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Abstract

Here we attempt to characterize protein evolution by residue features which dominate residue substitution in homologous proteins. Evolu-
tionary information contained in residue substitution matrix is abstracted with the method of eigenvalue decomposition. Top eigenvectors in the
eigenvalue spectrums are analyzed as function of the level of similarity, i.e. sequence identity (SI) between homologous proteins. It is found that
hydrophobicity and volume are two significant residue features conserved in protein evolution. There is a transition point at SI ≈ 45%. Residue
hydrophobicity is a feature governing residue substitution as SI � 45%. Whereas below this SI level, residue volume is a dominant feature.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Our ability to characterize the biological properties of a pro-
tein is almost exclusively obtained from properties conserved
through evolutionary time. Although many efforts have been
made to reveal the principle governing protein evolution, it is
still a field filled with many secrets [1–3]. A draft characterizing
the dominant factors in protein evolution will be great helpful
to us.

Essential characters of protein evolution can be learned
from analysis of aligned protein sequences. A typical knowl-
edge system is BLOSUM (BLOcks SUbstitution Matrix) ma-
trices derived by Henikoff et al. [4]. In their scoring schemes,
residue similarity was evaluated based on analysis of local se-
quence alignments in a high quality database-BLOCKS [5]
where the most highly conserved regions (involving biologi-
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cally significant sites, patterns and profiles) of related proteins
in PROSITE [6] catalog were collected. Statistics of residue
substitution were converted into a log-odds ratio between a
combined model and an independent one. To describe fluctu-
ation in the substitutability of residue pairs, they introduced the
level of sequence similarity/identity (x%, x = 30,35, etc.) as a
parameter in the clustering of homologous sequences. This se-
ries of scoring matrices (BLOSUM30, BLOSUM35, etc.) pro-
vides the basis for uncovering the nature of protein evolution.

In this work, we apply a general method of matrix analysis,
eigenvalue decomposition, to Henikoff’s BLOSUM matrices.
Top weighted components of the evolution information con-
tained in these scoring schemes are catched. To uncover the
origin of residue similarity fluctuation, 14 matrices are involved
(BLOSUM30, BLOSUM35, . . . , BLOSUM95). It is revealed
that, at SI ≈ 45%, there is an intrinsic transition point for the
dominant residue feature related to residue substitution. Hy-
drophobicity [7] and volume [8] are two significant residue
features in protein evolution. Residue hydrophobicity is the
dominant feature conserved in protein evolution as SI is above
this transition point. However, below this point, residue volume
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acts as the dominant factor and controls residue substitution in
remote homologous proteins.

2. Materials and methods

In an eigenvalue decomposition approach, a given N × N

real symmetric matrix M can be reconstructed as

(1)Mij =
N∑

α=1

λαVα,iVα,j

where Mij is the element of the matrix in row i and column j ,
λα is the αth eigenvalue, and Vα,i is the ith component of the
αth eigenvector, Vα = (Vα,i). According to the absolute values,
eigenvalues are sorted in a descending order. Item given by the
top eigenvector, λ1V1,iV1,j has the largest contribution to ele-
ment Mij .

We have applied eigenvalue decomposition analysis to
Henikoff’s BLOSUM matrices. Each of them corresponds to
a specific SI level by which segments that are identical for at
least that percentage of amino acids are grouped together and
weighted as a single sequence in data counting. Consequently,
each matrix characterizes residue similarity for sequences be-
low certain SI level. In our approach, SI is introduced as a
parameter which varies between 30% and 95%. At each SI
level, the corresponding BLOSUM matrix is analyzed after sub-
tracting its mean from each element of the matrix. To illustrate
the meaning of these eigenvectors, we further study the linear
regression between eigenvector Vα and vector Rκ which is a
20-dimensional vector introduced as a representation of residue
feature κ , where κ refers to hydrophobicity, volume, secondary
structure propensity [9,10], etc. Correlation coefficient r is cal-
culated as

(2)r = lxy√
lxx lyy

, lxy =
20∑

i=1

(xi − x̄)(yi − ȳ),

where x̄ = 1
20

∑20
i=1 xi . The obtained correlation coefficient is

analyzed as function of SI.

3. Results

In BLOSUM matrices, 90% contributions to the total eigen-
values are made from the top 9–14 eigenvalues. Here we focus
on top two eigenvalues of each matrix which contribute ∼ 1/3
to the total. Due to positiveness of these eigenvalues, the com-
ponents of corresponding eigenvectors are conserved or may be
positively favored in each BLOSUM matrix.

It is found that propensity of residue substitution is related
to special features of amino acid [11]. Uncovering the top
weighted features will benefit the comprehension of protein
evolution, and the studies in contriving molecule. For the top
two eigenvectors (EV) of each BLOSUM matrix, we calculate
the correlation coefficients to several residue features respec-
tively. As shown in Fig. 1, for the 1st EV, there is a transition
point at SI ≈ 45% where a switch occurs for the dominant
Fig. 1. Correlation coefficients between eigenvectors of BLOSUM matrices and
residue features. The insert shows the coefficients of two other features re-
lated to the eigenvectors. For two features in the insert: Chou–Fasman’s strand
propensity correlates to hydrophobicity with r = 0.59, and to residue volume
with r = 0.52. Molecular weight correlates to hydrophobicity with r = −0.25,
and to residue volume with r = 0.92.

residue feature. Residue hydrophobicity has a strong relation-
ship with the 1st EV as SI is above this transition point. How-
ever, below this point, residue volume is tightly related.

