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Abstract: A relative displacement between the grid points of optical fields 
and those of phase screens may occur in the simulation of light propagation 
through the turbulent atmosphere. A statistical interpolator is proposed to 
solve this problem in this paper. It is evaluated by the phase structure 
function and numerical experiments of light propagation through 
atmospheric turbulence with/without adaptive optics (AO) and it is also 
compared with the well-known linear interpolator under the same condition. 
Results of the phase structure function show that the statistical interpolator 
is more accurate in comparison with the linear one, especially in the high 
frequency region. More importantly, the long-exposure results of light 
propagation through the turbulent atmosphere with/without AO also show 
that the statistical interpolator is more accurate and reliable than the linear 
one. 
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1. Introduction 

Multiple phase screen model has been widely used in the simulation of light propagation 
through the turbulent atmosphere, in the design of adaptive optics (AO) systems and free 
space optical communication links [1–5]. A turbulent phase screen is a two-dimensional array 
of random phase values on a grid of sample points and represents phase perturbations of a 
propagating wave-front through the atmosphere in accordance with Kolmogorov theory [6,7]. 
Thanks to the insertion of a number of phase screens along the propagation path of an optical 
wave, the phase perturbations on a horizontal plane are introduced into the propagating optical 
field by the phase screen [8]. To be specific, the effects of atmospheric turbulence on optical 
fields are generally realized by adding random phase perturbations at the grid points of optical 
fields corresponding to those of phase screens. The relationship between the grid points of 
optical fields and those of phase screens is generally a one-to-one correspondence at spatial 
positions. 

But a relative displacement between the grid points of optical fields and those of phase 
screens may occur in the simulation of many practical scenarios, especially in time-dependent 
simulation studies and the simulation of an astronomical telescopes with a laser guide star 
(LGS) adaptive optics system. The former is due to the movement of phase screens and the 
latter is caused by the mismatch between the grid points of LGS optical fields and those of 
phase screens. The relative displacement makes their grid points to be staggered when an 
optical field arrives at the positions of the phase screens. As a result, the phase perturbations 
of the optical field caused by atmosphere turbulence cannot directly be obtained from the grid 
points of phase screens. How to obtain the phase perturbations is an important problem in the 
simulation of these scenarios. 

In this paper, we address the problem of the relative displacement between the grid points 
of optical fields and those of phase screens. A statistical interpolation approach to obtain 
phase perturbations is presented, based on the spatial phase structure function, which allows 
us to take into account the spatial statistics of the turbulent atmosphere. A comparison 
between the statistical interpolation method and the well-known linear interpolation method is 
made and analyzed. In order to test the validity of the statistical interpolation method, we also 
compare the phase structure function predicted by the base phase screens with the interpolated 
results. In addition, we carry out numerical experiments of light propagation through 
atmospheric turbulence without/with an adaptive optics system, i.e. open-loop/closed-loop 
propagation. The long-exposure Strehl ratio is used as the evaluation parameter in the 
numerical experiments. Emphasis is given to the effects of different interpolation methods on 
the evaluation parameter. These numerical results can be used to check the accuracy of the 
statistical interpolation method. 

2. Problem statement 

In this section, we describe how a relative displacement between the grid points of optical 
fields and those of phase screens occurs in the simulation of practical scenarios. Actually, 
these scenarios can be divided into two main categories: one-dimensional relative 
displacement and two-dimensional relative displacement. 

#111603 - $15.00 USD Received 19 May 2009; revised 9 Jul 2009; accepted 17 Jul 2009; published 4 Aug 2009

(C) 2009 OSA 17 August 2009 / Vol. 17,  No. 17 / OPTICS EXPRESS  14650



2.1 One-dimensional relative displacement 

In many time-dependent simulation studies, such as long exposure imaging in the ground-
based astronomy [9] and the estimation of the dynamic control performance in an AO system 
[10], it is very important how to effectively generate a time series of atmospherically distorted 
wave-fronts. 

According to the Taylor frozen turbulence hypothesis, a common approach for simulating 
temporally evolving wave-fronts is to produce a phase screen larger than the aperture area of 
interest and then to shift the screen to simulate the effect of wind blowing the turbulent media 
over the system pupil [9–12]. Although moving phase screens is a simple, fast and computer 
effective method for generating time series of atmospherically distorted wave-fronts, a 
disadvantage of this approach is that the screen may only be shifted by integer multiples of the 
grid spacing [11]. In general, the movement distances of phase screens due to the wind 
blowing should be determined by the wind speed and the response time of an optical system 
and they are not always integer multiples of the grid spacing. For example, in the simulation 
of a practical astronomical AO system [5], the movement velocity of each phase screen along 
the propagation path is different because the wind speed usually varies with height. Thus, the 
movement distance of each phase screen is also different at each time step. This will cause 
some of phase screens to shift by non-integer multiples of the grid spacing. Generally 
speaking, the phase screen almost always shifts by non-integer multiples of the grid spacing in 
many practical scenarios. A similar problem can be met with as well under the condition that 
the light source and/or receiver are in motion. Only in some particular cases, the screen may 
shift by integer multiples of the grid spacing [4]. 

