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The application of large-eddy simulation (LES) to turbulent transport processes requires ac-
curate prediction of the Lagrangian statistics of flow fields. However, in most existing SGS
models, no explicit consideration is given to Lagrangian statistics. In this paper, we focus
on the effects of SGS modeling on Lagrangian statistics in LES ranging from statistics de-
termining single-particle dispersion to those of pair dispersion and multiparticle dispersion.
Lagrangian statistics in homogeneous isotropic turbulence are extracted from direct numerical
simulation (DNS) and the LES with a spectral eddy-viscosity model. For the case of longtime
single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the time scale
of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity fluctuation.
These two effects tend to cancel one another leading to an accurate prediction of the longtime
turbulent dispersion coefficient. Unlike the single-particle dispersion, LES tends to under-
estimate significantly the rate of relative dispersion of particle pairs and multiple-particles,
when initial separation distances are less than the minimum resolved scale due to the lack of
subgrid fluctuations. The overprediction of LES on the time scale of the Lagrangian velocity
correlation is further confirmed by a theoretical analysis using a turbulence closure theory.

1. Introduction

Large-eddy simulation (LES) has emerged as a powerful simulation technique for fluid turbulence
in general and has been applied, in particular, to study turbulent transport processes such as
turbulent mixing and turbulent particle-laden flows [1, 2]. The application to turbulent transport
processes raises such a new requirement as that the LES with a subgrid-scale (SGS) model should
correctly predict the motion of particles and the relative dispersion of particle pairs in a turbulent
flow, or at least the Lagrangian statistics of the flow field [3, 4]. In LES, large-scale motions
are directly computed while small-scale or SGS motions are not explicitly represented but their
effects on large scales are modeled. Most of the currently existing SGS models are based on
the energy budget equations: a SGS residual stress is treated as an eddy-viscosity term which
dissipates the extra energy at resolved scales. Therefore, the eddy-viscosity SGS model is able to
predict the energy spectra at large scales. However, it may not accurately predict other statistics
which are not determined fully by the energy spectrum [5, 6], such as the Lagrangian statistics.
The objective of the present research is to investigate the effects of the eddy-viscosity-based SGS
models on Lagrangian statistics in a turbulent flow.
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2 Y. Yang et al.

Lagrangian characteristics of fluid motion are of fundamental importance in turbulent transport
processes: the statistics of a single-particle displacement determine the average rate of growth
of a pollutant emission [7]; a particle pair dispersion characterizes the mixing rate of reactants
[8]; and multiparticle dispersion statistics quantify not only the diffusion range of a patch of
pollutant but also the geometry of particle clusters [9]. Therefore, it is important to study the
effects of SGS modeling on Lagrangian statistics when LES is used to address turbulent transport
processes. Wang et al. [10, 11] use the LES with a dynamic Smagorinsky SGS model to investigate
one-particle dispersion in turbulent channel flows. Armenio et al. [12] observe that, if the LES
could resolve most of fluid energy, the LES with a dynamic Smagorinsky SGS model is able to
accurately predict the Lagrangian statistics of a single-particle. Furthermore, they find that the two-
particle relative dispersion with initially larger separations is insensitive to the filtering operation.
Our previous research [13] shows that the two-particle velocity correlations are overpredicted
by the LES with an eddy-viscosity-based SGS model. In general, it is expected that the over-
estimation of Lagrangian velocity correlations in LES could be more pronounced when the LES
resolution is poor. Wei et al. [14] proposed a hybrid Eulerian–Lagrangian LES to better simulate
particle dispersion in a turbulent flow, where a conventional SGS model is used for turbulence
velocity fields and a particle SGS model used for the motion of particles. There have also been
other related works in this direction addressing the transport of either inertial particles or heavy
particles. Armenio et al. [12] point out that the fluid particles are more sensitive to the SGS
fluctuations than inertial particles. Therefore, the LES prediction can be expected to be more
accurate for the inertial particles than for the fluid particles. However, the inertial particles have
some additional complexity, such as settling velocity and preferential concentration. Yeh and Lei
[15] and Yang and Lei [16] compared the Lagrangian statistics of LES with DNS for inertial
particles and quantified the contribution of SGS motions to the settling velocity of heavy particles.
Shotorban and Mashayek [17] and Kuerten [18] used the deconvolution approach to compute
the Lagrangian statistics of inertial particles in turbulent channel flows. Using the deconvolution
approach, the unsolved velocity fields can be partially recovered. Recently, Kuerten and Vreman
[19] and Shotorban and Mashayek [20] have developed a stochastic Lagrangian particle model
to better represent Lagrangian statistics of inertial particles. Fede and Simonin [21] study the
contribution of SGS motions to the statistics of heavy colliding particles.

The present research focuses on the effects of the eddy-viscosity-based SGS model on La-
grangian statistics of fluid particles in isotropic turbulence. We compare the results obtained
from LES with those obtained from DNS. We will first address statistics related to one-particle
displacements, including the variance of one-particle displacement, one-particle Lagrangian ve-
locity correlation and turbulence diffusivity. Next we will study the relative dispersion of particle
pairs as characterized by the mean, variance and probability density functions (PDFs) of the
separation distance, and two-particle Lagrangian velocity correlation. Finally, we will discuss
the statistics related to multiparticle dispersion, focusing on the size and shape of four-particle
clusters.

We will also attempt to develop a better understanding of the numerical results by a turbulence
closure theory that predicts analytically the Taylor time micro-scales of the Lagrangian velocity
correlations, starting from the governing equations in DNS and LES, respectively. The closure
theory is based on the Taylor expansions of statistical functions [22] and has been used for the
time correlations in DNS fields [23, 24] and Eulerian time correlations in LES fields [5] in
the Navier–Stokes equations. The new development in the present paper is that we explicitly
include the effects of the eddy-viscosity SGS model on the Taylor micro-scales, which confirm
our numerical observation: the spectral eddy-viscosity SGS model increases the time scales of
Lagrangian velocity correlations.
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The paper is organized as follows. In Section 2, the DNS and LES of isotropic turbulence will be
briefly described, along with numerical methods for computing Lagrangian statistics. In Section
3, the effects of the SGS model on Lagrangian statistics of a single-particle displacement will be
studied. The effects of SGS modeling on particle pair dispersion and multiparticle dispersions will
be investigated in Sections 4 and 5, respectively. The analytical prediction of the Taylor micro-
scales of Lagrangian velocity correlations will be presented in Section 6. Summary discussions
and conclusions will be given in Section 7.

