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Hydrothermal instability of thermocapillary convection
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Abstract

Linear stability analysis was performed to study the mechanism of transition of thermocapillary convection in liquid bridges with
liquid volume ratios ranging from 0.4 to 1.2, aspect ratio of 0.75 and Prandtl number of 100. 2-D governing equations were solved
to obtain the steady axi-symmetric basic flow and temperature distributions. 3-D perturbation equations were discretized at the collo-
cation grid points using the Chebyshev-collocation method. Eigenvalues and eigenfunctions were obtained by using the Q–R method.

The predicted critical Marangoni numbers and critical frequencies were compared with data from space experiments. The disturbance
of the temperature distribution on the free surface causes the onset of oscillatory convection. It is shown that the origin of instability is
related to the hydrothermal origin for convections in large-Prandtl-number liquid bridges.
� 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Instability of thermocapillary convection can be caused
by different mechanisms such as hydrothermal, hydrody-
namic, hydrothermal wave, etc. The hydrothermal instabil-
ity explains that the onset is caused by the temperature
disturbance especially on the free surface. The hydrody-
namic instability explains that the onset is caused by the
velocity disturbance especially when the Reynolds number
is high. The hydrothermal wave instability considers that
the transition is caused by waves on the free surface when
the free surface is deformable. Researchers have performed
experiments and linear stability analysis to investigate the
effects of the liquid volume on the onset of the oscillatory
convection in liquid bridges.

Cao et al. (1992) measured the critical temperature
differences in liquid bridges of 10 cSt silicone oil contained
by rods of 2 mm in diameter by an interference method in
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which a light sheet is used to pass the liquid bridge with a
curved free surface and produce an interference pattern.
They found that the curve of the critical temperature differ-
ence versus liquid volume has two branches, corresponding
to slender and fat bridges, respectively. Further studies of
features of the critical temperature difference versus liquid
volume in liquid bridges confined by rods of 3 mm in diam-
eter were conducted (Hu et al., 1994). It was found that
there is a gap region in the curves of critical temperature
difference versus liquid volume, in which the convection
remains steady when increasing the temperature difference
until the bridge is broken. In their experiments, maximum
of 100 K temperature difference could be obtain which
corresponds to Ma = 10,164. Yao et al. (1997) conducted
microgravity experiment in liquid bridges confined by rods
of 3 and 4 mm diameters using the 10-s drop shaft facility.
Several cases with different liquid volumes were studied
which show that the critical temperature differences are
different in 1-g and microgravity conditions. Albanese
et al. (1995) performed onset experiment during the D2
spacelab mission on the Advanced Fluid Physics Module
(AFPM). A liquid with a relatively high Prandtl number
rved.
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(Pr = 74) was used (5 cSt silicone oil). The critical Marang-
oni number is dependent on the disk diameter. The critical
Marangoni numbers based on the disk radius are 7.6 · 104

and 1.10 · 105 for aspect ratio of 0.75 and disk diameters of
45 mm and 60 mm, respectively. Because of the gravita-
tional effects, the values of the critical Marangoni numbers
measured in the ground-base experiments are different
from these measured in space experiments for the same
Prandtl number and aspect ratio.

Chen and Hu (1997) calculated the flow and tempera-
ture patterns in a floating half zone using the Chebyshev-
collocation method. They further obtained the curves of
the critical Marangoni number versus liquid volume in
liquid bridges of Pr = 50 in microgravity conditions (Chen
and Hu, 1998). The critical curves consist of two branches
corresponding to slender and fat bridges, respectively.
Shevtsova and Legros (1998) obtained the stability bound-
ary for Pr = 105, A = 0.67 and a wide range of liquid vol-
umes. Sumner et al. (2001) obtained the critical curve of
Marangoni number versus liquid volume for 5 cSt silicone
oil and A = 0.75 using the energy-stability analysis. Nien-
hüser and Kuhlmann (2002) investigated the stability of
thermocapillary flows in non-cylindrical liquid bridges.
The perturbation equations were discretized by the
second-order finite difference method.

