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a b s t r a c t

A more generalized model of a beam resting on a tensionless Reissner foundation is presented.

Compared with the Winkler foundation model, the Reissner foundation model is a much improved one.

In the Winkler foundation model, there is no shear stress inside the foundation layer and the foundation

is assumed to consist of closely spaced, independent springs. The presence of shear stress inside

Reissner foundation makes the springs no longer independent and the foundation to deform as a whole.

Mathematically, the governing equation of a beam on Reissner foundation is sixth order differential

equation compared with fourth order of Winkler one. Because of this order change of the governing

equation, new boundary conditions are needed and related discussion is presented. The presence of the

shear stress inside the tensionless Reissner foundation together with the unknown feature of contact

area/length makes the problem much more difficult than that of Winkler foundation. In the model

presented here, the effects of beam dimension, gap distance, loading asymmetry and foundation shear

stress on the contact length are all incorporated and studied. As the beam length increases, the results of

a finite beam with zero gap distance converge asymptotically to those obtained by the previous model

for an infinitely long beam.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As noted by Timoshenko and Woinowsky-Krieger [1], the
corners of a laterally loaded, simply supported rectangular plate in
general have the tendency of separating from its supports and the
separating of the structure from the support is often called lifting-
off [2–10]. The support of Timoshenko and Woinowsky-Krieger is
assumed to react to both tension and compression [1]. While, such
assumption is motivated more by the desire for mathematical
simplicity than by physical reality [4]. The support material is
often a rather complex medium which may react only to
compression [11] and is thus often referred to as tensionless
foundation [3,9,12] or unilateral support [13,14]. The contact
between the structure and the tensionless support with lifting-off
is often named as unbonded contact [2,5,15], which emphasizes
the property of lifting-off; or as tensionless contact [3,6,7,9,10],
which emphasizes the property of the unilateral response of the
support. There are two ways of formulating the tensionless/
unbonded contact problem: integral formulation [2,6,7,9,16] and
differential formulation [3,10,12–15]. If the support is modeled as
an elastic half-space, in essence it is to solve a Boussinesq problem
and its formulation can only be integral [2,16]. If the support is
modeled as an elastic foundation, its formulation can be either
ll rights reserved.
integral [6,7,9] or differential [3,10,12–15]. Compared with the
differential formulation, the integral formulation and the iterative
algorithm needed to solve the problem are rather lengthyand
complex. On the modeling aspect, the elastic half-space model is
also a mathematically much more difficult elasticity problem than
the elastic foundation one [11].

The elastic foundation model simplifies the elastic continuum
problem by assuming certain relationship between the support
reaction/pressure to its surface displacement. For example, the
Winkler foundation model is to treat the support as if it consists of
closely spaced, independent springs and its pressure is directly
related with the spring elongation/compression. However, such
assumption may sometimes cause the erroneous results, espe-
cially on the stresses inside the elastic continuum. A vivid
example given by Johnson [17] demonstrates that the contact
pressure profile of a sphere derived from the elastic half-space
model and the Winkler foundation model is ellipsoidal and
paraboloidal, respectively. Li and Dempsey [5], Akbarov and
Kocatürk [8] did the comparative study on the tensionless contact
of a plate with a support which is modeled as the Winkler
foundation and the elastic half-space, respectively and the results
obtained from these two modelings are significantly different.
Different elastic foundation models such as Filonenko-Borodich,
Hetényi, Pasternak, Vlasov, Reissner foundation models are
developed as an effort to better capture the characteristics of an
elastic continuum. For the characteristics and development of
different elastic foundation models, reader should refer to Kerr’s
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Fig. 1. (a). The schematic diagram and related coordinate system of the continuous

contact of a beam under a point load P. (b) The discontinuous contact scenario.
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papers [11,18] for details. Among those models, Vlasov [19]
and Reissner [20] models are the ones of approaching the
problem from a continuum point of view. In spite of its conceptual
elegance, Vlasov model faces a difficulty in determining an
unknown parameter controlling the decay of stress inside
the foundation, which results in complex iterative computa-
tion [21]. Reissner starts his model by examining the governing
equations and boundary conditions of an elastic half-space
and obtains relatively simple (as compared with elastic half-
space model) pressure-surface displacement relation by assuming
the in-plane (the plane perpendicular to the foundation
depth direction) stresses are zero [20]. Reissner’s assumption
leads to a conclusion that the shear stresses are constant
throughout the depth of the foundation [11], which is physi-
cally unrealistic, especially for the thick foundation
layer. However, ‘‘in view of the fact that foundation models
are introduced to study the response of the foundation
surface to loads and not the stresses caused within the founda-
tion, this particular deficiency may in general be of no serious
consequence.’’ [11].