2. Simulation overview

The Navier–Stokes equations for the isotropic and homogeneous turbulence in a periodic box of
side L = 2π are written in the general form

∂u

∂t
= u × ω − ∇

(
p

ρ
+ 1

2
u2

)
+ ν∇2u + f(x, t),

∇ · u = 0 (1)

where u denotes the velocity field, ω ≡ ∇ × u the vorticity and p the pressure, ρ the density and
ν the kinematic viscosity. The flow was driven by a random forcing f(x, t) which is non-zero for
the Fourier modes with the wavenumber magnitude less than 2 [25].

The DNS of the isotropic and homogeneous turbulence were performed using a standard
pseudo-spectral method on a 1283 grid. The flow domain was discretized uniformly into N3 grid
points which defines the wavenumber components in Fourier space as kj = nj (2π/L), where
nj = −N/2, . . . ,−1, 0, 1, . . . , N/2 − 1 for j = 1, 2, 3. Aliasing errors were removed using the
two-third truncation method. A stationary turbulence was generated by maintaining the constant
total energy in each of the first two wavenumber shells, with the energy ratio between the two shells
consistent with k−5/3. The spatial resolution in spectral simulation is often monitored by the value
of kmaxη, where η ≡ (ν/ε)1/4 is the Kolmogorov length scale and the maximum wavenumber kmax

is about N/3. This quantity should be larger than unity for the Kolmogorov scale of the flow to
be well resolved. The value of kmaxη was typically larger than 1.4 in our simulation. The Fourier
coefficients of the flow velocity were advanced in time using a second-order Adams–Bashforth
method for the nonlinear term and an exact integration for the linear viscous term. The time step
was chosen to ensure that the CFL number was 0.5 or less for numerical stability and accuracy.

The LES of the isotropic and homogeneous turbulence was performed on coarse grids using the
same pseudo-spectral method as the DNS above. A pseudo-spectral method is chosen in present
research so that the numerical dissipation is much less than the dissipation from the SGS model
[26]. Therefore, the function of the SGS models is not influenced by the numerical dissipation
and the effects of the SGS model on Lagrangian statistics can be correctly evaluated.

The governing equation for LES is given by

(
∂

∂t
+ [ν + νt (k|kc)]k2

)
u(k, t) = P(k)F(u × ω) + f(k, t), (2)

where P(k) = δij − kikj /k2 and F denotes a Fourier transformation. A spectral eddy-viscosity
SGS model [27] is used here with

νt (k|kc) = ν+
t (k|kc)

√
E(kc)/kc, (3)
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4 Y. Yang et al.

Table 1. Summary of Eulerian statistics.

Case Case 1 Case 2 Case 3 Case 4 Case 5

Flow field type DNS LES LES DNS LES
Grid number N 1283 643 323 1283 323

Mesh length dx 0.049 0.098 0.196 0.049 0.196
Viscosity ν 0.010 0.010 0.010 0.0062 0.0062
Taylor Reynolds number Reλ 60 – – 80 –
rms fluctuating velocity u′ 0.788 0.774 0.753 0.822 0.765
Dissipation rate ε 0.152 – – 0.169 –
Spatial resolution kmaxη 2.13 – – 1.45 –
Kolmogorov length scale η 0.051 – – 0.035 –
Kolmogorov time scale τη 0.257 – – 0.192 –
Eulerian integral length scale LE 1.74 1.78 1.85 1.63 1.81
Eddy turnover time Te 2.21 2.30 2.46 1.98 2.37

where

ν+
t (k|kc) = 0.267 + 9.21 exp(−3.03kc/k). (4)

Here, kc is the cutoff wavenumber in LES. When the spectral eddy-viscosity model is applied,
the quantity E(kc) is evaluated from LES. The above SGS model is representative of the eddy-
viscosity-based models and it provides a satisfactory prediction of the energy spectrum. Other
eddy-viscosity models share the similar properties with the above spectral eddy-viscosity SGS
model. Our question is whether or not such a model could also accurately predict Lagrangian
statistics in turbulent flows. The initial flow field in LES is taken directly from the corresponding
DNS by applying a sharp spectral filter in order to obtain a consistent initial condition for further
comparisons between DNS and LES.

Table 1 lists Eulerian statistics of the DNS and LES flow fields used in this study. u′ =
√

1
3 〈uiui〉

is the rms turbulent fluctuation velocity. Two DNS flow Reynolds numbers are considered:
Reλ = 60 (Case 1) and Reλ = 80 (Case 4). For the setting of Case 1, two LES runs are performed
by switching on the eddy-viscosity model: the first (Case 2) uses 643 mesh resolution and the
second (Case 3) uses 323 mesh resolution. Only one LES at 323 mesh resolution (Case 5) is
performed to match the Case 4 DNS run. Figure 1 plots the resulting energy spectra for Cases 1,
2 and 3. It is observed from the plot that the energy spectra from the LES are in good agreement
with the one from DNS at large resolved scales but decay faster than the one from DNS at small
resolved scales. The latter is due to the fact that the eddy-viscosity SGS model dissipates a little
bit more energy than what occurs physically at the small resolved scales. Overall, the energy
spectra from the LES match well the one from the DNS, indicating that the LES in the present
work is correctly implemented.

The trajectory of a fluid particle can be calculated by solving the following kinematic equation:

∂X(x0, t0|t)
∂t

= V(x0, t0|t) = u[X(x0, t0|t), t], (5)

where X(x0, t0|t) is the location at time t of the fluid particle which was located at x0 at the initial
time t0, and V(x0, t0|t) is the velocity at time t of the fluid particle. Hereafter, we will use an
upper-case letter to denote a Lagrangian variable and a lower-case letter for a Eulerian variable.
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Figure 1. Energy spectra.