In order to avoid this shortcoming, other methods have been proposed for time series of 
wave-front. One of them is based on the space-time covariance matrix of the phases over the 
pupil [13,14]. Another method is realized by a set of Fourier-series-transform-based modal 
expansions of the wave-front over the pupil [11]. However, they are limited in that the major 
drawback of them is the high demand of computing time or memory space. It is noteworthy 
that a different method is recently presented by performing extrapolations of successive 
columns from an initially phase screen [15,16]. The main advantage is that it can produce an 
indefinitely long screen with optimized memory storage. Nevertheless, the method for 
generation of time series of the wave-fronts by moving phase screens is still attractive in 
practical applications. When the phase screen shifts by non-integer multiples of the grid 
spacing, a relative displacement between the grid points of optical fields and those of phase 
screens will occur. In these cases, the shift of phase screens by non-integer multiples of the 
grid spacing generally makes the grid points of the optical field and those of the phase screen 
staggered. 

To be specific, the grid points of optical fields are in one-to-one correspondence with 
those of phase screens at the initial time. But, after the screen moves, the grid points of the 
optical field and those of the screen may be staggered. That is to say, a relative displacement 
occurs in this case. It is shown in Fig. 1. At the initial time t = t0, the phase perturbations of an 
optical field can be obtained from the corresponding grid points of a phase screen due to one-
to-one correspondence between their grid points. See Fig. 1 (a). If the phase screen shifts by 
one grid spacing or integer multiples of the grid spacing, the grid points of the optical field are 
still in one-to-one correspondence with those of the phase screen at the time t = t1. See Fig. 1 
(b). But, if the screen shifts by non-integer multiples of the grid spacing, the grid points of the 
optical field and those of the screen are staggered at the time t = t2. See Fig. 1 (c). All grid 
points of the optical field are among those of the screen. Their grid points are staggered in the 
direction of the wind. Obviously, the phase perturbations of the optical field induced by 
atmospheric turbulence cannot be directly obtained from the grid points of the phase screen in 
this case. This is a one-dimensional relative displacement problem. How to obtain the phase 
perturbations of the grid points of the optical field is an important problem in the simulation 
of these scenarios. 
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Fig. 1. Schematic illustration of the one-dimensional relative displacement. (a) At the initial 
time t = t0, the grid points of an optical field are in one-to-one correspondence with those of a 
phase screen. (b) At the time t = t1, the grid points of the optical field are still in one-to-one 
correspondence with those of the phase screen because the phase screen shifts by one grid 
spacing. (c) At the time t = t2, a relative displacement between the grid points of the optical 
field and those of the phase screen occurs because the phase screen shifts by non-integer 
multiples of the grid spacing. 

2.2 Two-dimensional relative displacement 

The two-dimensional relative displacement mainly occurs in the simulation of an astronomical 
telescope with a laser guide star (LGS) adaptive optics system. 

 

Fig. 2. Schematic illustration of the two-dimensional relative displacement. (a) The propagation 
geometry in the simulation of an astronomical telescope with a laser guide star adaptive optics 
system. (b) The grid points of a LGS optical field is among those of the phase screen and the 
grid spacing of the LGS optical field is smaller than that of the phase screen or the object 
optical field due to the finite altitude of LGS. 

The light rays from an astronomical object, which is at infinite or at a very great distance, 
generally form a parallel bundle and pass through the atmosphere as a cylinder, while an LGS 
emits a spherical wave-front and the rays from the LGS trace out a cone because of the finite 
height of LGS above the telescope [5]. The difference in the propagation paths (i.e. between 
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the cylinder and the cone) leads to an incorrect sampling of the turbulence below the LGS. 
That is to say, the region of the light rays from the LGS is smaller than that of the 
astronomical object (see Fig. 2 (a)). The grid points of the object optical field are in one-to-
one correspondence with those of the phase screen. But, the grid points of the LGS optical 
field is among those of the phase screen and its grid spacing is smaller than that of the phase 
screen or the object optical field. A two-dimensional relative displacement between the grid 
points of the LGS optical field and those of the phase screen occur in the simulation of an 
astronomical telescope with a laser guide star (LGS) adaptive optics systems (see Fig. 2 (b)). 
Obviously, the phase perturbations of the object optical field can be obtained from the grid 
points of the phase screen, while the phase perturbations of the LGS optical field cannot be 
directly obtained from the phase screen. This is a two-dimensional relative displacement 
problem. When the temporal response of the adaptive optics system must be considered, there 
also exists a one-dimensional relative displacement problem. How to obtain these phase 
perturbations of LGS optical field is an important problem in the simulation of an 
astronomical telescope with a laser guide star (LGS) adaptive optics system [5,17]. 

 

Fig. 3. Graphical depiction of interpolation. The grid spacing is r. (a) One-dimensional 
interpolation of the first kind of scenario, r1 and r2 are the distances between P1 and P, P2 and 
P, respectively. (b) Two-dimensional interpolation of the second kind of scenario. u and v  are 

the distances from a point P to the line P1P4, P3P4, respectively. 