The above studies of tensionless contact [2,4–10,12–16] treat
the support either as the Winkler foundation or as an elastic half-
space. Weitsman [3] conducted a comparative study and derived
the analytical solutions for an infinitely long beam resting on a
tensionless Winkler foundation and Reissner foundation, respec-
tively. However, it has been realized that the boundary conditions
used by Weitsman [3] for an infinitely long beam can be
problematic for the finite beam/cylinder case [10,15]. The non-
symmetric solution terms are thrown away by Weitsman [3] with
the assumption that the tensionless contact of an infinitely long
beam is symmetric, which as shown later in this paper, is a very
reasonable assumption. However, when the beam is finite and
loading is asymmetric, this assumption is invalid. Also the gap
distance between the structure and support in above studies
[2–9,12–16] is zero. In the microelectromechanical systems
(MEMS) area, the microstructures contact the substrate due to
capillary force, external pressure or electrostatic force and there is
a gap distance between the microstructure and the substrate
[22–24]. For MEMS devices contact study, it is thus important to
incorporate the gap distance as a parameter into the model
capable of describing the finite-sized structures. This paper
presents a more generalized model on the tensionless contact
of a beam on the Reissner foundation, which incorporates the
beam dimension, gap distance and loading asymmetry as
important parameters in the model. A parameter l which
indicates the contribution of shear stress inside the Reissner
foundation is introduced and varied to show its influence on the
contact. The problem formulation is a differential one which in
essence retains the mathematical simplicity of the elastic
foundation model.
2. Equations of equilibrium and its solutions

As shown in Fig. 1(a), a hinged–hinged beam is separated
from the Reissner foundation with the gap distance of Wo. Ef and
Gf are Young’s modulus and shear modulus of the Reissner
foundation, respectively. P is the concentrated load and the
coordinate system starts at the loading point. L1 and L2 are the
distances from the loading point to the beam left and right ends,
respectively. L ¼ L1 þ L2 is the beam length and EI is the beam
flexural rigidity. H is the layer thickness of the Reissner
foundation. X1 is leftside contact length and X2 is the rightside
contact length (X1 and X2 are positive numbers). The beam will
separate from the foundation once the beam deflection W is less
than the gap distance Wo. The beam deflection W is divided into
the following three regions and the governing equation for each
region holds as follows [3,10]:

EI
d4W1

dX4
¼ 0; W1oWo; �L1oXo� X1

EIGf H3

12E2
f

d6V

dX6
�

DH

Ef

d4V

dX4
þ

Gf H2

3Ef

d2V

dX2
� V

¼ �
H

Ef
PdðXÞ þ

Gf H3

12E2
f

P
d2dðXÞ

dX2
; W2XWo; L1pXpX2

EI
d4W3

dX4
¼ 0; W3oWo; X2oXoL2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(1)

V ¼W2 �Wo and d is the Dirac delta function. The above
governing equation does not account for the beam self weight,
which can be modeled as a uniform load [3]. The above equation
also implicitly assumes the so-called continuous contact scenario
[3]. For the beam with self weight or uniformly distributed
downward load, the beam can have the contact scenario as shown
in Fig. 1(b). As the contact regions in Fig. 1(b) are separated from
one another, the contact scenario is called discontinuous contact
[2]. However, the concentrated load required for the discontin-
uous contact to occur is so large and the beam will collapse at a
much smaller concentrated load. Therefore, it is of no practical use
to analyze such contact scenario [3]. To nondimensionalize Eq. (1),
the following quantities are introduced

k ¼
Ef

H
; b4

¼
k

4EI
; x ¼ bX,

w ¼ bW ; v ¼ bV ; l2
¼

H2b2Gf

48Ef
(2)
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With the substitution of v ¼ w2 �wo, the dimensionless form of
Eq. (1) now is as follows:

d4w1

dx4
¼ 0; w1owo; �l1oxp� x1

l2 d6w2

dx6
�

1

4

d4w2

dx4
þ 16l2 d2w2

dx2
�w2 þwo

¼ �FdðxÞ þ 4l2Fd00ðxÞ; w2Xwo; �x1pxo� x2

d4w3

dx4
¼ 0; w3owo; x2pxol2

8>>>>>>>>>>>><
>>>>>>>>>>>>:

