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Abstract Energy functions (or characteristic functions) and basic equations for ferroelectrics in use today
are given by those for ordinary dielectrics in the physical and mechanical communications. Based on these
basic equations and energy functions, the finite element computation of the nonlinear behavior of the ferro-
electrics has been carried out by several research groups. However, it is difficult to process the finite element
computation further after domain switching, and the computation results are remarkably deviating from the
experimental results. For the crack problem, the iterative solution of the finite element calculation could not
converge and the solutions for fields near the crack tip oscillate. In order to finish the calculation smoothly, the
finite element formulation should be modified to neglect the equivalent nodal load produced by spontaneous
polarization gradient. Meanwhile, certain energy functions for ferroelectrics in use today are not compatible
with the constitutive equations of ferroelectrics and need to be modified. This paper proposes a set of new
formulae of the energy functions for ferroelectrics. With regard to the new formulae of the energy functions,
the new basic equations for ferroelectrics are derived and can reasonably explain the question in the current
finite element analysis for ferroelectrics.

1 Introduction

Ferroelectric materials such as barium titanate, lead titanate and PZT are ionic crystalline solids that are spon-
taneously polarized below their Curie temperatures. The spontaneous polarization can take any one of several
possible orientations. Moreover, the spontaneous polarization can be switched under an applied electric or
mechanical field. Ferroelectric materials show remarkable nonlinear behavior under an electric or mechanical
loading due to microscopic domain switching. Ferroelectric ceramics have found wide application as memo-
ries, sensors, and actuators in smart components owing to their excellent coupled electromechanical properties
[1,2]. Ferroelectric ceramics are mostly exposed to high electrical and mechanical loads during service, so
studies on the nonlinear constitutive behavior of ferroelectrics are significant to guide the design of ferroelectric
smart components and to analyze and predict their performance.

Many experimental and theoretical studies were devoted to explaining the nonlinear behavior of the fer-
roelectric ceramics [3–8]. Several nonlinear constitutive models were proposed and these different types of
constitutive models for the ferroelectric ceramics can generally fall into two categories [9–27]. One category is
based on the micro-electromechanical behavior of grains and another on the macro phenomenological model.
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Chen and his cooperators [9–12] firstly proposed the phenomenological model to describe the electromechani-
cal coupling characters of ferroelectrics. The macro phenomenological models [9–19], which are mainly based
on the first and second laws of thermodynamics and the postulate of maximum dissipation, consist of a selection
of the internal variables characterizing the thermodynamic state of the material, a description for a switching
surface (just analogous to a yield surface in conventional plasticity theory), a flow rule, and a derivation of
the evolution equations of these internal variables. They usually give a purely macroscopic picture and do
not describe the microstructural changes that accompany the process of polarization and domain switching.
Micro-electromechanical models [20–27], which are based on a description of the material element at a unit
cell or a domain length scale, include a selection of the internal variables representing the microstructure of the
material element, a domain switching criterion and a kinematic description of these internal variables. Some
approaches have been made to capture grain-grain interactions such as a mean field theory or a finite element
method in some micromechanical models. Then, they can predict the macroscopic response of the material
by averaging the response at the micro level. Li and Weng [28–30] studied the nonlinear coupled behavior of
ferroelectrics using a micromechanics approach that combines the principle of irreversible thermodynamics
and physics of domain switch. And this work was recently expanded to include the effect of temperature to
study the shift of the Curie point [31,32] and to calculate the hysteresis behavior of single crystals and the
ceramic polycrystal [33,34].

According to the above theories and models, some researchers have simulated the electromechanical
coupled nonlinear behavior of ferroelectrics by the finite element method which generally implements the
displacement and electric potential as the basic nodal variables [35–43]. In the solution of the finite element
formalization, the researchers have found that the equivalent nodal load produced by spontaneous polarization
is large enough to cause illogical simulated results [36,41–43]. In order to accomplish the calculation and obtain
good simulated results, the finite element formulation should be modified to neglect the equivalent nodal load
produced by spontaneous polarization [36,41–43]. Thus, it could not be suitable for finite element computation
of ferroelectrics to employ the basic equations for dielectrics. Recently, Li and Rajapakse [44] had provided
a detailed physical argument for the above problem in the finite element modeling. They explained that there
was the charge-screening effect in real ceramics. That is, for bulk materials, the depolarization field induced by
the polarization gradient or polarization change during domain switching is completely compensated by free
charges. The free charges are trapped by unbalanced polarization and turn into space charges, which cannot be
driven by the applied electric field unless the polarization switches. When domain switching occurs, the space
charges are released and move to the surface of a material.