2.3 Solution scheme of the relative displacement problem 

How to solve the above-mentioned questions? A fast and practical method is interpolation. By 
interpolation, we can obtain new sample points within the range of a discrete set of known 
sample points. Actually, these new sample points construct a new phase screen which is 
different from that old phase screen which consists of those known sample points. In practical 
numerical simulations, it is not the old screen but the new screen that provides a propagating 
wave-front with phase perturbations because the spatial positions of new sample points is one-
to-one correspondence with those of the grid points of the propagating wave-front. On the one 
hand, the phase value of the new screen and that of the old screen is highly correlated in that 
the nearest neighbors of a new sample point belong to the old screen [18]. On the other hand, 
the phase value of the new screen is different from that of the old screen due to the difference 
of their spatial positions. This is why Lane’s method relies on the subset of prior data 
represented by the m nearest neighbors when rendering a new point [18]. It is noteworthy that 
Lane’s method is mainly used to increase the resolution of a phase screen by consecutive 
subdivision [19,20] while the interpolation method in this paper is mainly used to obtain the 
phase value of any intermediate point in a line segment or square. For convenience, the value 
of a new sample point is obtained from two or four nearest points in the old screen in this 
paper. To be specific, the interpolation geometry is shown in Fig. 3 for the above-mentioned 
scenarios. The first kind of scenario is a one-dimensional interpolation problem. We have 
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known the phase values of two endpoints: P1 and P2. Then, the phase value of the unknown 
sample point P can be obtained by interpolation. The second kind of scenario is a two-
dimensional interpolation problem. We have known the phase values of the four corner 
points: P1, P2, P3, and P4. Then, the phase value of the unknown sample point P can be also 
obtained by interpolation. 

In other words, a new phase screen, which represents the phase perturbations or the effects 
of turbulence on the optical field of LGS at a later time step, can be generated from an already 
existing phase screen by interpolation. For convenience, the existing phase screen will be 
called as the base phase screen while the new phase screen will be called as the interpolated 
phase screen in the following text. The ensemble statistics of the interpolated screen should 
match that of the base screen. The most commonly used ensemble statistics is the phase 
structure function. An established method for evaluating the accuracy of the interpolated 
phase screen is to compare the structure function derived from the interpolated screen with 
that from the base screen. The phase structure function is given by [21]: 

 
2 5/3

0
( ) {( ( ) ( )) } 6.88( / )D r E R r R r rϕ ϕ ϕ= + − =   (1) 

which represents the average squared difference of the phase of the screen for pairs of points 

of varying location and separation r. {}E ⋅ is the expectation operator. 
0

r  is the atmospheric 

coherence length and is given by 

3/5

2 2

0

0

0.423 ( )

L

n
r k C z dz

−
 

=  
 

∫ . It characterizes the strength of 

the atmospheric turbulence. k  is the wave number 2 /π λ . λ  is the wavelength. 2

n
C  is the 

refractive index structure constant dependent on location, time and altitude. L denotes the 
thickness of turbulent layer. 

3. Description of interpolation methods 

Here, we will describe two interpolation methods which can obtain a new data point from a 
discrete set of known data points. The first method is the well-known linear interpolation 
method and the second method is the statistical interpolation method based on the phase 
structure function, which is a statistical description of phase fluctuations caused by 
atmospheric turbulence. The statistical interpolation method is proposed in this paper for the 
first time within our knowledge. 

3.1 Linear interpolation 

Linear interpolation is a simple form of interpolation. If we have known the phase values of 
four points: P1, P2, P3, and P4. See Fig. 3 (b). Then, the phase value of the point P can be 
obtained by linear interpolation. It is commonly expressed in the form: 

 
1 2 3 42

1 1 1 1
v u uv u v u v

P P P P P
r r r r r rr

      = − + + − + − −      
      

  (2) 

where P1, P2, P3, and P4 are the four corner points of a rectangle or a square and denote the 
values of these points at the same time (the same below). The interpolation geometry is 

similar to Fig. 3(a) when 0u = or 0v = in Eq. (2). 

3.2 Statistical interpolation 

The turbulence-induced fluctuations of optical phase are caused almost exclusively by small 
random fluctuations of atmospheric refractive-index [21]. The statistical nature of phase 
fluctuations can be well characterized by the phase structure function. Being different from 
the linear interpolator, the statistical interpolation is based on the linear interpolator between 
two or four existing points on the phase screen followed by a random displacement of the 
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interpolated point. The coefficients and the magnitude of random displacement are determined 
by the phase structure function. 

3.2.1 One-dimensional statistical interpolation 

The geometry of one-dimensional interpolation is shown in Fig. 3 (a). Because the distance r, 
r1 and r2 are known, the following phase structure functions can be also known from Eq. (1): 

2 5/3

0 1 2 0
{( ) } 6.88( / )D E P P r r= − = , 

2 5/3

1 1 1 0
{( ) } 6.88( / )D E P P r r= − = , 

2 5/3

2 2 2 0
{( ) } 6.88( / )D E P P r r= − = . 

