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Coupling of Evaporation and Thermocapillary Convection in a Liquid Layer with
Mass and Heat Exchanging Interface ∗
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We propose and analyse a new model of thermocapillary convection with evaporation in a cavity subjected to
horizontal temperature gradient, rather than the previously studied model without evaporation. The pure liquid
layer with a top free surface in contact with its own vapour is considered in microgravity condition. The computing
programme developed for simulating this model integrates the two-dimensional, time-dependent Navier–Stokes
equations and energy equation by a second-order accurate projection method. We focus on the coupling of evap-
oration and thermocapillary convection by investigating the influence of evaporation Biot number and Marangoni
number on the interfacial mass and heat transfer. Three different regimes of the coupling mechanisms are found
and explained from our numerical results.
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Investigations on mass and heat transfer at evap-
orating liquid–vapour interfaces are important be-
cause a number of applications, such as heat exchang-
ers, distillation columns and combustion devises, are
concerned about this phenomenon. Although it is
adequate to assume in many applications that the
liquid–vapour interface is nearly at complete equi-
librium, namely the thermal and chemical potential
equilibrium,[1] yet the non-equilibrium effect becomes
especially important when a liquid is undergoing rapid
evaporation at reduced pressure,[2,3] such as in heat
pipes, where a great amount of energy is transported
by the vapour to reach high heat exchanging efficien-
cies. In the microgravity environment, the thermo-
capilliarity mechanism is generally dominant, leading
to thermocapillary convection, which may influence
performances of the heat exchanger. It is therefore
desirable to examine the role of thermocapillary con-
vection on evaporation mass and heat transfer.

While many works have been performed to inves-
tigate evaporation phenomena, only a few papers ad-
dressed the Marangoni flow in evaporating liquids.
Shih and Megaridis [4] presented an axisymmetric
droplet model considering thermocapillary effect on
the dynamic behaviour of a vaporizing–convecting
droplet from a computational point of view. Savino
and co-workers[5] carried out combined experimen-
tal and numerical analysis to study both steady and
transient Marangoni effects in hanging evaporating
droplets. Hu and Larson[6] studied the effects of
Marangoni stress in an evaporating sessile droplet
through analytical approach.

Although these scholars have developed theories
for evaporating liquid with Marangoni effects, it

should be noted that some important issues have still
not been resolved: (i) Most models treat the gas phase
as a mixture of the vapour and other gases, in which
local thermodynamic equilibrium is assumed at the in-
terface. In these models, evaporation flux lies on the
mass diffusion induced by the gradient of vapour con-
centration in the gas, as well as the heat diffusion in
the liquid layer. However, when the gas is exclusively
composed by its pure vapour, the mass diffusion mech-
anism is eliminated. The non-equilibrium kinetics of
evaporation reveals itself and competes with heat dif-
fusion in dictating evaporation. This issue is raised in
stability analysis,[1] but rarely studied by numerical
simulation. (ii) Many researchers have focused on the
evaporation of a liquid layer heated from bottom, with
the surface-tension-driven instabilities induced by the
vertical temperature gradient in the liquid. Never-
theless, the classical thermocapillary convection of an
evaporating liquid layer subjected to horizontal tem-
perature gradient has seldom been investigated. Moti-
vated by the two points above, we devote to developing
a model accounting for the interfacial mass and heat
transfer with evaporation and thermocapilliarity.

The physical model consists of a rectangular cavity
of height H and width D containing an incompress-
ible, Newtonian liquid in contact with its own vapour.
The left and right sides of the cavity are vertical rigid,
isothermal walls. To maintain the upper free surface
at a constant height, the bottom boundary is assumed
to be an adiabatic porous medium though which liquid
is injected to enable mass flow balance. This model is
presented in Fig. 1.