In the finite element modeling of ferroelectrics, each element should be a macroscopic material element and
consists of a large number of domains. Thus, the physical quantities of the element are the volume averages
of the corresponding quantities of all domains within the element. The depolarization field induced by the
polarization gradient among adjacent elements is much larger than the coercive electric field, but it can be
compensated by the screening-charges from the physical fundamentals of ferroelectrics according to Li and
Rajapakse [44]. Hence, the equivalent nodal load produced by spontaneous polarization could be neglected
in the finite element modeling. However, there is not any mathematical verification till now. Meanwhile, we
can check the mathematical expressions of energy functions for ferroelectrics. Certain energy functions in use
today are not compatible with the constitutive equations of ferroelectrics and need to be modified. This paper
proposes a set of new formulae of the energy functions for ferroelectrics with sophisticated consideration. The
new basic equations for ferroelectrics are derived in terms of the new formula of the energy functions. The
new basic equations for ferroelectrics can overcome the difficulty in the current finite element analysis for
ferroelectrics. The good calculation results have been obtained for ferroelectrics using the new basic equations
[36,41–43].

2 Current energy functions and basic equations for ferroelectrics

2.1 Current basic equations and variational principle

The current basic equations for ferroelectrics in quasi-static equilibrium mechanically and electrically are
given by Newton’s and Maxwell’s laws. Consider a volume of material,V , bounded by the surface, S, and free
of the body force and the free body charge. The field equation is given by [45,46]

σi j, j = 0

Di,i = 0
(1)
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The mechanical boundary conditions are given by

σi j n j = t̄i , on Sσ , (2)

ui = ūi , on Su (3)

where σi j is the stress tensor, t̄i is the traction applied to the surface Sσ , ni is a unit vector normal to the surface
directed outward from the volume, and ūi is the displacement on Su .

The electric boundary conditions are given by

Di ni = −ω̄, on Sω, (4)

φ = φ̄, on Sφ (5)

where Di is the electric displacement, ω̄ is the prescribed surface free charge per unit area residing on Sω, and
φ̄ is the prescribed electric surface potential on Sφ .

The generalized geometric equations are

γi j = 1

2

(
ui, j + u j,i

)
, (6)

Ei = − ∂φ

∂xi
. (7)

If the recoverable strain γi j − γ s
i j

and the electric field Ei are chosen as the independent constitutive variables,
the second type constitutive equation for a linear response of ferroelectrics can be written as [1,47,48]

σi j = cE
i jmn

(
γmn − γ s

mn

) − eki j Ek,

Di = eimn
(
γmn − γ s

mn

) + ε
γ

ik Ek + Ds
i

(8)

where γ s
i j and Ds

i are the spontaneous strain and polarization, cE
i jkl is the elastic modulus tensor measured

at constant electric field, eki j is the piezoelectric coefficient tensor at constant strain, and ε
γ

i j is the dielectric
permittivity tensor measured at constant strain.

Suppose that the displacement ui and the electric potential φ satisfy the boundary conditions (3) and (5),
respectively, the field Eq. (1) and the boundary conditions (2) and (4) are equivalent to the following variational
equation [49,50]:

∫

V

(
σi j, jδui + Di,iδφ

)
dV −

∫

Sσ

(
σi j n j − t̄i

)
δui d S−

∫

Sω

(Di ni + ω̄) δφd S = 0. (9)

Substituting the constitutive Eq. (8) into the above Eq. (9), we get

δ

⎡

⎣
∫

V

(
1

2
cE

i jkl
γklγi j − eki j Ekγi j − 1

2
ε
γ

i j Ei E j

)
dV

⎤

⎦ −
∫

V

[
Ci jklγ

s
klδγi j −

(
ei jkγ

s
jk − Ds

i

)
δEi

]
dV

−
∫

Sσ

t̄ jδu j d S +
∫

Sω

ω̄δϕd S = 0.