We need to obtain the phase value of the sample point P from phase values of the known 
sample points P1, P2. We assume: 

 
1 2

P aP bP R= + +   (3) 

where a and b are weight coefficients and satisfy a + b = 1, R is a zero mean Gaussian 

variable with a variance 2σ , From Eq. (1), two equations can be derived: 

 
2 2 2

1 0 1

2 2 2

2 0 2

{( - ) } (1- )

{( - ) }

E P P a D D

E P P a D D

σ
σ

 = + =


= + =
  (4) 

Because D0, D1 and D2 are known, we can solve Eq. (3) and obtain: 

 ( )
( )
0 1 2 0

22

2 0 1 2 0

/ 2

4

a D D D D

D D D D Dσ

= − +


= − − +

.  (5) 

Having known the coefficient a, another coefficient b can be obtained by the relation a + b 
= 1. Thus, by using Eqs. (3)-(5) the phase value of the sample point P can be obtained from 
the phase values of the known sample points P1, P2. 

During the above derivation, we use the easily proven fact that for any three random 
variables, sayα , β , and χ , having zero mean and equal variances [16]: 

 
2 2 21

( )( ) ( ) ( ) ( )
2

α χ β χ α χ β χ α β 〈 − − 〉 = 〈 − 〉 + 〈 − 〉 − 〈 − 〉    (6) 

The terms on the right-hand side of Eq. (6) correspond to the structure function of relating 
points. 

Two special cases can be considered. The first case is the point P coincides with the 

endpoint P1 or P2. The coefficient (a, b) is equal to (1, 0) or (0, 1) and the variance 2σ  is 

equal to 0. The second case is the point P is the midpoint of P1P2. The coefficient (a, b) is 

equal to (0.5, 0.5) and D1 is equal to D2. The variance 2σ  is equal to D1-0.25D0. Obviously, 

the results of the second case are consistent with those of the known random mid-point 
displacement method [19,20]. 

3.2.2 Two-dimensional statistical interpolation 

The geometry of two-dimensional interpolation is shown in Fig. 3 (b). We need obtain the 
value of the sample point P from the values of the known sample points: P1, P2, P3, and P4. 
Similarly to section 3.2.1, we also assume: 

 
1 2 3 4

P aP bP cP dP R= + + + +   (7) 
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where a, b, c and d are weight coefficients and a + b + c + d = 1, R is zero mean Gaussian 

variables with a variance 2σ . From Eq. (1), there are four equations: 

 

2

1 1

2

2 2

2

3 3

2

4 4

{( - ) }

{( - ) }

{( - ) }

{( - ) }

E P P D

E P P D

E P P D

E P P D

 =


=


=
 =

  (8) 

And assume: 

2 2 2 2

1 2 2 3 3 4 4 1 0
{( ) } {( ) } {( ) } {( ) }E P P E P P E P P E P P D− = − = − = − = , 

2 2

1 3 2 4 5
{( ) } {( ) }E P P E P P D− = − = . 

D0, D1, D2, D3, D4 and D5 are all known. 

We can obtain the following equations by using the Eqs. (6), (7) and (8): 

2 2 2 2

0 5 0 5 0 5 5 1

2 2 2 2

0 5 0 5 0 5 5 2

2 2 2 2

0 5 0 5 0 5 5 3

2 2 2 2

0 5 0 5 0 5 5 4

( 1) ( 1) ( 1)(2 )

( 1) ( 1) (2 ) ( 1)

( 1) ( 1)(2 ) ( 1)

(2 )

a D b D c D b a D c a D D bcD D

a D b D c D a b D ac D D c b D D

a D b D c D abD a c D D b c D D

a D b D c D abD ac D D bcD D

σ
σ
σ

σ

− + + + − + − − + + =

+ − + + − + − + − + =

+ + − + + − − + − + =

+ + + + − + + =








 

(9.1)

(9.2)

(9.3)

(9.4)

 

Solving Eq. (9).1)~(9.4) and obtaining: 

 

2

0 5 0 3 0 1 5 4 5 3 5 2 5 1 5

5 0 5

2

0 5 0 4 0 2 5 3 5 4 5 2 5 1 5

5 0 5

2

0 5 0 1 0 3 5 3 5 1 5 2 5 4 5

5 0 5

2

0 5 0 2 0 4 5 4 5 2 5

2 4 4 3

4 (2 )

2 4 4 3

4 (2 )

2 4 4 3

4 (2 )

2 4 4 3

D D D D D D D D D D D D D D D
a

D D D

D D D D D D D D D D D D D D D
b

D D D

D D D D D D D D D D D D D D D
c

D D D

D D D D D D D D D D D
d

+ − − + − + +
=

−

+ − − + − + +
=

−

+ − − + − + +
=

−

+ − − + − +
= 3 5 1 5

5 0 5
4 (2 )

D D D D

D D D











 +
 −

  (10) 

After having known the coefficients a, b, c and d, the variance 2σ can be obtained from Eq. 

