain issue involved in the estimation is the magni-
tude of the compound free volume creation G(ξ ). For our analysis, only a general form of free 
volume creation G is adopted, with its magnitude and derivative. At present, the phenomenological 
model on G is based on Spaepen et al.’s works[5,7,8] and the detailed form and its elaborations could 
be found in ref. [5]. Although the free volume model developed by Spaepen et al. was a phe-
nomenological model, it interpreted some experimental results successfully[34－38]. Later, Argon[6] 
argued that the plastic deformation of metallic glasses was the result of thermally activated shear 
transformations around free volume regions under an applied shear stress. In view of the spirit that 
any satisfactory theory of plasticity must include dynamical state variables beyond stress and strain, 
Langer and his coworkers proposed a shear-transformation-zone (STZ) theory of deformation in 
metallic glass recently[39]. One of the most fundamental differences between the previous work[5－7] 
and the STZ theory is that the system is effectively at zero temperature. The transition between one 
state and the other constitutes an elementary increment of shear strain and controls the mechanical 
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properties in BMGs. But, the evolvement of free volume related to the transition is not clearly 
clarified either. Indeed, we do not concentrate our interest on the detailed value of G. These rough 
estimates do not affect the methods proposed by this article to study the formation mechanism of 
shear band in BMGs. We just propose an approach, a new idea. 

Above all, shortly but not accurately, the shear instability resulting from compound free volume 
creation may occur easily but maybe grows slowly and the band looks narrow. Whereas the ther-
mal assisted shear instability can occur only after an energy related criterion (B > 1 under adia-
batic approximation) is met, but its growth can be accelerated to match the external loading and 
the band looks wider than the former. Therefore, for the coupled case, shear instability almost 
always starts with compound free volume creation (the left part of the lower dashed line in Table 
2), and it may grow in the same manner provided its Deborah number DeG ∼ < 1, namely under 
static loading (see the lower dashed line in Table 2). But it may also grow and mature in a coupled 
thermal and free volume creation assisted manner more likely under impact loading (the branched 
upper dashed line in Table 2).  

As mentioned previously, the most uncertain issue is the magnitude of the compound free 
volume creation G(ξ ), which needs further comprehensive examination.  

5  Summaries 

Comparative studies of shear banding resulting from thermal softening, free volume creation and 
coupled thermal and free volume creation-softening are performed to seek the instability criteri-
ons, growth time and characteristics of shear bands in BMGs in the present study. The results can 
be summarized as follows:  

(1) The shear instability of BMGs resulting from thermal softening, free volume creation and 
coupled thermal and free volume creation-softening are studied by a linear stability analysis. Cri-
teria of shear instability of BMGs for the aforementioned cases are achieved.  

(2) A series of governing parameters and temporal-spatial scales governing the shear band 
formation in BMGs are obtained.  

(3) The relationship between nondimensional Deborah number and the T-shear banding or 
V-shear banding is revealed. Furthermore, a sketch of shear banding owing to thermal softening 
and/or compound free volume creation under long wave assumption is proposed. 

(4) Comparative studies among experimental observations, analysis and computed results 
demonstrate that free volume creation plays a dominant role in the formation of shear bands, and 
adiabatic heating softening exerts a secondary influence at dynamic tests in BMGs. 
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