A three-dimensional sixth-order Lagrangian interpolation scheme is used to calculate the fluid
velocity at the location of a particle [28]. The trajectory of a particle is then obtained by the
explicit fourth-order Adams–Bashforth scheme. Appendix 1 provides the details of the particle-
tracking method used in this study. To extract various Lagrangian statistics, we track the motion
of an ensemble of a single particle, a particle pair and a cluster of four particles. Initially, Np

particles are uniformly distributed in the flow domain. For each of the Np particles, another
particle of prescribed separation is introduced for computing the statistics of particle pairs, or
another three particles of prescribed separations, forming a tetrahedron together with the first
one, are introduced for computing statistics of multiparticle dispersion. The Lagrangian statistics
are calculated from the ensemble averaging. In addition, independent samples from different time
segments can be used to further reduce the statistic fluctuations in the calculation of Lagrangian
velocity correlations [29].

3. Single-particle displacement

In isotropic turbulence of zero mean velocity, the displacement of a single particle is positive
as often as it is negative. In this circumstance, the next non-vanishing statistical moment is the
variance of particle displacement, defined as

σ 2
X(t) =

〈
3∑

i=1

(Xi(x0, t0|t) − x0i)
2

〉
, (6)

which measures the displacement of a fluid particle relative to its initial position x0 =
(x01, x02, x03). According to the classic theory of G. I. Taylor [7], we have two important asymp-
totic results

{
σX(t) = σV t, t � TL,

σX(t) = σV (2TLt)1/2, t 	 TL,
(7)
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6 Y. Yang et al.

Table 2. Summary of Lagrangian single-particle statistics.

Case Case1 Case 2 Case 3 Case 4 Case 5

Flow field type DNS LES LES DNS LES
Reλ 60 — — 80 —
σV 1.369 1.348 1.301 1.437 1.331√

3u′ 1.365 1.341 1.304 1.428 1.325
TL 1.68 1.71 1.90 1.46 1.76
D1 3.20 3.18 3.17 3.24 3.20

where σ 2
V = 〈ViVi〉 is the variance of the turbulent fluctuation velocity on a particle trajectory

and TL is the integral time scale of one-particle, two-time velocity correlation. For a stationary,
homogeneous and isotropic turbulence, σV should be related to the Eulerian rms fluctuation
velocity u′ as σV = √

3u′. Table 2 compares the two velocity variances, showing that σV and√
3u′ differ by less than 1.0%.
Shown in Figure 2 are the standard variances of the particle displacement obtained from the

DNS and LES. It is observed from the DNS that the particle displacement variance increases with
time and exhibits the two asymptotic scaling behaviors. The results from LES on either fine grids
or coarse grids are in good agreement with that from DNS. Therefore, the LES with the spectral
eddy-viscosity SGS model could accurately predict the particle displacement variance.

The particle displacement variance is mainly determined by the variance σ 2
V of Lagrangian

fluctuation velocity and the Lagrangian correlation time TL [7]. The Lagrangian integral time TL

is determined by the Lagrangian time correlation coefficient defined as

ρ1(τ ) = 〈Vi(x0, t0|t0)Vi(x0, t0|t0 + τ )〉
σ 2

V

, (8)

where τ is a time interval and the angle brackets denote an ensemble average over particle
realizations. The repeated indices imply summation. We plot the Lagrangian time correlation

τ

σ X

10-2 10-1 100 10110-2

10-1

100

101

DNS 1283

LES 643

LES 323

Figure 2. The standard variance of one-particle displacement. The dotted line on left bottom has an unity
slope and the one on right top has a slope equal to 0.5.

D
ow

nl
oa

de
d 

by
 [

In
st

itu
te

 o
f 

M
ec

ha
ni

cs
, C

A
S]

 a
t 2

1:
14

 1
6 

O
ct

ob
er

 2
01

1 



Journal of Turbulence 7

τ

ρ 1(
τ)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

DNS 1283

LES 643

LES 323

Figure 3. Lagrangian time correlation coefficients from DNS and LES at Reλ = 60.

coefficients from DNS and LES in Figure 3. It is observed that the correlation coefficients from
the LES decay more slowly than those from DNS. Moreover, the correlation coefficient from the
low-resolution LES is larger than that from the high-resolution LES. The slower decays still exist
when we increase the Reynolds number, see Figure 4. To quantify the observed differences, we
calculate their integral scales

TL =
∫ ∞

0
ρ1(τ ) dτ. (9)

The ratio T LES
L /T DNS

L obtained from Figure 3 is 1.02 for high-resolution LES and 1.13 for
the low-resolution LES. At the higher Reynolds number (Reλ = 80), the integral scale ratio
between the LES (Case 5) and the DNS (Case 4) is 1.21 (Table 2). These results confirm that the
overprediction of the Lagrangian integral time in LES could be significant.

τ

ρ 1(
τ)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

DNS 1283 Reλ=60
LES 323

DNS 1283 Reλ=80
LES 323

Figure 4. Lagrangian time correlation coefficients from DNS and LES at Reλ = 60 and Reλ = 80.
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8 Y. Yang et al.

In LES, the SGS motions are not explicitly represented and large-scale motions are modified
by the eddy-viscosity SGS model. As a result, the velocity fields in LES are more coherent and
thus more correlated than those in DNS. Therefore, the Lagrangian velocity correlation in LES
decays more slowly than that in DNS. We further calculate the longtime diffusion coefficients
from the DNS and LES

D1 = 1

2

d

dt
(σ 2

X), t 	 TL. (10)

Interestingly, Table 2 shows that the longtime dispersion coefficients in LES are only slightly
less than those in DNS. This can be explained as follows: while the integral time scale TL is
overpredicted by up to 13.1% in LES, the velocity fluctuation σV is actually underpredicted by up
to 5.0% in LES. These two errors tend to cancel each other, leading to a rather accurate prediction
of the longtime single-particle turbulent diffusivity D1 = σ 2

V TL.

4. Particle pair dispersion

A particle pair in a turbulent flow on average moves apart from each other, as illustrated in Figure 5.
As a result, its mean separation distance always tends to increase. The relative dispersion is
dependent on the turbulent velocity fields and its initial separation distances. In DNS, the velocity
fields are fully resolved at all scales and the contributions to relative dispersion from fluid motions
at all scales are well represented. However, in LES, the large-scale velocity field is modified by
the SGS models and the small-scale fluid motion is completely missing, which may significantly
affect the relative dispersion of particle pairs at unresolved scales. The influences can be measured
by the statistics of relative separations and velocities.