(9).4). 
Similarly to the one-dimensional statistical interpolation, two special cases can be also 

considered. The first case is the point P coincides with the corner point P1, P2, P3, or P4. The 
coefficient (a, b, c, d) is equal to (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) or (0, 0, 0, 1) and the 

variance 2σ  is equal to 0. The second case is the point P is the center point of the square 

P1P2P3P4. The coefficient (a, b) is equal to (0.25, 0.25, 0.25, 0.25) and D1 = D2 = D3 = D4. 

The variance 2σ is equal to 2

1 0 5

1 1

4 8
D D Dσ = − − . Obviously, the results of the second case 

are consistent with those of the known random mid-point displacement method [19,20]. 
In comparison with the linear interpolator, the statistical interpolator introduces an 

additional term according to the phase structure function. Compared to the random mid-point 
displacement method, the statistical interpolator is a generalization of that method. Initially, 
the mid-point displacement method is used to generate a Kolmogorov phase screen by a 
process of successive subdivision in order to increase the resolution of the phase screen [19]. 
In order to achieve a more accurate statistics, an improved method (for convenience, we call it 
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Harding’ algorithm hereafter) was proposed that firstly generates an exact low resolution 
phase screen by factorizing its covariance matrix and then increases the resolution of the 
phase screen by the random mid-point displacement method [20]. But the interpolator must be 
done in several consecutive steps in order to produce a higher resolution and only be used to 
obtain the phase value of the mid-point in a line segment or the center point in a square. In 
this paper, our statistical interpolator can obtain the value of any point in a line or a square and 
not limited to the midpoint in a line or the center point in a square. It can be used to overcome 
the disadvantage of the so-called moving phase screens method [11]. That is to say, it can 
make the screen be shifted by non-integer multiples of the grid spacing in the simulations. 

4. Results and discussions 

In order to provide a complete evaluation of the statistical interpolation method, we will 
implement some comparison analysis. At first, we will compare the phase structure function 
derived from the two interpolation methods with that of the base screen. Then, some 
numerical experiments are also designed to test the accuracy of the two interpolation methods. 
These numerical experiments are mainly for the light propagation through atmospheric 
turbulence, including open-loop (without an AO system) and closed-loop (with an AO 
system). 

4.1 Comparison of the phase structure function 

4.1.1 One-dimensional interpolation 

As mentioned above, the phase perturbations caused by atmospheric turbulence are actually a 
new phase screen which is obtained from an existing phase screen by interpolation. Its 
ensemble statistics, namely the phase structure function, should match very closely the phase 
structure function of the base screen. Following that, we can evaluate the accuracy of the two 
interpolation methods by comparing the average phase structure function derived from an 
ensemble of the interpolated phase screens with that derived from an ensemble of the base 
phase screen. First, we generate a base phase screen. Then, an interpolated phase screen is 
generated by means of interpolating between the points of the base screen. In order to obtain 
the ensemble statistics, two sets of samples of 10000 base phase screens and interpolated 
phase screens are generated to compute the phase structure function. We define a relative 
error of the structure functions as an evaluation parameter. It is given by: 

 
base

( ) 1 ( ) / ( )
simulation

Error r D r D rφ φ= −   (11) 

where 
base

( )D rφ  and ( )
simulation

D rφ  denotes the average phase structure function computed from 

the base phase screens and the average phase structure function computed from the 
interpolated phase screens, respectively. 
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Fig. 4. The relative error of the phase structure functions for different interpolation methods. 
(a) h = 0.3, (b) h = 0.5, (c) h = 0.7. 

Covariance method [20] can obtain more accurate statistical property of a distorted wave-
front and it is used to generate the base phase screens here. We can use Eqs. (2) and (3) to 
generate a new phase screen by interpolating a base phase screen. For the one-dimensional 
interpolation method, the grid spacing of the interpolated screen should be equal to that of the 
base screen. Some parameters which are used to generate the base phase screens are as 
follows. The atmospheric coherence length r0 = 0.20 m. The grid spacing is 0.01 m. The 
effects of the position of the interpolated point P on the accuracy of two interpolation methods 

are also investigated. Assuming 
1

*r h r=  ( 0 1h≤ ≤ ) in Fig. 3(a), three different values for h  

are chosen: 0.3, 0.5, 0.7.The grid points of the base phase screen are 33 × 34 and the grid 
points of the interpolated phase screen are 33 × 33. A comparison of the relative error is 
shown in Fig. 4. 

It is shown in Fig. 4 that there exists substantial difference in the high frequency region. 
The relative error brought by the linear interpolator is bigger than that brought by the 
statistical interpolator in the high frequency region. Compared with the structure function of 
the base screen, the maximum error brought by statistical interpolation is about 3%, while the 

maximum error brought by linear interpolation is about 16% when the parameter h  is equal to 

0.5. In the low frequency region, there is no substantial difference between the linear 
interpolator and the statistical interpolator. In addition, a maximum error occurs when the 

parameter h  is equal to 0.5 in the high frequency, especially for the linear interpolator. 