(3)

It is interesting to notice that in the above equation, the
dimensionless gap distance wo plays exactly the same role as
the beam weight in Weitsman’s governing equation [3]. x1, x2, l1,
l2, l, wo, wi (i ¼ 1;2;3) are defined as

x1 ¼ bX1; x2 ¼ bX2; l1 ¼ bL1; l2 ¼ bL2,

l ¼ bL; wo ¼ bWo; wi ¼ bWi ði ¼ 1;2;3Þ (4)

The characteristic equation of w2 in Eq. (3) is as follows:

f6
�

1

4l2
f4
þ 16f2

�
1

l2
¼ 0 (5)

By letting D ¼ f2, Eq. (5) can be written as a cubic equation

D3 �
1

4l2
D2 þ 16D�

1

l2
¼ 0 (6)

The three roots of Eq. (6) can be obtained from Cardan solution
[25]. In this case, the three roots are always that one is real and
the other two are complex conjugates. Therefore, the six roots of
Eq. (5) which are the square roots of those three roots of Eq. (6)
are obtained as follows:

f1;2 ¼ �a; f3;4;5;6 ¼ �Z� gi (7)

a, Z, g are three real number. So there are two real roots and four
complex conjugate roots for Eq. (5). These six roots give the
solution form of homogeneous part of w2. The solutions of Eq. (3)
are now given as the following three equations:

w1 ¼ B1x
3
þ B2x

2
þ B3xþ B4 (8)

w2 ¼ A1 coshðaxÞ þ A2 sinhðaxÞ þ A3 sinhðZxÞ sinðgxÞ

þ A4 sinhðZxÞ cosðgxÞ þ A5 coshðZxÞ sinðgxÞ

þ A6 coshðZxÞ cosðgxÞ þ A sinh jaxj

þ B coshðZxÞ sin jgxj þ D sinhðZxÞ cos jgxj þwo (9)

w3 ¼ C1x
3
þ C2x

2
þ C3xþ C4 (10)

Here Bi, Ci (i ¼ 1–4) and Aj (j ¼ 1–6) are the unknown constants to
be determined. Because the separation points (x1 and x2) are also
unknown, there are total 16 unknowns to be determined. The first
six terms in Eq. (9) are the homogeneous solution and the last
three terms are the particular solution. A, B and D are the three
constants given as follows:

A ¼
4Fðg4 � Z4Þ

aD̄
; B ¼

Fða4 � Z4 þ 10Z2g2 � 5g4Þ

gD̄
,

D ¼
Fð�a4 þ g4 � 10Z2g2 þ 5Z4Þ

ZD̄
(11)
With the following definition of D̄ as

D̄ ¼ ðZ2 þ g2Þ½a4 � 2a2ðZ2 � g2Þ þ ðZ2 þ g2Þ
2
� (12)

Here it would be instructive to have a comparison with Weits-
man’s formulation/solution on this problem. Geometrically,
Weitsman’s beam length is infinite and the gap distance is zero
(wo ¼ 0) [3]. Weitsman’s governing equation is only for the
contact part and his solution is the following:

w2 ¼ A01 coshðaxÞ þ A03 sinhðZxÞ sinðgxÞ þ A06 coshðZxÞ

� cosðgxÞ þ A sinh jaxj þ B coshðZxÞ sin jgxj

þ D sinhðZxÞ cos jgxj (13)

A01, A03 and A06 are three unknown constants to be determined. The
reason for the above solution is due to the assumption that the
contact area is symmetric to the concentrated load, which is also
selected as the coordinate origin. The functions associated with
A01, A03, A06, A, B and D are all even functions. Those terms of odd
functions are thrown away because of this symmetry assumption.
For a beam with finite length and the concentrated load off the
center, Weitsman’s solution above cannot be valid any more and
those terms associated with odd functions survive. However, as
discussed later, when the beam length is large, those odd function
terms do not contribute much to the solution, in other words,
Weitsman’s solution is a very good approximation.
3. Boundary/matching conditions

As mentioned above, there are total 16 unknowns to be
determined (Bi, Ci (i ¼ 1–4), Aj (j ¼ 1–6) and x1, x2). Therefore, 16
boundary/matching conditions are needed for the problem solving.