We assume that the whole system (the liquid, the
vapour, and the boundaries) first stays at saturation
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temperature Ts at a certain vapour pressure. The
thermodynamic equilibrium state is achieved with no
convection. After a time, the temperature of the right
wall suddenly increases to a higher value Th. With
horizontal temperature gradient in the liquid layer,
thermocapillary convection is induced. As the sur-
face temperature exceeds saturation temperature, net
mass flux from liquid to its vapour is expected.

Fig. 1. Evaporation–thermocapillary model.

In the absence of gravity, the non-dimensional
incompressible Navier–Stokes equations with Boussi-
nesq approximation are

∇ · u = 0, (1)
Du

Dt
= −∇p +∇2u, (2)

Dθ

Dt
=

1
Pr
∇2θ, (3)

where D, u, θ, and p represent the material deriva-
tive, the dimensionless velocity vector, temperature
and pressure. Here length, time, velocity, tempera-
ture, and pressure are dimensionless with respect to
D, D2/ν, ν/D, ∆T = Th − Ts, ρν2/D2. The as-
pect ratio of the cavity A, is defined as H/D. The
properties of the liquid are the density ρ, the dynamic
viscosity µ, the kinematic viscosity ν, the thermal dif-
fusivity κ, and the thermal conductivity λ. Although
deformation of the free surface is anticipated, it can
be safely neglected in our model because the capillary
number is sufficiently small.[7] The surface tension at
the interface is considered to be a linear function of
temperature: σ = σs − γ(T − Ts), where Ts is taken
as the saturation temperature at the vapour pressure.
To complement this set of equations, an additional
interfacial relation is needed.

Here we use the linearized Hertz–Knudsen equa-
tion derived from kinetic theory[3] to portray the re-
lation between interfacial temperature and the evap-
orating mass flux under non-equilibrium conditions:

j = αρvL

√
M

2πRT 3
s

(Ti − Ts). (4)

It relates the local mass flux j to the local surface tem-
perature Ti, where α is the accommodation evapora-
tion coefficient, M is the molecular weight of vapour,
R is the universal gas constant, L is the latent heat of
evaporation and ρv is the density of the vapour.

At side walls of the cavity, we take no-slip and im-
permeability conditions. At the bottom porous media,
only no-slip condition is enforced. The vertical veloc-
ity is derived by overall cavity mass balance. These
are written as, at lateral walls,

u = v = 0, θ|x=0 = 0, θ|x=1 = 1, (5)

at the bottom

u = 0, v(x, 0) =
∫ 1

0

v(x,A)dx,
∂θ

∂y
= 0 (6)

At the interface, velocity conditions are derived from
mass conservation. Selecting λ∆T/DL as scale for
local mass flux j and introducing a dimensionless
parameter E = λ∆T/ρνL, namely, the evaporation
number,[3] which represents the ratio of the viscous to
evaporative timescales, we obtain

v = Ej. (7)

The surface tension plays a role in the interfacial con-
dition, which is derived by a balance between shear
stresses and thermocapillary stresses. Shear contribu-
tions from the vapour are neglected,

∂u

∂y
+

∂v

∂x
= −Ma

Pr

∂θ

∂x
, (8)

where the parameter Ma is the Marangoni number
defined as γ∆TD/(µκ), and Pr = ν/κ is the Prandtl
number. The dimensionless Hertz–Knudsen equation
can be written as

j = Bievθ. (9)

The parameter Biev, often referred to as the evapora-
tion Biot number,[8] is defined as

Biev =
αDρvL2

λ

√
M

2πRT 3
s

. (10)

Equation (9) indicates that the evaporation Biot num-
ber measures the degree of non-equilibrium at the
evaporating interface. Biev = ∞ corresponds to the
quasi-equilibrium limit, where the interfacial temper-
ature is constant and equal to the saturation value,
θ = 0. Biev = 0 corresponds to the non-volatile case
with no evaporative mass flux.[3]

In the jump energy balance, we assume that ther-
mal conductivity ratio and density ratio of vapour to
liquid are small. The terms of viscous dissipation, ki-
netic energy of the leaving vapour molecules, and the
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work of surface tension forces are also neglected. Then
we obtain

Bievθ = −∂θ

∂y
. (11)

From the viewpoint of heat transfer, Biev also repre-
sents the capability of heat exchange induced by evap-
oration at the liquid–vapour interface.