4.1.2 Two-dimensional interpolation 

For the two-dimensional interpolation method, we can use Eqs. (2) and (7) to generate a new 
phase screen by interpolating a base phase screen. That is to say, each grid point of the new 
screen is obtained by interpolating from the grid points of the base screen. In comparison with 
the one-dimensional interpolation method, the two-dimensional interpolation method is more 
complicated. On the one hand, the positions of the interpolated points may affect the accuracy 
of the two interpolation methods. It is shown in Fig. 3 (b). The position of the interpolated 
point P is determined by the parameters u and v. Similarly to the case of one-dimensional 

interpolation, we can assume *u m r=  and *v n r=  ( 0 , 1m n≤ ≤ ). So the position of the 
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interpolated point P can be changed in the square grid P1P2P3P4 by adjusting the parameter 

m and n . On the other hand, the ratio l of the grid spacing of the base screen to that of the 

interpolated screen also affect the accuracy of the interpolation methods. Being different from 
the one-dimensional interpolator, the grid spacing of the interpolated screen is generally less 
than or equal to that of the base screen in the case of two-dimensional interpolation. That is 

1l ≥ .This means that the interpolated screen has more grid points than the base screen in the 

same area. See Fig. 2 (b). In order to obtain an interpolated screen from a base screen, one or 
more grid points are obtained by interpolating between the four corner points of a square in 
the base screen. The grid spacing of the interpolated screen is equal to that of the base screen 
when only one point can be interpolated from the four corner points of a square in the base 
screen. Otherwise, the grid spacing of the interpolated screen is less than that of the base 
screen when more points are interpolated from the four corner points of a square in the base 
screen. Thus, we will first investigate how the position of the interpolated point and the ratio 

l  of the grid spacing affect the accuracy of the interpolation methods. 

Some parameters which are used to generate the base screen are as follows. The 
atmospheric coherence length r0 = 0.14 m. The grid spacing of the base screen is 0.01 m. The 
grid points of the base screen are 34 × 34 and those of the interpolated screen are 33 × 33. 

In order to investigate the effect of the ratio l  on the accuracy of the interpolation method, 

we change the value of l  under the fixed value m  and n . The ratio l  is chosen as 1.0, 1.2, 

1.6 and 2.3 while ( , ) (0.3,0.8)m n = .The comparison of the relative error of the phase 

structure function is shown in Fig. 5. The results show that the relative error increases with the 

ratio l  in the high frequency region while remains comparatively small in the low frequency 

region. The ratio l  must be equal to 1.0 in order to minimize the relative error in the high 

frequency region. But, it is generally greater than 1.0 in the simulation of actual scenarios, i.e. 
the grid spacing of the base screen is greater than that of the interpolated screen. Fortunately, 
the random mid-point displacement method can be used to solve this problem. By using this 
method, the local region of the base screen, which is corresponding to the interpolated screen, 
can be subdivided into a phase screen with higher resolution until the grid spacing of this 

screen is equal to that of the interpolated screen, i.e. 1.0l = . Then the interpolated screen can 

be obtained by interpolating the screen with higher resolution. Thus, we only discuss the case 

of 1.0l =  in the following text. 

Similarly to the one-dimensional interpolator, the relative error brought by the linear 
interpolator is also bigger than that brought by the statistical interpolator in the high frequency 
region. 
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Fig. 5. Relative error of the phase structure function for different interpolation methods at (a) l 
= 1.0, (b) l = 1.2, (c) l = 1.6, (d) l = 2.3. 

In order to investigate the effect of the position of the interpolated point on the accuracy of 

the interpolation method, we change the value of m  and n  under a fixed value of 1.0l = . 

The comparison of the relative error of the phase structure function is shown in Fig. 6. 
Similarly to that of the one-dimensional interpolator, the results show that the relative error 

arrives at a maximum value when ( , ) (0.5,0.5)m n = . The maximum error brought by the 

statistical interpolator is about 7% while the maximum error brought by the linear interpolator 
is about 25% when the interpolated point lies in the center of the square grid. The closer to the 
endpoint the interpolated point is, the smaller the relative error is. The relative error in the 
high frequency region is bigger than that in the low frequency region. In addition, the relative 
error brought by the linear interpolator is also bigger than that brought by the statistical 
interpolator in the high frequency region. 
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Fig. 6. The relative error of the phase structure function for different interpolation methods at 
(a) (m, n) = (0.1, 0.1), (b) (m, n) = (0.5, 0.5), (c) (m, n) = (0.8, 0.2), (d) (m, n) = (0.9, 0.8). 

4.2 Comparison of simulation results of light propagation through turbulent atmosphere 

In addition to the comparison of the phase structure function, numerical experiments are 
carried out for a plane wave propagating in the atmospheric turbulence with/without AO for 
some scenarios. By reasonably designing a numerical experimental scheme, the effect of 
different interpolation methods on the light propagation through the turbulent atmosphere 
with/without AO is investigated. The results in Section 4.1 have shown that the relative error 
reaches a maximum in the high frequency region when the interpolated point is located at the 
mid-point in a line segment or at the center point in a square grid. Thus, we only discuss this 
specific case. 