At x ¼ �x1, x2, the beam separates from the elastic foundation
and different governing equations apply as reflected from Eq. (1)
or Eq. (3). Certain conditions must be satisfied for w1, w2 and w3

to match each other. The following two equations give the eight
matching conditions:

w1ð�x1Þ ¼ w2ð�x1Þ;
dw1ð�x1Þ

dx
¼

dw2ð�x1Þ

dx
,

w2ðx2Þ ¼ w3ðx2Þ;
dw2ðx2Þ

dx
¼

dw3ðx2Þ

dx
(14)

d2w1ð�x1Þ

dx2
¼

d2w2ð�x1Þ

dx2
;

d3w1ð�x1Þ

dx3
¼

d3w2ð�x1Þ

dx3
,

d2w2ðx2Þ

dx2
¼

d2w3ðx2Þ

dx2
;

d3w2ðx2Þ

dx3
¼

d3w3ðx2Þ

dx3
(15)

Eq. (14) is the geometric conditions which require the continuity of
the beam deflection and its slope at the separation points.
Physically, Eq. (14) plays the role of compatibility condition to
guarantee that there is no beam fracture/breaking at the separation
points. Eq. (15) is the natural boundary conditions which require
the continuity of bending moment and shear force. Also at the
separation points, the following two matching conditions hold:

d4w2ð�x1Þ

dx4
¼ 0;

d4w2ðx2Þ

dx4
¼ 0 (16)

At the separation points there is no interaction between the beam
and foundation, Eq. (16) physically states that the pressure stress at
the separation points is zero [3]. There are two displacement
constraint conditions at x ¼ �x1, x2

w2ð�x1Þ ¼ wo ðor w1ð�x1Þ ¼ woÞ,

w2ðx2Þ ¼ wo ðor w3ðx2Þ ¼ woÞ (17)

Eq. (17) prescribes the separation rule that the beam lifts-off from
the tensionless foundation once its deflection is less than the gap
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distance. For a hinged–hinged beam, the boundary conditions at
the ends are as follows:

w1ð�l1Þ ¼ 0;
d2w1ð�l1Þ

dx2
¼ 0,

w3ðl2Þ ¼ 0;
d2w3ðl2Þ

dx2
¼ 0 (18)

Eqs. (14)–(18) offer 16 boundary/matching conditions in total. By
substituting the solution forms of w1, w2 and w3 into those 16
boundary/matching conditions, those 16 unknowns can be found.
Because of the unknown feature of x1 and x2, solving these 16
unknowns is a nonlinear problem and Newton–Raphson method is
applied here.

Again, here let us have a discussion on Weitsman’s boundary/
matching conditions. For Weitsman’s case, there are only four
unknowns, A01, A03, A06 and x1 (x1 ¼ x2 due to the symmetry
assumption). Weitsman’s four boundary conditions are as follows
[3]:

d2w2ðx1Þ

dx2
¼ 0;

d3w2ðx1Þ

dx3
¼ 0;

d4w2ðx1Þ

dx4
¼ 0,

Gf

24

d5w2ðx1Þ

dx5
þ

16dw2ðx1Þ

dx

" #
¼ 0 (19)

