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Abstract

A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of
large Prandtl numbers (4 < Pr < 50). We focus on the relationships between the critical Reynolds number Re,, the azimuthal wave num-
ber m, the aspect ratio I and the Prandtl number Pr. A detailed Re.—Pr stability diagram is given for liquid bridges with various I'. In the
region of Pr > 1, which has been less studied previously and where Re. has been usually believed to decrease with the increase of Pr, we
found Re, exhibits an early increase for liquid bridges with I around one. From the computed surface temperature gradient, it is con-
cluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocap-
illary convection at large Prandtl number, and that the stability property of the basic flow is determined by the “effective” part of liquid

bridge.
© 2008 Published by Elsevier Ltd on behalf of COSPAR.
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1. Introduction

The instability of thermocapillary convection in liquid
bridges has been studied extensively in the last decade
due to its fundamental interest in transition process and
its importance in floating-zone material processing, in par-
ticular under microgravity conditions. For simplification,
early theoretical investigation on thermocapillary instabil-
ity was focused on infinite liquid bridges (Xu and Davis,
1983, 1984). However, the critical Marangoni numbers
obtained from this model are much smaller than those
obtained in laboratory experiments. Theoretical analysis
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of thermocapillary convection and small surface deforma-
tions in finite liquid bridges were provided by Kuhlmann
(1989) and Chen and Roux (1991).

A number of experimental works on thermocapillary
flow in liquid bridges have been carried out by several
research groups (Chun and Wuest, 1978, 1979; Schwabe
et al., 1978; Chun, 1980; Velten et al., 1991; Kamotani
et al., 1984; Yao et al., 1996; Preisser et al., 1983). The
experimental evidence of thermocapillary flow in a liquid
bridge was given by Chun and Wuest (1978) and by Schw-
abe et al. (1978). Chun and Wuest (1979) studied the flow
transition from steady state to oscillatory state in a liquid
bridge under reduced gravity condition. Chun (1980) found
an S-shape distribution of the temperature on free surface
before the onset of oscillation. A microgravity experiment
of liquid bridge with varying aspect ratios during the D2-
Spacelab mission was reported by Carotenuto et al.
(1998). Yao et al. (1997) studied the oscillatory features
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using the drop shaft facility of Japan Microgravity Center.
Very recently, Schwabe (2005) studied the instability of
thermocapillary flow in a liquid bridge with aspect ratio
near the Rayleigh limit (aspect ratio I'=15) during the
flight of the sounding rocket MAXUS-4. By measuring
the temperature distribution on free surface with thermo-
couple, Schwabe found that the critical Marangoni number
would be much closer to theoretical result if the tempera-
ture gradient at the middle point of free surface instead
of the mean gradient of whole free surface is used.

Meanwhile, there are also many numerical works
devoted to the thermocapillary flow and its instability in
liquid bridges during the last decade, e.g. direct three-
dimensional numerical simulations (Levenstam and
Amberg, 1995; Leypoldt et al., 2000; Savino and Monti,
1996), energy stability analysis (Shen et al., 1990; Neitzel
et al., 1991), and linear stability analysis (Neitzel et al.,
1993; Kuhlmann and Rath, 1993; Wanschura et al., 1995;
Chen et al., 1997; Levenstam et al., 2001).

It is now well established that a steady, axisymmetric
(2D) thermocapillary convection loses its stability first to
a steady asymmetric (3D) flow and then to an oscillatory
flow in liquid bridges of small Prandtl numbers
(Pr < 0.06), while it loses its stability directly to an oscilla-
tory flow (3D) in liquid bridges of large Prandtl numbers
(up to Pr=7) (Levenstam et al., 2001). The mechanism
responsible for instability is found to be either purely
hydrodynamic in nature or hydrothermal wave type,
depending on the Prandtl number of the liquid (Wanschura
et al., 1995; Chen et al., 1997). In the range of intermediate
Prandtl numbers (0.05 < Pr < 0.85), the two mechanisms
counteract with each other resulting in a drastic increase of
critical Reynolds number Re. (Levenstam et al., 2001).

To our knowledge, the stability property when Pr> 10
has not yet been studied in detail, presumably for two rea-
sons. First, it is more difficult to compute the thermocapil-
lary flow in liquid bridges of large Prandtl numbers because
a relatively high numerical resolutions required to resolve
thin boundary layers. Second, it has been believed that
the stability boundaries in the range of large Prandtl num-
bers would keep decreasing monotonously according to the
results for 1.0 < Pr < 7.0, as shown by Levenstam et al.
(2001).

In this paper, we show that the stability boundaries exhi-
bit different behaviors in different ranges of large Prandtl
numbers. More specifically, an unexpected increase of
Re, related to the boundary layers formed at both solid
ends is found. Sections 2 contains a brief description of
governing equations and numerical methods. Section 3 pre-
sents numerical results and offers a discussion on behaviors
of Re. and Ma, for liquid bridges of different Pr. Finally,
conclusions are given in Section 4.