This numerical experimental scheme is designed as follows. Firstly, a high resolution 
phase screen is created by Harding’s algorithm [20]. Secondly, we extract a point every a 
point from the high resolution screen. These extracted points constitute a low resolution phase 
screen. Thus, the grid spacing of the low resolution screen is two times that of the high 
resolution screen. It is the low resolution screen that is used in the simulation computation of 
the light propagation through atmospheric turbulence with/without AO. The long-exposure 
Strehl ratio is used as the evaluation parameter in the numerical experiments. 

The scheme is illustrated in Fig. 7. For convenience, only 5 × 5 grid points are displayed 
in Fig. 7 (a). The dark points denote the grid points of the high resolution screen while the 
hollow points denote the grid points of the low resolution screen. It is shown in Fig. 7 (b). The 
grid point P is a grid point of the low resolution screen. The corresponding point in the high 
resolution screen (i.e. the base screen) is the grid point P10. The phase value of each grid point 
in the low resolution screen can be obtained by three approaches. The first approach is that the 
value of the grid point P10 in the high resolution screen is directly taken as the phase value of 
the grid point P in the low resolution screen. The second approach is that the phase value of 
the grid point P is obtained by interpolating between two nearest points P2 and P6 or P4 and 
P9. The grid point P is the interpolated point and it is also the mid-point of the line segment 
P2P6 and P4P9 at the same time. This is a case of one-dimensional interpolation. The third 
approach is that the phase value of the grid point P is obtained by interpolating between four 
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nearest corner points P1, P3, P5 and P7. The grid point P is the interpolated point and it is also 
the center point of the square grid P1P3P5P7. This is a case of two-dimensional interpolation. 
Two interpolators (i.e. the linear interpolator and the statistical interpolator) are used to realize 
the interpolation process. Obviously, the first approach can provide an accurate result because 
this approach doesn’t use any interpolation. Thus, this accurate result provided by the first 
approach will be used as a standard value for comparing to evaluate two interpolation 
methods. The result provided by the linear interpolator and that provided by the statistical 
interpolator can be compared to the standard value. A relative error of the long-exposure 
Strehl ratio is computed. In this way, we can quantitatively estimate the accuracy and 
reliability of two interpolation methods. 

The simulation algorithm of laser propagation in the atmosphere with/without AO is 
described by Yan et al [2] in details. Here we will use this simulation algorithm to investigate 
the effects of interpolation methods on the simulation results of the light propagation. The 
simulated beam is chosen as a plane wave beam. It propagates along a 3000 m horizontal 
path, which was divided into 15 equivalent phase screens, each covering a distance z = 100 m. 
The wavelength is 1.55 mλ µ= . The computational grid is a 256 × 256 mesh. The Rytov 

variance 2

R
σ can be used as a measure of the strength of the atmospheric turbulence [21]. For 

plane waves, it is defined as 2 2 7/6 11/61.23
R n

C k Lσ = . Here, different Rytov variances can be 

obtained by changing the turbulence strength 2

n
C . The Strehl ratio is defined as the ratio of the 

intensity of the center point on the target after propagation through the turbulent atmosphere 
to that through a vacuum. 

 

Fig. 7. Generation of the low-resolution screen (hollow points) by extracting a point every pixel 
from the high-resolution screen (dark points). 

Considering the inevitable time delay of an adaptive optics system [22], random phase 
screen must move in a certain direction at a definite speed and a rectangular phase screen 
must be used in the simulation. The effects of the time delay are treated as follows. The phase 
screens are assumed to move laterally in the delay time period because of lateral wind and/or 
the lateral movements of the laser and/or target. Thus, the laser beam with compensated phase 
will propagate through the laterally moved phase screens to reach the target. Firstly, an initial 
phase screen with 1025 × 1025 grid points is generated by Harding’ algorithm. Secondly, a 
high resolution screen with 1025 × 513 grid points is formed by choosing one half of the 
initial screen. Finally, a low resolution phase screen with 512 × 256 can be created by 
extracting a point every pixel from the high resolution phase screen. The phase value of each 
point in the low resolution screen is obtained by three above-mentioned approaches. 

Firstly, we investigate the effects of the interpolation methods on the light propagation 
results under the condition of one-dimensional interpolation. The one-dimensional 
interpolation method includes the linear interpolator and the one-dimensional statistical 
interpolator. In Fig. 8, the relative error of the long-exposure Strehl ratio is shown. It can be 
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seen that the result provided by the linear interpolator is greater than that provided by the one-
dimensional statistical interpolator under the condition of open-loop (without AO) and closed-
loop (with AO). For two interpolators, the closed-loop result is greater than the open-loop 
result. Under the condition of open-loop and closed-loop, the relative error both increases with 
the Rytov variance. 