The first three boundary conditions indicate no bending moment,
shear force and pressure stress at the separation point. Compared
with Eq. (19), Eq. (15) does not indicate the vanishing of bending
moment and shear force at the separation point. Kerr derives the
matching conditions of a plate on a Pasternak foundation by a
variational approach and his matching conditions are very similar
to those in Eqs. (14) and (15), which explicitly negate the
vanishing of bending moment and shear force as the matching
conditions [15]. The last boundary condition in Eq. (19) indicates
that at separation point there is no shear stress. Here it is worth
discussing this last boundary conditions. This no shear stress
condition at the separation point is originally given by Reissner as
a ‘‘simple and reasonable condition’’ without a proof [20]. Kerr’s
analysis shows that this no shear stress condition ‘‘is valid only in
the very special case when the foundation material under the
finite plate is separated along the cylindrical boundary from the
surrounding foundation materials or walls’’ [11]. The more
generalized boundary condition as a substitution for the no shear
stress condition given by Kerr is as follows [11]:

Dr4V þ
4Ef

H
V � q ¼ 0 (20)

V ¼W �Wo as defined before. r2 ¼ q2=qX2
þ q2=qY2 is the

Laplacian operator and r4 ¼ ðr2Þ
2. For one-dimensional case,

r4 ¼ d4=dX4. D is the plate/beam flexural rigidity and q is a
uniformly distributed external load. Here the beam is weightless,
so q ¼ 0. Also at X2 and �X1, V ¼ 0. Therefore, the dimensionless
boundary condition derived from Eq. (20) is as follows:

d4v

dx4
¼

d4w2

dx4
¼ 0 (21)

This boundary condition has already been used in Eq. (19). It is
noticed that Weitsman’s boundary conditions of Eq. (19) start
with the second derivative and there is no information for the
deflection and slope at the separation point. For the study of the
tensionless Winkler foundation, Weitsman prescribes the vanish-
ing of the deflection and slope as the boundary conditions [3]. It is
also noticed that when Gf ¼ 0, which is the limit case of Winkler
foundation, the fourth boundary condition of no shear stress in Eq.
(19) is automatically satisfied. So there is some inconsistency
here. Weitsman’s formulation focuses only on the contact part and
the formulation presented here considers both contact and lifting-
off parts. However, in the next section Weitsman’s formulation is
demonstrated to be an approximation with high accuracy when
the beam length is very large.
4. Results and discussion

Fig. 2 shows l versus the contact lengths of hinged–hinged
beams with different lengths. The gap distance wo is zero. The
concentrated load F is symmetric, i.e., at the center of the beam, so
the left and right contact lengths are the same (x1 ¼ x2) due to the
symmetry. l is the parameter defined in Eq. (2), which physically
indicates the shear stress contribution to the total foundation
pressure as compared with the normal one. As mentioned before,
the foundation becomes Winkler foundation when l or Gf is zero.
Fig. 2 shows that the beam with longer length has smaller contact
length because longer beam means larger flexurality and more
beam parts lift-off from the foundation. The contact length
decreases with the increase of l and later converges when l is
large enough. For an infinitely long beam with zero gap distance,
Weitsman [3] obtains x1 ¼ p=2 � 1:5708 when l ¼ 0 and x1 ¼

p=2
ffiffiffi
2
p
� 1:1107 as l!1. For the beam of l ¼ 200 computed

here, x1 ¼ 1:58 when l ¼ 0 and x1 ¼ 1:12 as l!1. By further
increasing the beam length l, the contact length asymptotically
converges to Weitsman’s results. When the beam with finite
length and under an asymmetric loading, the left and right
contact lengths are in general different from each other, i.e.,
x1ax2. Fig. 3 shows the beam left and right contact lengths under
an asymmetric loading at l1 ¼ 0:6l and the gap distance is also
zero. Clearly from Fig. 3, the short beam (l ¼ 20) is more sensitive
to the asymmetric loading and its left and right contact lengths
are different from each other. When the beam length increases,
the difference between left and right contact lengths shrinks.
When l ¼ 200 and l ¼ 2, x1 ¼ 1:124 and x2 ¼ 1:127; the difference
between the left and right contact lengths now is very small. The
contact length of the beam under a symmetric loading is x1 ¼