In this paper, we calculate the critical Marangoni num-
bers and critical frequencies for Pr = 100, A = 0.75 and dif-
ferent liquid volumes, and analyzed the mechanism of
instability of the thermocapillary convections.
2. Physical and mathematical model

A liquid bridge is formed by inserting a liquid such as
silicone oil in between two rods of diameter D, which are
separated by a distance L (Fig. 1). Thermocapillary convec-
tion will onset when the two rods are applied with different
Fig. 1. Schematic of a liquid bridge with rod diameter of D and gap of L.
temperatures T0 and T0 + DT, respectively. Typical dimen-
sionless parameters such as aspect ratio, volume ratio, Rey-
nolds number, Marangoni number, Prandtl numbers and
Biot number are defined as,
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where the reference velocity is U0 = m/R0, and R0, q, m, a, k,
h, and r0T denote rod radius, liquid density, kinematic
viscosity, thermal diffusivity, thermal conductivity, heat
transfer coefficient, and surface tension differentiation with
respect to temperature, respectively.

In the linear stability analysis of thermocapillary con-
vection in the floating half-zones, a steady axi-symmetric
basic state, u0 = (u0,0,w0), p0 and T0, is obtained through
numerical computations. The small amplitude fluctuation
of the velocities u = (u,v,w), pressure p and temperature
T are imposed on the basic state. The dimensionless
governing equations for the perturbed quantities in the
microgravity conditions can be obtained using the Bous-
sinesq approximation as (Chen and Hu, 1998),
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where the length, time and velocity are normalized with R0,
R0/U0 and U0, respectively. After applying the curl opera-
tion to Eq. (2), we can obtain the vortex equations. In this
paper, we used the vortex equations in r and z directions,
Eqs. (3) and (4) for solving the eigenvalue problem.

The perturbation quantities (u, v, w, p, T) can be
expanded as a sum of the spectral terms, for example,
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where r = rr + iri, rr and ri are the increasing rate and fre-
quency of small perturbation, respectively, m denotes the
azimuthal wave number, i denotes the complex unit

ffiffiffiffiffiffiffi
�1
p

,
and c.c. denotes the complex conjugate. From the above
equation, the frequency in Hertz can be obtained as,

f ¼ riU 0=ð2pR0Þ ¼ riRem=ð2pR2
0Þ: ð6Þ

The boundary conditions at the ends (z = 0 and z = 2A)
are given by,

u ¼ 0;
ow
oz
¼ 0; and T ¼ 0; ð7Þ

while the boundary conditions at the free surface are,
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u � n ¼ 0; t � ðS � nþ Ma
RePr

rT Þ ¼ 0;

s � ðS � nþ Ma
RePr

rT Þ ¼ 0 and n � rT ¼ �BiT ; ð8Þ

where n denotes the normal unit vector at the free surface,
and t and s denote the tangential unit vectors in the vertical
and horizontal cross-sections, respectively. S denotes the
rate-of-strain tensor.

In the following analysis, an adiabatic condition is
assumed at the free surface, which implies Bi = 0. The con-
ditions at the central axis, r = 0, are taken as,

u ¼ 0; v ¼ 0;
ow
or
¼ 0;

oT
or
¼ 0; for m ¼ 0;

ou
or
¼ 0; uþ ov

oh
¼ 0; w ¼ 0; T ¼ 0; for m ¼ 1;

u ¼ 0; v ¼ 0; w ¼ 0; T ¼ 0; for m > 1:

ð9Þ

By substituting the expanded form of the perturbation
quantities, Eq. (5), into the perturbation equations, and
using the collocation method, the discretized equations
for the eigenvalue problem can be obtained (Orszag and
Kells, 1980; Orszag and Patera, 1983). It should be noted
that the continuity equation boundary conditions are im-
posed at the rod ends, and the discretized equations for
the vortex equation in the r direction at the collocation grid
points next to the rods are not included for solving the
eigenvalue problem. The eigenvalues and eigenfunctions
were obtained by using the Q–R method. We used
32 · 32 Chebyshev polynomials in r and z directions,
respectively, and the generalized eigenvalue problems with
a complex matrix of (4 · 32 · 32)2 in size were solved.

3. Results

The numerical codes for 2-D basic axisymmetric states
and the 3-D linear stability analysis were used to obtain
the critical Marangoni numbers for small Prandtl numbers
(Chen et al., 1999) and the predicted critical Marangoni
numbers for Pr = 0.01, A = 0.5 and 0.6, and V = 1 were
used as benchmarks by other researchers (Shevtsova,
Table 1
The critical Marangoni number and critical frequency for Pr = 100 and A = 0
m = 10�5 m2/s (10 cSt silicone oil)