Hence, the total electric entropy potential 	 of the system can be expressed as

	 =
∫

V

(
1

2
cE

i jkl
γklγi j − eki j Ekγi j − 1

2
εr

i j Ei E j

)
dV −

∫

V

[
Ci jklγ

s
klγi j −

(
ei jkγ

s
jk − Ds

i

)
Ei

]
dV

−
∫

Sσ

t̄ j u j d S +
∫

Sω

ω̄ϕd S. (10)

The variational principle is

δ	 = 0.

Therefore, the standard finite element formulation in which the displacement and electric potential are chosen
as the independent parameters can be obtained.



72 H. Li, T. C. Wang

2.2 Finite element formulation

The generalized displacement is

u = [u1 u3 u3 φ] T . (11)

The generalized strain is

� = [
γ11 γ22 γ33 2γ23 2γ13 2γ12 −E1 −E2 −E3

] T
. (12)

The generalized stress is

� = [σ11 σ22 σ33 σ23 σ13 σ12 D1 D2 D3] T . (13)

The relation between the generalized stress and the generalized strain is

� = C
(
� − �s) + Ds (14)

where �s = [
γ s

11 γ s
22 γ s

33 2γ s
23 2γ s

13 2γ s
12 0 0 0

]T ,

Ds = [
0 0 0 0 0 0 Ds

1 Ds
2 Ds

3

]T
,

C =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

cE
1111

cE
1122

cE
1133

0 0 0 e111 e211 e311

cE
2211

cE
2222

cE
2233

0 0 0 e122 e222 e322

cE
3311

cE
3322

cE
3333

0 0 0 e133 e233 e333

0 0 0 cE
2323

0 0 e123 e223 e323

0 0 0 0 cE
1313

0 e113 e213 e313

0 0 0 0 0 cE
1212

e112 e212 e312

e111 e122 e133 e123 e113 e112 −εr
11 −εr

12 −εr
13

e211 e222 e233 e223 e213 e212 −εr
21 −εr

22 −εr
23

e311 e322 e333 e323 e313 e312 −εr
31 −εr

32 −εr
33

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

. (15)

The generalized nodal displacement array of an element is ae and the matrix of shape functions is N. The
generalized displacement within an element can then be interpolated as

u = Nae. (16)

The generalized strain for each element can be derived as

� = Lu = LNae = Bae (17)

where the matrix L is given as

L =
⎡

⎢
⎣

∂x 0 0 0 ∂z ∂y 0 0 0
0 ∂y 0 ∂z 0 ∂x 0 0 0
0 0 ∂z ∂y ∂x 0 0 0 0
0 0 0 0 0 0 ∂x ∂y ∂z

⎤

⎥
⎦

T

. (18)

The total electric entropy potential 	 can be expressed by the generalized nodal displacement ae,

	 =
∑

⎛

⎜
⎝aT

e

∫


e

1

2
BTCBaedV

⎞

⎟
⎠

−
∑

⎛

⎜
⎝aT

e

∫


e

BT (
C�s − Ds) dV

⎞

⎟
⎠ −

∑
⎛

⎜
⎝aT

e

∫

Sσ

NTT̄d S

⎞

⎟
⎠ +

∑
⎛

⎜
⎝aT

e

∫

Sω

NTω̄d S

⎞

⎟
⎠. (19)
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The element nodal displacement ae can be expressed by the total nodal displacement a, thus

ae = Ga (20)

where G is a transformation matrix relating the element local displacement and the global displacement. Then,
we have

	 =
∑

e

aTGT
∫


e

1

2
BTCBGadV −

∑

e

aTGT
∫


e

BTC�sdV +
∑

e

aTGT
∫


e

BTDsdV

−
∑

e

aTGT
∫

Sσ

NTT̄d S +
∑

e

aTGT
∫

Sω

NTω̄d S. (21)