Figure 5. A pair particle separation with an initial separation distance equal to the Kolmogorov scale.
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The relative separation vector R = (R1, R2, R3) between a particle pair at one time is denoted
by

R(r, t0|τ ) = X(x0, t0|t0 + τ ) − X(x0 + r, t0|t0 + τ ), (11)

where r is the initial separation vector between a particle pair and τ is the time delay. Since the
statistics of R is independent of initial location x0, we drop off x0 in R to simplify the notation.
Thus, the separation distance is calculated from

R(r, t0|τ ) =
√

R(r, t0|τ ) · R(r, t0|τ ) (12)

and their mean and variance are calculated from

m2(r, τ ) = 〈R(r, t0|τ )〉
σ 2

2 (r, τ ) = 〈[R(r, t0|τ ) − 〈R(r, t0|τ )〉]2〉 = 〈Ri(r, t0|τ )Ri(r, t0|τ )〉 − m2
2(r, τ ) (13)

where r is the magnitude of the initial separation vector r. The mean and variance are dependent
only on the separation distance r and time delay τ since homogeneity and isotropy are assumed.

From Equation (13), we can obtain the mean-squared separation distance as follows:

〈Ri(r, t0|τ )Ri(r, t0|τ )〉 = m2
2(r, τ ) + σ 2

2 (r, τ ). (14)

On the other hand, we can formulate the mean-squared separation distance in terms of the
Lagrangian velocity

〈Ri(r, t0|τ )Ri(r, t0|τ )〉 = r2 + 2
∫ t0+τ

t0

∫ t0+τ

t0

[〈Vi(x0, t0|s ′)Vi(x0, t0|s)〉

− 〈Vi(x0, t0|s ′)Vi(x0 + r, t0|s)〉]ds ′ds. (15)

The second term of the integration in Equation (15) can be represented as

〈Vi(x0, t0|s ′)Vi(x0 + r, t0|s)〉

=
∫

〈δ(r′ − R(r, t0|s ′))Vi(X(x0, t0|s ′), s ′|s ′)Vi(X(x0, t0|s ′) + r′, s ′|s)〉dr′

=
∫

〈δ(r′ − R(r, t0|s ′))〉〈Vi(X(x0, t0|s ′), s ′|s ′)Vi(X(x0, t0|s ′) + r′, s ′|s)〉dr′

=
∫

P (r|r ′, s ′)〈Vi(x0, s
′|s ′)Vi(x0 + r′, s ′|s)〉dr′, (16)

where P (r|r ′, s ′) denotes the probability density function (PDF) of the separation distance r ′ at
time s ′ of the particle pair whose separation is r at the initial time t0. The first and third steps in
this development introduce the different fluid particles as the labeling points due to homogeneity.
The second step invokes Corrsin’s independent hypothesis [30], stating that the particle separation
PDFs at a large time are independent of the particle-pair spacetime velocity correlations, and in
isotropic turbulence, the PDF of separation vector can be equivalently represented by the PDF
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10 Y. Yang et al.

of separation distance. The independence hypothesis has been investigated theoretically [31] and
numerically [32]. Since the PDF is independent of initial time, we will drop off the initial time t0
from the PDF and denote it as P (r|r ′, s ′).

Finally, we obtain the mean-squared separation distance as follows:

〈Ri(r, t0|τ )Ri(r, t0|τ )〉

= r2 + 2σ 2
V

∫ t0+τ

t0

∫ t0+τ

t0

[
ρ1(s − s ′) −

∫
P (r|r ′, s ′)ρ2(r ′, s − s ′)dr ′

]
ds ′ds, (17)

where σ 2
V = 〈ViVi〉 is again the variance of Lagrangian fluctuation velocities, and the Lagrangian

space time velocity correlation at two times of a particle pair is defined as

ρ2(r, τ ) = 〈Vi(x0, t0|t0)Vi(x0 + r, t0|t0 + τ )〉/σ 2
V . (18)

Therefore, Equation (17) indicates that the mean-squared separation distance depends on
the one-particle Lagrangian velocity correlation ρ1(s − s ′), two-particle Lagrangian velocity
correlation ρ2(r ′, s − s ′), and the PDF, P (r|r ′, s ′), of separation distance. We will calculate these
quantities from DNS and LES for comparison in this section. Another useful quantity is the
one-time Lagrangian velocity correlation of particle pairs [32], defined by

ρr (r, τ ) = 〈Vi(x0, t0|t0 + τ )Vi(x0 + r, t0|t0 + τ )〉/σ 2
V . (19)

This quantity describes the statistic property of the relative velocity of a particle pair. We will
also calculate it to investigate the Lagrangian statistics in LES.

To calculate Lagrangian spacetime correlations, particles are initially released in pairs with
different separation distances. A half number of particles were first placed in a flow domain, and
then the other half number of particles were placed a certain distance away from the previous ones.
In the present calculation, the total particle number Np is fixed and those particles are divided
into np groups in terms of their initial separations 0, r0, 2r0, . . . , (np − 1)r0, so each group has
Np/np particles. Here, the maximum initial separation is compared to the half of the periodic
side length L and r0 ≈ L/2np is the interval between initial separations. As a result, if np is large,
there are not enough samples in each group for a good statistical averaging which may cause
severe wiggling of the contours. On the other hand, if np is too small, there may not be a sufficient
number of data points to construct the correlation surface leading to visual discontinuity of the
contours. Therefore, due to the current storage capacity of computer, we need to carefully choose
the total number of particles Np and the group number np. The total particle number Np in the
calculation of the spacetime correlations was 64 times of that in the calculation of one-particle
statistics and the group number is np = 64.