The governing equations along with the boundary
conditions are solved on a uniform staggered mesh us-
ing fully second order accurate projection method.[9]

The Crank–Nicolson scheme is employed to tempo-
rally discretize the diffusive terms, and the Adams–
Bashforth extrapolation is implemented for the con-
vective terms. All the spatial derivatives are ap-
proximated by second-order central finite difference.
Steady solutions are obtained when the relative vari-
ation of the primitive variables less than 10−8 in a
marching step. The accuracy of the computing pro-
gram is established by comparing solutions of high
Marangoni number convection with those given by Ze-
bib et al.[10]

To make our numerical investigations physically
relevant, we ascertain the parameter magnitude of our
model by using the properties of water with its own
vapour near 4◦C, at which the expansion coefficient is
relatively small, exerting weak buoyancy effects.

The maximum ∆T is limited by the assumption
that the temperature of the hot wall deviates little
from saturation temperature, as is necessary to de-
rive the linearized Hertz–Knudsen equation. It should
also be sustained without causing nucleation. Thus
∆T = Th − Ts is assumed to have the bound of 0.1 K
to 1 K. The width of the liquid layer is assumed to
fall in the range of 1 mm to 4 mm. The values of
the non-dimensional numbers give E = 10−4 ∼ 10−5,
Ma = 101 ∼ 103, Pr = 13.0, Ca = 10−6, and
Biev = 102α ∼ 103α. As the accommodation evapo-
ration coefficient α is an empirical value that can span
over four orders of magnitude from 0 to 1,[11] the value
of Biev is supposed to vary from 0 to 103.

We introduce local mass flux j(x,A) and integral
mass flux J =

∫ 1

0
j(x,A)dx to characterize the mass

transfer, plus local and integral Nusselt number for
the interfacial heat transfer:

Nul(x) = v(x,A)θ(x,A)− 1
Pr

∂θ(x,A)
∂y

,
(12)

Nu =
∫ 1

0

Nul(x)dx. (13)

By using Eqs. (7), (9) and (11), we obtain

Nul(x) =
(
Eθ +

1
Pr

)
j(x,A). (14)

Since the evaporation number E is on the order of
∼ O (10−5 ∼ 10−4), the contribution of Eθ can thus

be omitted compared to 1/Pr in the above equation.
Therefore, the local Nusselt number is regarded as
Nul(x) = j(x,A)/Pr, in which the value of Nul is
obtained when j is derived. Thus, the local Nusselt
number could be represented by the local mass flux.

Our numerical simulation shows that the mass flux
J and liquid temperature θ are of order unity for a
wide range of Biev value. Owing to the small value
of evaporation number E, the compensation velocity
in the cavity is vanishingly small according to Eq. (7).
Thus the flow pattern is largely determined by the
thermocapillary convection. To avoid the influence
of complex flow patterns and unsteady surface ten-
sion driven flow,[12] the aspect ratio A is supposed to
equal 1. We therefore mainly concern ourselves with
the temperature distribution and interfacial mass and
heat transfer, not the flow pattern.

The physics of the coupling of evaporation and
thermocapillary convection is complicated. When in-
vestigating this problem, it is helpful to look at differ-
ent aspects of the problem separately whenever possi-
ble. In this manner, we first investigate the roles that
thermocapillary convection plays with demonstrating
the isothermals of the cavity for different Ma at a
specific Biev, as shown in Fig. 2.

Fig. 2. Isotherms at contour intervals of 0.1 for (a)
Ma = 0, (b) Ma = 250, (c) Ma = 1000, respectively,
with Biev = 10.