2. Governing equations and solution methods

We consider a cylindrical half-zone liquid bridge of
height L and radius R. An imposed temperature difference

AT is applied between two solid ends (Fig. 1). The length,
velocity, pressure and time are scaled by R, VATT, 'VATT and RTZ,
respectively, and the temperature measured with respect to
Ty is scaled by AT, where T is the mean temperature of the
upper and lower ends, u the dynamic viscosity coefficient, v
the kinematic viscosity coefficient, and y the negative tem-
perature gradient of surface tension. In the cylindrical
coordinate (r, 0, z), the thermocapillary flow in a cylindrical
liquid bridge is governed, in dimensionless form, by the fol-
lowing equations (under microgravity condition):

Vov=0, (1)
ov )

a—i—Re(v -V)v=—=Vp+ Vy, (2)
or 1 _,

E+Re(v-V)T—EV T, (3)

where v = (u,v,w) denotes the velocity vector in the cylin-
drical coordinate, p the pressure, 7 the temperature,
Re = ”?% the Reynolds number and Pr = v/« the Prandtl
number.

The boundary conditions are as follows:

1
v =0, TZE’ onz=1, (4)
v=0, :—%, onz =0, (5)
oT
u=0, 5_07 onr=1, (6)
ow oT ovw v 10T
" e o=l (7)

where I' = L/R is the aspect ratio of the liquid bridge.
As in Wanschura et al. (1995), the free surface condition
Eq. (7) is changed into

ow oT ov v 10T

E_Fg (z) =0, 5—;—#;% (z) =0, onr=1,
(8)

where

To+AT/ 2

To-AT/ 2 T

A
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-

R

Fig. 1. Schematic of a floating half-zone bridge.
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In this work, both cases were considered, namely the origi-
nal condition Eq. (7) and the modified condition Eq. (8).
The basic steady axisymmetric state, denoted by

X = {V(/",Z) = Uer + Wez7P(r7Z)7T(r?Z)}

is first determined for a given set of parameters (Re, Pr and
I'), and then small three-dimensional disturbances are
added to the basic state and linearized by neglecting high
orders of disturbances (Kuhlmann and Rath, 1993; Chen
et al., 1997; Neitzel et al., 1993). The disturbances are as-
sumed to be in the normal mode:

v (r,0,z,1) Vv (r,z)
Pr0,z,0) | = | p(r,z) | exp(a™t +im0), (10)
T'(r,0,z,1) T'(r,z2)

where the variables with prime denote the disturbances, m
the azimuthal wave number, ¢”” the complex growth rate
of the corresponding perturbation mode, and i = v/—1.

The discrete form of the linearized equations can be
written as a generalized eigenvalue problem

7(x,X,Re,m,Pr,I") = Ax = ¢BXx, (11)

where x = (u,iv,w,p, T')" denotes a vector consisting of
disturbance velocity, pressure and temperature. A is a
real-valued nonsymmetric matrix, while B is a (singular)
real-valued diagonal matrix. The eigenvalues and related
eigenfunctions of problem Eq. (11) are solved by the Arnoldi
method (Golub, 1996). The critical Reynolds number Re, is
obtained for a given Pr when the maximal real part of ¢
for all m is zero.

It is worth noting that if we use the governing equations
in the form of Eqgs. (1)—(3), then the matrix B = diag{--- —1
—1 —1 —10---} will only have one class of nonzero values,
namely —1 coming from Egs. (2) and (3); zero values in the
diagonal being related to Eq. (1) and to the boundary con-
ditions Eqs. (4)—(7). However, if we use another form of the
energy equation Eq. (3) in our calculation, i.e.

PrEerRe(v.V)T] = VT, (12)
then we will obtain a diagonal matrix B = diag{--- —1 —1

—1 —Pr0---} with two nonzero values (—1 and — Pr), com-
ing from Egs. (2) and (12), respectively. The similar situa-
tion appears with matrix A. Therefore, when Pr>> 1, the
elements of the corresponding rows of A and B are much
larger than the other rows; the numerical property of the
matrixes would become very bad, making the computa-
tions very difficult. Theoretically speaking, the calculated
eigenfunctions of problem Eq. (11) using Arnoldi method
should be orthogonal. By examining the orthogonal prop-
erty of the calculated eigenfunctions of the eigenvalue

T T T T T T
+ + + L 8 844114
+ + + 1Y
0.8} + + + + N wwiry 4
+ + + i i I
+ + + e
06L + + + 4 4 4 b b
N + + + e
+ + + e
04F + + 4 4 b b
+ + + e
+ + + N
0.2+ + + + + R T T S sl g
+ + + N
+ + + e
.
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r

Fig. 2. An example of distribution of the grid points with N, =21 and
N.=36.

problem Eq. (11), it is found that our numerical code by
using Eq. (3) provides much better results compared to that
by using Eq. (12) for large Pr.