Figure 6 shows the temporal evolutions of the separation variances of the particle pair for five
different initial separations r/η = 0.25, 1, 4, 16, 32. The DNS results confirm the observations
of Yeung [32]: the separation variances initially grow as time increases, with the slope equal
to 2 on a log–log plot. At long times, the variances grow linearly with time. In between, there
exist finite transient ranges which are shorter for larger initial separations than smaller initial
separations. The LES qualitatively reproduces the same results. However, the separation variances
in LES grow more slowly than those in the DNS. Namely, the LES somewhat underpredicts
the separation variances. The underprediction is more significant for smaller initial separations
than larger initial separations. We also plot the mean separation distance in Figure 7, which
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Figure 6. Variances of separation distances of particle pairs for different initial separation dis-
tances: solid lines DNS 1283, dashed lines LES 643 and dash-dotted lines LES 323. The symbols
are corresponding to the different initial separations where η denotes the Kolmogorov length scale.
The left two dotted straight lines have the slopes equal to 2 and the right top one has a unity
slope.

shows that it takes a longer time for the LES field to separate a particle pair than the DNS
field, again showing that the LES field disperses the particle pair less efficiently than the DNS
field.

Figure 8 plots the contours of the Lagrangian spacetime correlations from the DNS at Reλ = 60
and the corresponding LES. It shows that the contours from the LES on coarse grid (323) are
clearly larger than the DNS but those from the LES on fine grid (643) are only slightly larger
than the DNS. Therefore, the Lagrangian spacetime correlation coefficient in LES decays more
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Figure 7. Means of separation distances of particle pairs for different initial separation distances. In the
inset, the evolution of average separation distance with r = 0.25η at small times: solid lines DNS 1283,
dashed lines LES 643 and dash-dotted lines LES 323. Different symbols are corresponding to the different
initial separations where η denotes the Kolmogorov length scale.
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Figure 8. Contours of Lagrangian spacetime correlation coefficients: solid lines DNS 1283, dashed lines
LES 643 and dash-dotted lines LES 323.

slowly than that of DNS. Some wiggles are observed on the iso-correlation contours in Figure 8
and the PDF lines in Figure 10. They are due to insufficient samples but do not affect the
conclusions obtained. It is not feasible to improve the convergence within our current computer
capability.

To further support the above observations, we plot the temporal evolutions of the one-time
Lagrangian velocity correlation coefficients of particle pairs for five different initial separa-
tions in Figure 9. The results from the DNS are in agreement with the study of Yeung [32]:
the correlation coefficients are steadily deceasing as time τ increases, with the exception that
the correlation coefficients for the initially larger separations increase slightly at short time be-
fore decreasing. The correlation coefficients for small initial separations do not exhibit such
short-time behavior, but decrease monotonically with time starting from a nearly perfect cor-
relation. The LES data qualitatively reproduce the same trend as the DNS one. However, the

τ/τη

ρ r(r
,τ

)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1
1/4η
1η
4η
16η
32η

Figure 9. The one-time Lagrangian velocity correlation coefficients of particle pairs for different ini-
tial separations: solid lines DNS 1283, dashed lines LES 643 and dash-dotted lines LES 323. The
symbols are corresponding to the different initial separations and η denotes the Kolmogorov length
scale.
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correlation coefficients from LES decay more slowly than those from DNS. The slower decay
is evidently more noticeable for the initially smaller separations than for the initially larger
separations. A possible explanation for the slower decay is that the Lagrangian velocity field
in LES is more correlated than that in DNS. In LES, the exclusion of small-scale motions
makes the LES velocity fields less intermittent. Meanwhile, the spectral eddy-viscosity SGS
model plays a role of dissipation which reduces the fluctuations of LES velocity fields more
intensively than the molecular dissipation alone. Both the exclusion of small-scale motions
and the eddy-viscosity SGS model lead to an overprediction of Lagrangian velocity correlation
coefficients.

The PDF of the separation distance is another factor affecting the mean-squared separation. The
PDF evolves from an initial delta distribution to a final Chi-square distribution [32]. Figure 10
displays the PDF of the separation distance for four different initial separations at a given
time. Since the PDFs evolve progressively, the temporal evolution of the PDF with a given
initial separation could be typically represented by the PDF behavior at one later time with
different initial separations. Therefore, Figure 10 can roughly correspond to the evolution of
the PDF, for a particle pair with a small initial separation, at several later times. It is observed
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Figure 10. The PDFs of the separation distances for the different initial separations r at τ = 20τη.
(a) r = 1

4 η, (b) n = η, (c) r = 4η, (d) r = 16η.
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14 Y. Yang et al.

that the LES predicts the shapes of the PDFs from the initial delta distribution to the chi-
square one. However, the LES exhibits a higher peak and a lower tail than the DNS from
early to later stages, although it finally approaches the DNS results. This can be understood
as follows: the absence of small-scale motions in LES leads to slower increase in separation
for particle pairs at small separations than in DNS where the small-scale velocity could be
dominating at small separations. As a result, it takes a longer time for a particle pair to move
away from each other in LES. As soon as the particle separation grows beyond the cutoff scale,
the rate of increase in pair separation in LES is expected to be essentially the same as that
in DNS, since the large-scale velocity dominates the relative dispersion at this stage of larger
separations.

Those observations are consistent with the implication of Equation (17). As observed in
Figure 3, the quantity ρ1 in LES is slightly larger than that in DNS; in Figures 8 and 10, in
comparison with the DNS, ρ2 in LES is larger and has a larger weight on small r , where the PDF
P plays a role of weight. As a result, the mean-squared separation distance in LES should be
smaller than that in DNS, according to Equation (17). The conclusion can be again confirmed via
Figures 6 and 7 in terms of Equation (14).

5. Multiparticle dispersion

Multiparticle dispersion describes the evolution of particle clusters of a particular shape and
provides more information on turbulent transport processes than either one-particle or two-
particle dispersion. As discussed before, while single-particle displacement characterizes the
average rate of growth of a pollutant emission from a fixed source location and a particle pair
dispersion characterizes the mixing rate of pollutants a multiparticle dispersion characterizes
the size and shape evolutions of particle clusters. Here we will study the time evolution of a
tetrahedron of four particles. Due to the vortex stretching and small-scale intermittency in tur-
bulent flows, an initially regular tetrahedron of four equilateral triangles could be progressively
distorted into an asymptotic coplanar object, such as a pancake or needle-like one. The distor-
tion leads to size increasement and shape change of the tetrahedrons, see Figure 11. We shall
investigate the LES prediction on the size and shape evolutions of a tetrahedron in turbulent
flows.