Volume V The most
unstable mode

Critical
Marangoni number

Critic
freque

0.4 m = 1 16,592 4.336
0.5 m = 1 9600 2.739
0.6 m = 1 8849 2.212
0.7 m = 1 17,171 2.382
0.8 m = 1 16,698 2.142
0.9 m = 1 15,041 2.275
1.0 m = 1 15,333 1.918
1.1 m = 1 17,196 2.655
1.2 m = 1 10,015 0.983
2005). We here considered liquid bridges with Pr = 100
and aspect ratio of A = 0.75. The critical Marangoni num-
bers and the critical frequencies were obtained for liquid
volumes ranging from 0.4 to 1.2. Table 1 lists the critical
Marangoni number, Mac, the critical frequency, riRec,
and frequency for silicone oil liquid bridges of 60 mm in
rod diameter. As can be seen, the curve of the critical
Marangoni number is continuous for 0.4 6 V 6 1.2. The
critical frequencies are not zero meaning that the convec-
tion first transits to an oscillatory convection when increas-
ing the Marangoni number. From Eq. (6), it can be seen
that the critical frequency is proportional to the inverse
of the square of disk radius, meaning that the frequency
will decrease when increasing the rod diameter. The fre-
quencies for liquid bridges with disk diameter of 60 mm
and kinetic viscosity of m = 10�5 m2/s (10 cSt silicone oil)
are listed in Table 1. The critical Ma is about 15,333 for
a liquid bridge with a cylindrical shape, and the minimum
critical Ma for 0.4 6 V 6 1.2 is about 8849 occurring at
around V = 0.6.

In the ground experiments, the rod diameter is usually
from 2 mm to 6 mm, and the liquid bridge cannot sus-
tain when the temperature difference is more than
100 K because of the breakdown of the bridge due to
the small surface tension at the high temperature. In
the microgravity condition, a large-size liquid bridge
can be made, thus the same value of Marangoni number
can be realized with relatively small temperature
difference.

As observed from the ground-based experiments for
D = 2 mm (Cao et al., 1992) and D = 3 mm (Hu et al.,
1994), there is a gap between the two curves, which corre-
sponds to the region where the critical Marangoni number
cannot be obtained on the ground. However, it is possible
to obtain a large value of Ma number with a large-size liquid
bridge in the space experiments. For example, in the D-2 mis-
sions on board the German Space laboratory, Albanese et al.
(1995) found that the critical Marangoni numbers based on
the rod radius are 76,000 for A = 0.75 and D = 45 mm and
110,666 for A = 0.75 and D = 60 mm while the critical fre-
quencies are 0.021 Hz and 0.012 Hz. The predicted critical
Marangoni numbers by the linear stability analysis are lower
.75, and the frequency in liquid bridges with rod diameter of 60 mm and

al
ncy riRec

f ¼ riRecm=ð2pR2
0Þ (R0 = 0.03 m, m = 10�5 m2/s)

(in Hertz)

0.0076
0.0048
0.0039
0.0042
0.0038
0.0040
0.0034
0.0047
0.0017



Fig. 2. The flow pattern (a) and temperature distribution (b) of the critical mode m = 1, when Pr = 100, A = 0.75, V = 1, and Ma = 20,000.
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than the values measured in the space experiments (Albanese
et al., 1995). The unsteady heating procedures in space exper-
iments caused the differences in the measured critical
Marangoni numbers in the space experiments.

The flow and temperature patterns of the critical mode
m = 1 are shown in Fig. 2 for Pr = 100, A = 0.75, V = 1,
and Ma = 20,000. The convection in the liquid bridge is
caused by the temperature disturbances on the free surface.
There is a vortex rotating clockwise in the right half of the
liquid (Fig. 2a) while rotating counter-clockwise in the left
half of the liquid. The hot spot on the free surface near the
upper rod in Fig. 2b induces a downward flow on the free
surface as shown in Fig. 2a. The instability mechanism is of
hydrothermal origin for convections in large-Prandtl-num-
ber liquid bridges.

4. Conclusions

We analyze the critical Marangoni numbers and the crit-
ical frequencies by using the linear stability analysis for
liquid bridges with Pr = 100, Bi = 0 and A = 0.75. It is found
that the curve of the critical Marangoni number is continu-
ous for 0.4 6 V 6 1.2. The most unstable mode is m = 1
and the critical frequency is not zero meaning that the con-
vection first transits to an oscillatory convection. The critical
Ma is about 15,333 for a liquid bridge with a cylindrical
shape, and the minimum critical Ma for 0.4 6 V 6 1.2 is
about 8849 occurring at around V = 0.6. The predicted crit-
ical Marangoni numbers are lower than the values measured
in the space experiments since the unsteady heating proce-
dures in space experiments caused the differences in the
measured critical Marangoni numbers.
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