In order to well resolve the boundary layers at both
ends, a nonuniform grid with denser points near both solid
ends and free surface is used in this work. Fig. 2 shows an
example of the grid points distribution when the number of
the grid points are N, =21 and N. = 36 at the radial and
axial direction, respectively. The number of grid points
we used in the calculation is, however, much larger: typi-
cally with N, x N, =91 x 125 for I = 1.

The numerical scheme used in the present work is essen-
tially the same as the previous one used by Chen et al.
(1997), except that the energy Eq. (12) was replaced by
Eq. (3) in order to obtain a better performance of numeri-
cal scheme for large Pr. As a further verification of valida-
tion of our numerical code, we reproduced some
calculations of thermocapillary convection in liquid bridge
both for small and large Prandtl for which relatively accu-
rate numerical results exist in the literature, and the results
are in good agreement. For example, at Pr=0.1 and
I' =1, we obtained Re,= 16,250, close to Re.= 16,094
given by Levenstam et al. (2001).

3. Results and discussion
3.1. Liquid bridge with I' = 1

We report first the numerical results for a liquid bridge
of unit aspect ratio. Fig. 3 shows the Re.—Pr plot for
Pr = 4 according to the computed results listed in Table
1. As shown in Levenstam et al. (2001), Re. is very large
at intermediate Prandtl numbers (0.05 < Pr < 0.85), and
monotonously decreases with increasing Prandtl number
when Pr = 0.85. Indeed, this behavior is also found in this
work when Pr < 8. However, our numerical results reveal
that for Pr = 8, Re, first increases with increasing Prandtl
number and then decreases, which exhibits a local maxi-
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Fig. 3. Re. versus Pr for I' = 1. The points “*” correspond to the critical
azimuthal wave number m = 2, and the diamond m = 1. The points with
double size correspond to the original free surface condition Eq. (7),
others correspond to the modified condition Eq. (8).

Table 1
Computed critical Reynolds number Re. and the corresponding azimuthal
wave number m as a function of Prandtl number Pr for I' =1

Pr Re, m Pr Re, m
4 1000 2 28 1310 2
6 890 2 30 1300 1
8 870 2 35 1175 1

10 905 2 40 1075 1

15 1095 2 45 1000 1

20 1227 2 50 930 1

25 1285 2

mum around Pr =~ 28. Correspondingly, the critical azi-
muthal wave number m changes from m=2 to m=1
around Pr ~ 28. Fig. 4 shows the critical Marangoni num-
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Fig. 4. Ma. versus Pr for I' = 1. The points “*”” correspond to the critical
azimuthal wave number m = 2, and the diamond m = 1.
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Fig. 5. Temperature distribution on free surface at the corresponding Re.
for different Pr.

ber Ma(=Re.Pr) as a function of Prandtl number. It is
seen that Ma. increases approximately linearly with
increasing Prandtl number for the same m, but with differ-
ent slopes for different m.

Fig. 5 shows the free surface temperature distribution of
the basic steady axisymmetric state at the critical Reynolds
number Re, for different Pr. The S-shape temperature dis-
tributions, first reported by Chun (1980) in his experiment,
can be clearly noted. The temperature gradient is steep in
the boundary layers formed at the solid ends, and very
small for the most part of the free surface (see also
Fig. 6). For instance, the temperature difference between
z=0.1 and z=0.9 is less than 4L at Pr=15 (Re.=
1095). The boundary layers become thinner with steeper
temperature gradient inside it with increasing Prandtl num-
ber. Correspondingly, the temperature gradient at the rest
of the free surface decreases. The axial velocity distribu-
tions on the free surface as shown in Fig. 7 exhibit similar
behavior with increasing Prandtl number.

Since the disturbances must satisfy the no-slip boundary
conditions at the solid ends, the absolute values of distur-
bances in the boundary layers should be smaller than those
outside the boundary layers. This is indeed as illustrated in
Figs. 8 and 9 from the calculated eigenfunctions of the
problem Eq. (11). It is noticed that the basic state loses
its stability more easily with the disturbances of such eigen-
function since they correspond to the most unstable mode
of disturbances. Therefore, the part of the liquid bridge
with largest disturbances is the most unstable. As a good
estimation, only the disturbances outside the thin bound-
ary layers need to be taken into account (Schwabe, 2005).
From this point of view, it is useful to introduce the idea
of an “effective” part of the liquid bridge in the analysis.
More specifically, we use the temperature gradient at the
middle part of free surface instead of 4L, In the following,
the “‘effective” aspect ratio is denoted as I', and the “effec-
tive” temperature difference (AT)..
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Fig. 9. Distribution of disturbance velocity on free surface of liquid bridge
with I' = 1.0 at Pr = 30, where m = 1. The time step between the pictures
is a quarter of the oscillating period.