We want to point out that many residue features are inher-
ently correlated. There are other features (correlating to both
hydrophobicity and residue volume) which are more related to
these eigenvectors (see the insert of Fig. 1). To make an indu-
bitable analysis and to indicate rotation of the 1st EV with the
varying of SI, we select hydrophobicity and volume, the two
orthogonal vectors in phase space as presentive features (the
correlation coefficient between hydrophobicity and residue vol-
ume ≈ 0).

Origin of the forementioned transition is our next interest. Is
it the result of a sharp changing of the 1st EV, or not? By plot-
ting eigenvalue as function of SI (see Fig. 2(a)), we find that
the first eigenvalues change successively. For detail analysis,
we calculate correlation coefficients to measure the similarity
between two 1st EV at successive SI levels, x% and (x + 5)%
(x = 30,35, . . . ,90). It shows that the correlation coefficients
range from 0.8 to 1. No sharp transition of the 1st EV (claimed
by Kinjo [3]) is found. As transition of the dominant feature
would not be explained by the successive transformation of 1st
EV, we further investigate similarities of these eigenvectors to
some representative vectors of evolution. When SI ranges from
50% to 95%, only slightly changes occur to the top two eigen-
vectors (data not shown). So, we select the top two eigenvectors
of BLOSUM80 as two orthogonal axes of protein evolution.
Correlation coefficients between eigenvectors and the axes are
shown in Fig. 2(b). We find that the top two eigenvectors con-
tain obvious mix of the two axes as SI < 45%. Since these two
axes are highly related to hydrophobicity and volume respec-
tively (shown in Fig. 1), this mix may induce a transition of the
dominant residue feature.
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Fig. 2. Character of the variation of BLOSUM matrices’ eigenvectors. (a) The top two eigenvalues as functions of sequence identity used for clustering homologous
sequences. (b) Correlation coefficients between eigenvectors and those of BLOSUM80 which are selected as axes of protein evolution.
There are distinct differences between our results and those
of Kinjo’s. We think that it mainly results from the procedure
of the subtracting of matrix mean. This procedure is skipped by
Kinjo. But, as discussed by Li [12], such a subtraction proce-
dure is necessary to remove a trivial source of a large eigen-
value. Any matrix with a nonzero mean m0 can have one dom-
inant eigenvalue proportional to Nm0 if the dimension N of
the matrix is large. Removing this trivial regularity enables us
to clearly identify other intrinsic regularities which could be ob-
scured in the spectrum of the unsubtracted matrix. For example,
it is claimed by Kinjo that the first eigenvector of BLOSUM80
has a high correlation coefficient (≈ −0.68) with relative mu-
tabilities [13]. But, in our spectrum of BLOSUM80, the eigen-
vector most related to Kinjo’s first eigenvector (correlation co-
efficient ≈ 0.99) contributes only −4% to the total eigenvalues.

4. Discussion

Our analysis is based on statistics of thousands sets of un-
gapped multi-aligned fragments or blocks. Consequently, as a
general phenomenon, transition of the governing residue fea-
ture adapts to most protein catalogues, in other words, to substi-
tutions on most residue site. This may lead to concerted switch
of residues’ substitutability on multiple site of homologous se-
quences; hinder the efforts to deduce protein property from
analysis of single point mutation.

Hydrophobic interaction is confirmed as the dominant
driving force for protein folding [12,14]. The transition which
claims the significance role of residue volume (but not residue
hydrophobicity) at low SI level is somewhat unexpected. Then,
in an evolutionary aspect, does this mean a decline of the im-
portance of hydrophobic interaction for remote homologues?
To uncover in-depth nature of protein evolution, a further study
of the contribution of hydrophobic interaction has been per-
formed.

Using a coarse-grained model, we construct a new scoring
scheme named TLESUMhp for 3-residue pairwise substitution.
By further analysis of these matrices, we achieve a new under-
standing of protein evolution: Hydrophobic interaction is still
significant, but changes its mechanism of action at low iden-
tity level. Cooperating with the forementioned transition, a shift
happens to the type of physical quantity which dominantly char-
acterizes the contribution of hydrophobicity. As residue volume
acts as the dominant feature of residue substitution, in remote
homologues, the most urgent task is to construct special struc-
ture with residues of suitable size of side chain. Consequently,
importance of internal hydrophobic force (the typical physical
quantity of protein evolution) increases: vector of hydropho-
bic force loads on residue’s side chain, induces respective side
chain rotations. So, similar network of internal hydrophobic
force results in a similar way of side chain packing. This con-
clusion is robust, and has remarkable effect in keeping the bi-
ological properties of homologous proteins. Actually, we have
developed a coarse-grained algorithm to characterize the inter-
nal hydrophobic force network of a protein family. Although
only information of internal hydrophobic force is considered in
this algorithm, it accomplishes an accuracy of more than 85% in
singling out the native folded WW domain (true signal) from a
42 members protein set which is obtained by multiply sequence
alignment [1]. Moreover, for this 34 letters WW domain, we
design several artificial remote proteins with the information of
internal hydrophobic force and column specific residue type.
All these proteins have low pairwise sequence identities (30%,
lower than the threshold [15] of twilight zone at sequence
length = 34) with each others, and with each proteins in the
learning set. Results of molecular dynamic simulation show that
they fold to similar structures to the wild type proteins. Detailed
description of this part will be published elsewhere.
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