Thermocapillary flow carries fluid from hot region
to cool region near the surface, thus elevating the tem-
perature of the interface. The stronger the convection,
the higher the temperature of the fluid at the interface.
According to Eq. (9), increasing interfacial tempera-
ture conduces to larger local mass flux. In this way,
thermocapillary convection has a positive influence on
interfacial mass transfer.

The effect of Biev on the temperature distribution
at Ma = 1000 is shown in Fig. 3, which indicates that
the densest isotherm region on the interface is grad-
ually moving from the cold side to the hot side with
increasing Biev. Because Biev represents the capabil-
ity of heat exchange induced by evaporation, the ele-
vation of Biev leads to the decrease of the interfacial
temperature, and pulls down temperature gradient at
most part of the interface. This action impairs the
mechanism that thermocapillary convection helps to
elevate evaporating mass flux. In the last plot, the
isotherms are almost entirely compressed to the hot
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corner at the surface, with weak thermocapillary con-
vection in the rest flow regions.

Fig. 3. Isotherms at contour intervals of 0.1 for (a)
Biev = 0, (b)Biev = 10, (c) Biev = 100, respectively,
with Ma = 1000.

Fig. 4. J − J0 versus evaporation Biot number.

To quantitatively examine the coupling of ther-
mocapillary convection and evaporation, we consider
Ma = 100, 250, 500 and 1000, while holding Biev con-
stant at 12 different values that cover four orders of
magnitude. In order to show the contribution of ther-
mocapillary convection, we employ J − J0 to indicate
how much mass flux is increased by this convection,
where J0 stands for the interfacial integral mass flux
with no convection.

Figure 4 reflects the contribution of thermocap-
illary convection to mass transfer responding from
steady flows at various evaporation Biot numbers.
Greater evaporation mass flux is acquired with higher
Marangoni numbers at all levels of Biev. However, the
contribution of thermocapillary convection largely de-
pends on Biev. We identify three steady-state evapo-
ration regimes to depict the coupling mechanism. For
Biev > 100, in terms of the analysis of Fig. 3, ther-
mocapillary convection is rather weak at the inter-
face. Thus it accounts little for evaporation flux. For
Biev < 1, although the thermocapillary convection
dominates for the heat transfer in the liquid layer, the
contribution of convection to the evaporation flux is
still limited, for the liquid is nearly non-volatile. Only
at moderate Biev values can thermocapillary have ap-

parent influence on interfacial mass transfer, as shown
that J − J0 achieves its maximum value when Biev is
on the order of O(101) for all these Marangoni num-
bers.

These three regimes are a consequence dictated by
the competition between phase change and thermo-
capilliarity. On the one hand, thermocapillary con-
vection carries heat from the hot wall to the cold wall,
resulting in an increase of interfacial temperature com-
pared to pure evaporation case. On the other hand,
large evaporation Biot number favours high evapora-
tion mass flux at fixed interfacial temperature. Thus,
it seems that increasing Ma and Biev acts a positive
part in speedup of evaporation. However, the sur-
face temperature in this model is not fixed, but the
coupling result between convection and evaporation.
Therefore, on the contrary, increasing Biev produces
two negative effects on evaporation: larger Biev not
only decreases the interfacial temperature to be more
close to the saturation one, but also flats the interfa-
cial temperature space distribution and thus impairs
thermocapillary convection.

In conclusion, previous scholars only studied the
influence of Marangoni convection on evaporation flux
at thermodynamic equilibrium conditions. However,
these models are not very effective at elucidating
the effect of thermocapillary convection on evapo-
ration flux at different non-equilibrium states. In
our evaporation–thermocapillary model, the coupling
mechanism of evaporation and thermocapillary con-
vection has been expounded. Additionally, we first
find three steady-state evaporation regimes depicting
the evaporation mass and heat transfer under ther-
mocapillary convection. These regimes have been suc-
cessfully explained in the above discussion.
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