Figure 11. The snapshots of initial regular tetrahedrons of side length equal to the Kolmogorov length
scale. (a) The snapshot at τ = 40τη. (b) The snapshot at τ = 70τη.
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The size of a tetrahedron can be measured by its surface area and volume. Given one particle
at X(1)

0 = (x0, y0, z0) in a flow field at the initial time, the other three particles are placed at

X(2)
0 =

{
x0 −

√
3

6
η, y0 − 1

2
η, z0 −

√
6

3
η

}
,

X(3)
0 =

{
x0 −

√
3

6
η, y0 + 1

2
η, z0 −

√
6

3
η

}
,

X(4)
0 =

{
x0 +

√
3

3
η, y0, z0 −

√
6

3
η

}
.

These four particles form a regular tetrahedron of side length equal to the Kolmogorov length
scale η. The area of the triangle face formed by the first three particles can be calculated as
follows:

S(123) = 1

2

√[(
y(2) − y(1)

)(
z(3) − z(1)

) − (
z(2) − z(1)

)(
y(3) − y(1)

)]2
.

+ [(
z(2) − z(1)

)(
x(3) − x(1)

) − (
x(2) − x(1)

)(
z(3) − z(1)

)]2

+ [(
x(2) − x(1)

)(
y(3) − y(1)

) − (
y(2) − y(1)

)(
x(3) − x(1)

)]2
,

where the superscripts ‘123’ denote the particles forming the triangle face. The areas of other
faces, such as S(124), S(134) and S(234) can be calculated in the same way as S(123). Therefore, the
surface area of the tetrahedron is

S = S(123) + S(124) + S(134) + S(234).

In terms of particle locations, we can easily calculate the volume of the tetrahedron formed by
X(1), X(2), X(3) and X(4)

V = 1

6

∣∣∣∣∣∣
x(2) − x(1) x(3) − x(1) x(4) − x(1)

y(2) − y(1) y(3) − y(1) y(4) − y(1)

z(2) − z(1) z(3) − z(1) z(4) − z(1)

∣∣∣∣∣∣ .
The averaging surface area 〈S〉 and volumes 〈V 〉 are obtained from 5000 samples of the tetrahe-
drons which are initially equilateral with side length η.

The temporal evolution of the averaging surface area and volume obtained from DNS and LES
are shown in Figures 12 and 13 respectively. In DNS, both of these two quantities exhibit little
change for t < 3τη and a rapid monotonic growth for t > 3τη. The result for t < 3τη can be well
predicted by LES but, for t > 3τη, the result from LES grows more slowly than that from DNS.
The observation can be understood by investigating the properties of velocity fields.

At the initial stage, the velocity fields are incompressible and thus local velocity fields in both
DNS and LES preserve the surface area and volume of any tetrahedrons [9]. As time increases,
the tetrahedrons are also advected by the large-scale velocity field. The velocity fluctuations in
LES are less than that in DNS. Therefore, both area and volume in LES increase less rapidly than
those in DNS, leading to an underprediction of LES on multiparticle dispersion.
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Figure 12. Means of surface areas of tetrahedrons from DNS and LES.

The shape of a tetrahedron can be characterized by the renormalized volume ratio λV and
surface area ratio λS , defined by

λV = V/S3/2, λS = S/C2,

where C denotes the perimeter. Since the tetrahedron of a given surface area with maximum
volume and the tetrahedron of a given perimeter with maximum surface area are both regular,
the regular tetrahedron has the largest ratio and a slender one has a smaller value. Two extreme
cases are λV = 0 corresponding to four particles being coplanar and λS = 0 to four particles
being collinear. Figure 14 plots the temporal evolution of the averaging renormalized volume
ratio 〈�V 〉 and surface area ratio 〈λS〉 of the tetrahedrons from initially regular ones of edge
size η.
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Figure 13. Means of volumes of tetrahedrons from DNS and LES.
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Journal of Turbulence 17

Figure 14. Temporal evolution of averaging renormalized volume and surface area ratios from DNS and
LES: solid lines DNS 1283, dashed lines LES 643 and dash-dotted lines LES 323. The typical shapes
corresponding to the ratios are also indicated along with curves.

At a very short time, the ratios exhibit little changes and the results from DNS and LES are
in good agreement with each other. This is because the velocity fields in both DNS and LES
can be well approximated locally by the linear maps which preserve both volume and area, as
indicated in Figures 12 and 13. At medium time, the ratios drop down to their minimum values
due to turbulent stretching. The ratios from LES decrease more slowly than those from DNS,
since the velocity field from LES stretches the tetrahedron less intensively. At larger times, the
ratios from LES increase more slowly than those from DNS. Here, in comparison with DNS, the
distorted tetrahedron in LES is more likely to have at least one edge of length compared with
subgrid scales, which is consistent with the observation in Figure 10(b). The particle pair linked
by the edge is less dispersed by LES so that the tetrahedron is less diffusive in LES than in DNS.
Therefore, the shape change of a tetrahedron in LES is always slower than in DNS. Finally, the
curves obtained from DNS and LES appear to converge because the lengths of all edges of a
tetrahedron are comparable with the Eulerian integral scale. Therefore, the shape of a tetrahedron
is mainly governed by the large-scale motions of turbulent flows.

Another indicator for shape changes was introduced by Pumir et al. [9] and later investigated
by Biferale et al. [33]. The indicator is defined as the moment of the intermediate eigenvalue of
the inertia matrix I = ρρT , where

ρ =




ρ
(1)
x ρ

(2)
x ρ

(3)
x

ρ
(1)
y ρ

(2)
y ρ

(3)
y

ρ
(1)
z ρ

(2)
z ρ

(3)
z


 ,

ρ(i) = (
ρ(i)

x , ρ(i)
y , ρ(i)

z

)
, i = 1, 2, 3,
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Figure 15. Temporal evolution of the ratio 〈I2〉 from DNS and LES.

and

ρ(1) = (
x(2) − x(1)

)/√
2,

ρ(2) = (
2x(3) − x(1) − x(2)

)/√
6,

ρ(3) = (
3x(4) − x(1) − x(2) − x(3)

)/√
12.