 

Fig. 8. Relative error of the long-exposure Strehl ratio from the first approach (the standard 

value) and that from the second approach which uses the linear interpolation given by Eq. (2) 

or the one-dimensional statistical interpolation given by Eq. (3). (a) Open-loop; (b) Closed-

loop. 

Secondly, we also investigate the effects of the interpolation methods on the light 
propagation results under the condition of two-dimensional interpolation. The two-
dimensional interpolation method includes the linear interpolator and the two-dimensional 
statistical interpolator. In Fig. 9, the relative error of the long-exposure Strehl ratio is shown. 
Similarly to the case of one-dimensional interpolation, it is also shown that the result provided 
by the linear interpolator is greater than that provided by the two-dimensional statistical 
interpolator under the condition of open-loop and closed-loop. For the linear interpolator, the 
closed-loop result is greater than the open-loop result. For the two-dimensional statistical 
interpolator, the relative error seems to smoothly fluctuate with the Rytov variance increasing 
and both remain at a rather small value under the condition of open-loop and closed-loop. 

 

Fig. 9. Relative error of the long-exposure Strehl ratio from the first approach (the standard 

value) and that from the second approach which uses the linear interpolator given by Eq. (2) 

or the two-dimensional statistical interpolator given by Eq. (6). (a) Open-loop; (b) Closed-

loop. 

From the above analysis, it is shown that the closed-loop result of the relative error is 
greater than the open-loop result for the linear interpolator in two interpolation cases, i.e., the 
one-dimensional interpolation and the two-dimensional interpolation. The reason for this 
difference lies mainly in that only one interpolation is performed under the condition of open-
loop while two interpolations are performed under the condition of closed-loop. The latter 
makes the result of the relative error larger than the former does. For the statistical 
interpolator, the result of one-dimensional interpolation is larger than that of two-dimensional 
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interpolation under the condition of open-loop and closed-loop. This is because the latter (4-
nearest-neighbor statistical interpolator) can provide a more accurate statistical property than 
the former (2-nearest-neighbor statistical interpolator) by introducing a correlation between 
more adjacent points in the high resolution screen. Due to this fact, the 4-nearest-neighbor 
statistical interpolator produces a more accuracy under the condition of open-loop and closed-
loop (See Fig. (9)). Although in theory a statistical interpolator utilizing more than 4 nearest 
neighbors would provide better results, it increases the complexity of the interpolator greatly. 

Concerning the comparison between the results of the linear interpolator and those of the 
statistical interpolator employed in the light propagation through the turbulent atmosphere 
with/without AO, we observed that the statistical interpolator can provide a more accurate 
result than the linear interpolator. It is well known that the linear interpolator is a kind of 
weighted average interpolator and smoothes phase fluctuations. Thus, it artificially alleviates 
the effect of atmospheric turbulence. That is, the interpolated screen is smoother than the base 
screen, especially in the high frequency region. This will impose an important effect on the 
numerical simulation of light propagation through the turbulent atmosphere with/without AO. 
Considering the random fluctuation property of atmospheric turbulence, the statistical 
interpolator is based on a linear interpolation between two/four nearest existing points on the 
phase screen plus a random displacement of the interpolated point. The magnitude of the 
random displacement is determined by the turbulence strength. From the comparison of phase 
structure function and light propagation through atmospheric turbulence, it concludes that the 
statistical interpolator is more accurate and reliable than the linear interpolator. 

5. Summary 

Turbulent phase screen has been widely used to represent the phase perturbations induced by 
a turbulent media in numerical simulation of light propagation through the atmosphere. But 
these perturbations cannot be directly obtained from the phase screen in lots of actual 
scenarios, such as scenarios arising from temporal evolution conditions or astronomical 
telescope with a laser guide star (LGS) adaptive optics system, due to the movement of phase 
screen(s) or the mismatch between the optical field of astronomical object and that of the 
LGS. A statistical interpolation method is proposed to address this problem in this paper. This 
method is actually an extension of the known random midpoint displacement algorithm. It can 
be used to obtain the value of any point in a line or a square but nor limited to the midpoint. 
Taking the results provided by the base phase screen(s) as the standard for comparing, the 
phase structure function and the numerical results of light propagation through the turbulent 
atmosphere with/without AO are used to evaluate the statistical interpolator. The statistical 
interpolator is also compared with the well-known linear interpolator. For the comparison of 
the relative error of the phase structure function, it is shown that there exists substantial 
difference in the high frequency region. In addition, a maximum error occurs when the 
interpolated point is the mid-point of the line segment or the center point of the square grid in 
the high frequency, especially for the linear interpolator. For the comparison of light 
propagation through the turbulent atmosphere, it is also shown that the statistical interpolator 
can obtain better results than the linear interpolator. The difference between the open-loop 
results of the statistical interpolator and those of the linear interpolator is larger than that 
between the close-loop results of the statistical interpolator and those of the linear 
interpolator. It can conclude that the statistical interpolator is more accurate and reliable than 
the linear interpolator. 
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