x2 ¼ 1:125 when l ¼ 200 and l ¼ 2. This in essence demonstrates
that the Weitsman’s symmetric assumption for an infinitely long
beam as discussed above is an approximation with high accuracy.
It is noticed that in both Figs. 2 and 3 of wo ¼ 0, the contact
lengths are independent of the magnitude of F. This interesting
and somewhat surprising result is due to the lifting-off mechan-
ism, which also occurs in the Winkler foundation [3,6,9,10] and
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elastic half-space cases [2]. To explain this, let us examine the
beam deflection under different loads. Fig. 4 plots the beam
deflections under two symmetric loadings of F ¼ 0:01 and 0:02,
respectively. Although the loads are different, clearly form Fig. 4
the beam lifts-off/separates from the elastic foundation at the
exactly same points. The larger load F just pushes the beam
deeper into the foundation without the change of contact length.
Fig. 5 plots the beam deflections under two asymmetric loadings
of F ¼ 0:01 and 0:02 (both located at l1 ¼ 0:6l), respectively. The
same scenario happens again that the larger load just pushes the
beam deeper into the foundation without changing either the left
or right contact length.

Fig. 6 plots the dimensionless contact length of the beam with
l ¼ 20 and wo ¼ 0:1 under the different symmetric loads of F as a
function of l. Unlike those in Figs. 2 and 3, the contact lengths in
Fig. 6 are no longer independent on the magnitude of F. For a
comparison reason, the contact length of the same size beam with
wo ¼ 0 is also plotted in Fig. 6. Fig. 6 shows that larger load F has
larger contact length for the beam with wo ¼ 0:1. It is also noticed
that as F increases, the curves of wo ¼ 0:1 approaches the curve of
wo ¼ 0. The curve of F ¼ 0:4 and wo ¼ 0:1 is very close to that of
wo ¼ 0. Again, here it will be instructive for us to examine the
beam deflection under different loads when the gap distance is
nonzero. Fig. 7 plots the deflections of the beam with l ¼ 20, wo ¼

0:1 under the load F ¼ 0:01 for l ¼ 0:1 and 2, respectively. The
contact length is x1 ¼ x2 ¼ 1:3293 when l ¼ 0:1 and x1 ¼ x2 ¼

0:916 when l ¼ 2. As a comparison, Fig. 8 plots the deflection of
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larger symmetric load of F ¼ 0:4.

Y. Zhang / International Journal of Mechanical Sciences 50 (2008) 1035–10411040
the beam with l ¼ 20, wo ¼ 0:1 under a much larger load F ¼ 0:4
for l ¼ 0:1 and 2. The contact length now is x1 ¼ x2 ¼ 1:737 when
l ¼ 0:1 and x1 ¼ x2 ¼ 1:19 when l ¼ 2. The deflections in Figs. 7
and 8 are dramatically different from one another no matter what
l value is. Figs. 7 and 8 demonstrate that for the finite beam with
nonzero gap distance the contact length is dependent on the
magnitude of F. Here it will be more reasonable to use F=wo rather
than F as a parameter to evaluate the contact. When wo ¼ 0, no
matter how small F is, F=wo !1 and this explains why the
contact length of beam with zero gap distance is independent of
the loading magnitude. For the beam with a fixed nonzero wo,
F=wo becomes larger and larger with the increase of F. This can be
used to explain why in Fig. 6 those curves of wo ¼ 0:1 approach
that of wo ¼ 0 with F increasing.

A hinged–hinged beam is used here as the study case. Other
types of beam end boundary conditions such as free–free,
clamped–clamped cantilever ones, etc., can also be studied with
the change of Eq. (18).
5. Conclusion

The contact lengths and deflections of a finite beam with zero/
nonzero gap distance, different lengths and symmetric/asym-
metric loading on a Reissner foundation are discussed. The beam
length and gap distance are vital on determining the contact
length. For a relatively short beam, the loading location is also
very important and the asymmetric loading results in the
difference of left and right contact lengths. When the gap distance
is zero and the beam length becomes larger and larger, the
difference between the symmetric and asymmetric loadings
becomes smaller and smaller; the contact length approaches the
one obtained by Weitsman for an infinitely long beam. When the
gap distance is zero, the contact length of a finite beam is again
demonstrated to be independent of the load magnitude as that of
an infinitely long beam. But that of a finite beam with nonzero gap
distance is demonstrated to be dependent on the load magnitude.
Therefore, F=wo is proposed as a parameter to evaluate the contact
length. For the fixed nonzero gap distance case, the beam contact
length approaches that of the zero gap distance case when F

approaches infinity (so is F=wo).
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