We denote the three eigenvalues of the inertia matrix I as g1, g2 and g3 with g1 ≥ g2 ≥ g3, and
the ratio Ii = gi/G2 where G = √

tr(I) is the characteristic size of a tetrahedron. It is shown
that I1 = I2 = I3 = 1

3 corresponds to a regular tetrahedron, I3 = 0 corresponds to a four-particle
coplanar, and I2 = I3 = 0 corresponds to a four-particle collinear. Figure 15 shows the temporal
evolution of the ratio 〈I2〉 obtained from DNS and LES: the quantity drops initially and then
grows up. In comparison with DNS, the result from LES is a little larger for the decreasing
〈I2〉 and smaller for the increasing 〈I2〉. The observations are in agreement with those from the
renormalized volume and surface area ratios in Figure 14.

6. Prediction of Taylor time micro-scales in DNS and LES

In this section, we will develop a prediction of the Lagrangian Taylor time micro-scales in DNS
and LES using a turbulence closure theory, in order to better understand the observations made
in the previous sections. The Taylor micro-scales are calculated from the governing equations of
the DNS and LES.

To facilitate the analysis, we assume that the velocity fields in the DNS and LES are identical
at an initial time or at the present stage. The Taylor expansions in powers of time τ of the Eulerian
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and Lagrangian velocity field are written as

u(x, t + τ ) =
∑

n

τ n

n!
u(n)(x), (20)

V(x, t |t + τ ) =
∑

n

τ n

n!
V(n)(x, t |t), (21)

where u(x, t) is the Eulerian velocity at position x and time t , V(x, t |t + τ ) is the Lagrangian
velocity at time t + τ of the fluid particle that was at position x at time t , and the superscript (n)
denotes nth-order differentiation with respect to time τ at fixed t . The Taylor time micro-scale of
the single-particle Lagrangian velocity correlation is defined as

τ 2
λ = −〈V(x, t |t)V(x, t |t)〉/ ∂2

∂τ 2
〈V(x, t |t + τ )V(x, t |t)〉τ=0. (22)

Here, in terms of Kraichnan’s generalization [34], the Lagrangian velocity V(x, t |t + τ ) satisfies

(
∂

∂t
+ u(x, t)∇x

)
V(x, t |t + τ ) = 0, (23)

and the Eulerian velocity u(x, t) satisfies the Navier–Stokes equation [23]

∂u

∂t
= Muu + ν�u + s, (24)

2Mab = −(a · ∇)b − (b · ∇)a + 2Nab, (25)

Nab = ∇∇−2 ∂aj

∂xk

∂bk

∂xj

, (26)

where s = 0 in DNS and s is the inverse Fourier transformation of the term corresponding to the
spectral eddy-viscosity SGS model in LES. In Equation (24), we have already used the continuity
equation to eliminate the pressure term. The forcing term in Equation (1) can be ignored without
changing our results [5].

The first two non-vanishing coefficients in the Taylor expansion can be calculated by following
the method described in [5] and [23]

C0 ≡ 〈V(x, t |t)V(x, t |t)〉 = 〈u(x, t)u(x, t)〉 (27)

C2 ≡ ∂2

∂τ 2
〈V(x, t |t + τ )V(x, t |t)〉τ=0,

= 〈[2Nu(Muu) + (u · ∇)(Nuu)] · u〉 + ν2〈�2u · u〉 + 〈s · u〉. (28)
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20 Y. Yang et al.

Using EDQNM theory in Fourier space, we can calculate the coefficients in DNS

CDNS
0 = 2

∫ ∞

0
E(k) dk, (29)

CDNS
2 = −2

∫ ∞

0
kE(k) dk

∫ k

0
qE(q)j (q/k) dq + ν2

∫ ∞

0
k4E(k) dk. (30)

where the geometric factor j (q/k) is always positive [23]. Similarly, we can obtain the coefficients
in LES

CLES
0 = 2

∫ kc

0
E(k) dk, (31)

CLES
2 = −2

∫ kc

0
kE(k) dk

∫ k

0
qE(q)j (q/k)dq +

∫ kc

0
[ν2 + ν2

t (k|kc)]k4E(k) dk. (32)

If the Reynolds number is very high, the molecular viscous terms can be negligible. Comparison
of Equation (30) with Equation (32) yields

CLES
2 = CDNS

2 + 2
∫ ∞

kc

kE(k) dk

∫ k

0
qE(q)j (q/k) dq +

∫ kc

0
ν2

t (k|kc)k4E(k) dk. (33)

Then CDNS
2 < CLES

2 or −CDNS
2 > −CLES

2 , since the last two terms in Equation (33) are positive.
In an ideal LES, we have CDNS

0 = CLES
0 . Then,

τLES
λ > τDNS

λ . (34)

This result is consistent with the numerical observation that the Taylor micro-scale in the LES is
always larger than that in the DNS.

Equation (33) also implies that CLES
2 − CDNS

2 is a decreasing function of the cutoff wavenumber
kc, since the second term on the right-hand side (r.h.s.) of the equation is the decreasing function
of kc and the third term changes slightly. As expected, increasing the resolution of LES could
improve the predicted Taylor micro-scales. Furthermore, if LES resolves most of energy in DNS,
both the second and third terms will be very small. The Taylor micro-scale will be well predicted.
In our numerical experiments, the results from N = 64 are better than those from N = 32 since
the former resolves the energy spectrum more fully than the latter.