As shown in Fig. 6, the dimensionless temperature dif-
ference (AATT)e decreases with increasing Prandtl number,
and a larger Re, is needed to destabilize the thermocapil-
lary flow. However, when Pr is larger than 22, the dimen-
sionless temperature distribution remains nearly the
same, and Re. drops down slowly with increasing Prandtl
number. On the other hand, it is known that the critical azi-
muthal wave number m is mostly determined by the aspect
ratio (Preisser et al., 1983). The larger the aspect ratio (in
our case, the effective aspect ratio), the smaller the critical
azimuthal wave number. As shown in Figs. 5 and 7, the
boundary layers at the two solid ends become thinner with
larger Pr, leading to a larger effective aspect ratio I, so
that the critical azimuthal wave number is decreased from
m=2tom=1.

Finally, as shown in Fig. 3, it is interesting to note that
the computed results obtained by using the original free
surface condition and the modified free surface condition
Eq. (8) do not differ much. A plausible explanation is that
due to the elliptical property of the governing equations,
the recension of the free surface condition near both solid
ends does not affect the result at the middle part of the
liquid bridge. As mentioned above, the transition from
steady state to oscillatory state depends mainly on the mid-
dle part of the liquid bridge, thus the modified free surface
condition does not affect the critical Reynolds number
much.

3.2. Liquid bridges of different aspect ratios

We report here briefly the numerical results for liquid
bridges of different aspect ratios. The computed results
are shown in Table 2. Fig. 10 shows the Re—Pr plot for
various I'. The differences between the Re—Pr plot for var-
ious I" are the location of the local maximum region of Re.
and the critical azimuthal wave number. For example, with
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Table 2
Computed critical Reynolds number Re. and the corresponding azimuthal
wave number m as a function of Prandtl number Pr for different aspect
ratios I’

Pr r Re. m Pr r Re, m
4 1.2 940 2 50 1.2 840 1
6 1.2 895 2 4 0.6 1885 4
8 1.2 965 2 8 0.6 1398 3

10 1.2 1133 2 15 0.6 1280 3

15 1.2 1540 1 20 0.6 1310 3

20 1.2 1285 1 25 0.6 1350 3

25 1.2 1140 1 30 0.6 1385 3

30 1.2 1040 1 35 0.6 1415 3

35 1.2 970 1 40 0.6 1440 3

40 1.2 917 1 45 0.6 1390 2

45 1.2 875 1 50 0.6 1338 2

2000
0]
1800
1600 |
& 1400}
1200+
1000 |
800 L L L L L L L L L

Fig. 10. The Re.—Pr plot for 4 < Pr < 50 (solid line: I' = 1.0; dash line:
I' = 1.2, the dot line: I = 0.6). The circle point corresponds to the critical
azimuthal wave number m =4, the “+” points m =3, the “*” points
m =2, and the diamond m = 1.

I' =1.2, Re. increases when 6 < Pr < 15. There is a local
maximum around Pr & 15, and the critical azimuthal wave
number changes from m =2 to m = 1 with the increase of
Pr around Pr = 15. The peak of Re. in this region is shar-
per than that with I' = 1.

The aspect ratio affects the critical Reynolds number
and the critical azimuthal wave number. Larger the aspect
ratio, smaller the Re. and m, with an early increase region
of Re; and the location of the local maximum. It is found
that the early increase of Re. is sharper for larger aspect
ratio, which may be associated with the quicker develop-
ment of the boundary layers in smaller increase region of
Pr. A further study is needed to explain this behavior.

4. Conclusions

In conclusion, extended plots of Re. and Ma, versus Pr
have been obtained for cylindrical liquid bridges of differ-
ent aspect ratios. For liquid bridge with unit aspect ratio,
we found an unexpected increase of Re. around

8 < Pr < 22, which is associated with the development
of boundary layers at both solid ends. The behavior of
Re. and m relies more on the “effective” part of liquid
bridge beyond the boundary layers. The effect of the aspect
ratio is also studied. The aspect ratio does not change the
qualitative features of the Re. versus Pr plot, but only some
quantitative features, such as the early increase region of
Re.. The present work has been focused on cylindrical
liquid bridges, however, it is well known that the shape
of the free surface, or the volume of the liquid bridge is
another important parameter of the thermocapillary flow
(Chen and Hu, 1998; Chen et al., 1999; Nienhuser and
Kuhlmann, 2002; Hu and Tang, 2003; Shevtsova, 2005).
Therefore, the variation of the critical Reynolds number
with Prandtl number for different volume and aspect ratios,
in particular in the case of large Prandtl number, remains
to be investigated.
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