Those discrepancies between DNS and LES can be attributed to the absence of small-scale
motions and the function of the eddy-viscosity SGS model in the LES, as indicated by the last
two terms in Equation (33). The second term on the r.h.s. of Equation (33) represents the effect of
small-scale motions, which are unresolved in LES. The small-scale eddies fluctuate intensively
and enhance particle dispersion. The third term on the r.h.s. of Equation (33) represents the
effects of the SGS model on Lagrangian velocity correlations. The SGS model dissipates energy
to balance the energy input. However, it acts as a dissipation source and smoothes down the
intermittency, which produces a more correlated velocity field. This analysis can be further applied
to identify the contributions of subgrid scale motions to Lagrangian time correlations. Unlike the
time correlations of Eulerian velocity modes [5], filtering alone does alter the Lagrangian time
correlations, which is in agreement with a priori test made by Fede and Simonin [21].
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7. Discussions and conclusions

A variety of Lagrangian statistics are computed from DNS and LES flow fields for homogeneous
isotropic turbulence. The LES makes use of a spectral eddy-viscosity model. For the case of
longtime single-particle dispersion, it is shown that, compared to DNS, LES overpredicts the
time scale of the Lagrangian velocity correlation but underpredicts the Lagrangian velocity
fluctuation. The two effects tend to cancel one another leading to an accurate prediction of the
longtime turbulent dispersion coefficient. This is intuitively consistent with the picture that the
longtime turbulent dispersion is governed by large-scale motion of the fluid turbulence whose
dynamics is adequately represented in LES.

Unlike the single-particle dispersion, the particle pair dispersion at dissipation-range scales is
influenced more by small-scale velocity fluctuations. It is shown that LES with a typical eddy-
viscosity model tends to underestimate the rate of relative dispersion due to the lack of SGS
fluctuations. Namely, the pair dispersion at small separation is enhanced by small-scale motions
which are not explicitly included in LES. The difference between LES and DNS results on pair
dispersion depends on the cutoff scale in LES, and is negligible when the initial separation of the
pair is made comparable to the resolved scales in LES.

Similar results are found regarding multiparticle dispersion in which both the size and topo-
logical shape of clusters are considered. It is shown that the average surface area and volume of a
tetrahedron of particle quadruplet increase more slowly in the LES than those in the DNS. This is
due to the lack of effective straining motion in LES at dissipation-range scales, and consequently
a longer time is required for multiparticle clusters with initial size in the dissipation range to
develop a length scale comparable to inertial-range scales. For the same reason, the topologically
shape changes of particle clusters in LES are always slower than those in DNS.

A turbulence closure theory is used to better understand the differences in Lagrangian statistics
between LES and DNS. Starting from the governing equations for DNS and LES, we develop a
theoretical representation for the Taylor time micro-scale of the Lagrangian velocity correlations.
The results from theoretical approximations confirm the numerical observation that the Taylor
micro-scale is larger in LES than that in DNS. The theory indicates that the overprediction of
the time scale of the Lagrangian velocity correlations in LES results from both the absence of
SGS motions and the eddy-viscosity model. Interestingly, we found that the eddy-viscosity SGS
model increases the time scale of the Lagrangian velocity correlations. Namely, it makes an
additional negative contribution to the accurate prediction of Lagrangian statistics in LES though
it plays a positive role in predicting Eulerian spectra. This is also in agreement with our previous
observation on Eulerian time correlations [5].

The simulation and theoretical results suggest that the LES with an eddy-viscosity model could
significantly overpredict the time scale of the Lagrangian velocity correlations and underpredict
turbulent relative dispersion. Such a SGS model makes little or even negative contribution to
the LES prediction on Lagrangian velocity correlations, since the contribution of unresolved
Lagrangian velocity fields to Lagrangian statistics could not be recovered from resolved Eule-
rian velocity fields. Moreover, the effects of small-scale motions unsolved in LES on particle
dispersion cannot be represented by the eddy-viscosity SGS models, which suppress the particle
dispersion. To recover the contribution of the unresolved Lagrangian velocity field, a SGS model
for Lagrangian velocity field needs to be developed.
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Appendix 1. Particle tracking algorithm

A fluid particle is governed by Equation (5). Usually, the locations of fluid particles are not
coincident with the grid nodes in physical space. Therefore, an interpolation algorithm is needed to
calculate the Lagrangian velocity V(x0, t0|t) at location X(x0, t0|t) from the Eulerian velocity field
u(x, t). The interpolation algorithm used in the present study is a three-dimensional sixth-order
Lagrangian interpolation scheme [28]. In the scheme, the Lagrangian velocities are calculated
from

V(x0, t0|t) =
N∑

i=1

N∑
j=1

N∑
k=1

u(xi, yj , zk, t)Li(X)Lj (Y )Lk(Z), (35)

where (xi, yj , zk) denotes the location of grids node in the Eulerian coordinate system and
(X, Y,Z) the coordinate of one fluid particle in the same coordinate system. The basis functions
Li , Lj and Lk are given as the sixth-order Lagrangian polynomials

Li(x) = 0; x < xi−3

= 1

120
(4ξ − 5ξ 3 + ξ 5), ξ = (x − xi−3)

dx
; xi−3 ≤ x ≤ xi−2

= 1

24
(−6ξ − ξ 2 + 7ξ 3 + ξ 4 − ξ 5), ξ = (x − xi−2)

dx
; xi−2 ≤ x ≤ xi−1

= 1

12
(12ξ + 8ξ 2 − 7ξ 3 − 2ξ 4 + ξ 5), ξ = (x − xi−1)

dx
; xi−1 ≤ x ≤ xi

= 1

12
(12 − 4ξ − 15ξ 2 + 5ξ 3 + 3ξ 4 − ξ 5), ξ = (x − xi)

dx
; xi ≤ x ≤ xi+1

= 1

24
(−12ξ + 16ξ 2 − ξ 3 − 4ξ 4 + ξ 5), ξ = (x − xi+1)

dx
; xi+1 ≤ x ≤ xi+2

= 1

120
(6ξ − 5ξ 2 − 5ξ 3 + 5ξ 4 − ξ 5), ξ = (x − xi+2)

dx
; xi+2 ≤ x ≤ xi+3

= 0; xi+3 ≤ x. (36)
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Each sixth-order Lagrangian polynomial requires the Eulerian velocities at six grid nodes. Con-
sequently, the evaluation of Lagrangian velocities of Np fluid particles requires the operation of
the order 3 × 63 × Np.

The trajectory of an individual fluid particle can be obtained by numerical integration of
Equation (5) using the explicit fourth-order Adams–Bashforth method. The time step used here
is the same as that used for the Navier–Stokes equations. The calculation requires the storage
of the variables at the previous three steps. At the initial stage, explicit Euler, second-order and
third-order Adams–Bashforth methods are used for the first three steps, respectively.
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