According to δ	 = 0, Eq. (21) can yield the finite element equation

∑

e

GT
∫


e

BTCBGadV =
∑

e

GT
∫


e

BTC�sdV −
∑

e

GT
∫


e

BTDsdV

+
∑

e

GT
∫

Sσ

NTT̄d S −
∑

e

GT
∫

Sω

NTω̄d S. (22)

The second term on the right-hand side of Eq. (22) is the additional nodal load due to the spontaneous polari-
zation, represented by Fs . Based on Eq. (22), one can carry out the finite element calculation. Unfortunately it
is difficult to process the finite element computation further after domain switching occurs for some elements
and the computational results are remarkably deviating from the experimental results. Li and Fang [41,42]
neglect this term in their finite element computation because they believe that there could be some free charges
to balance this term in practical materials. Liu et al. [43] have also encountered the same difficulty in our finite
element computation. Therefore, we think that the basic equations should be further discussed.

2.3 Energy functions currently used for ferroelectrics

The state of homogeneous elastic dielectrics can be described by three pairs of variables, the stress σ and
strain γ , the electric field E and electric displacement D and the temperature T and entropy S. In view of
the thermodynamic theories, only one thermodynamic characteristic function is needed to determine the equi-
librium of this system after independent variables are identified. Any one of each pair is respectively chosen
as the independent variable to construct a characteristic function for dielectrics. The different combination
of the independent variables can construct the different energy (or characteristic) function. The energy (or
characteristic) functions for dielectrics are the internal energy, electric enthalpy, Gibbs free energy and so on.
The internal energy density, electric enthalpy density and Gibbs free energy density are respectively denoted
by U , W and G, which are given by [24,40,51]

U = ∫ (
T d S + σi j dγi j + Ekd Dk

)
,

W = U − Ek Dk,

G = U − T S − σi jγi j − Ek Dk,

(23)

Suo et al. [50] has shown that the total electric entropy potential 	 of the system in Eq. (10) can be expressed
as

	 =
∫

V

W dV −
∫

sσ

t̄i ui d S +
∫

sω

ω̄φd S. (24)

The energy (or characteristic) functions for ferroelectrics in use today are given by those for ordinary dielec-
trics in the physical and mechanical communications. Neglecting the heat effect, the internal energy density
is written as

U =
∫ (

σi j dγi j + Ekd Dk
)
. (25)
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If the stress σi j and the electric field Ei are chosen as the independent constitutive variables, the first type
constitutive equation for a linear response of ferroelectrics can be written as [47,48,52]

γi j = γ s
i j + s E

i jmn
σmn + dki j Ek,

Di = Ds
i + dimnσmn + εσ

ik
Ek

(26)

where s E
i jmn

, dki j , ε
σ
ik

are the components of the elastic compliance, piezoelectric and dielectric permittivity
tensors, respectively.

Substituting Eq. (26) into Eq. (25), the internal energy density U for ferroelectrics is described as

U = 1

2
σi j

(
γi j − γ s

i j

)
+ 1

2
Ei

(
Di − Ds

i

)
. (27)

According to Eq. (23), the corresponding electric enthalpy density W and Gibbs free energy density G for
ferroelectrics can be expressed as

W = 1

2
σi j

(
γi j − γ s

i j

)
− 1

2
Ei

(
Di + Ds

i

)
, (28)

G = −1

2
σi j

(
γi j + γ s

i j

)
− 1

2
Ei

(
Di + Ds

i

)
. (29)

The first term on the right-hand side of Eq. (28) includes γi j − γ s
i j , but the second on the right-hand side

includes Di + Ds
i . Apparently, the expression (28) for W is not compatible with the constitutive equations

of ferroelectrics and needs to be modified. Likewise, the expression (29) for G is strange due to two terms
γi j + γ s

i j and Di + Ds
i .

3 Energy functions and basic equations for ferroelectrics

3.1 Energy functions and basic equations

In contrast to ordinary dielectrics, ferroelectric crystals undergo a phase transition from a cubic unit cell to
a tetragonal, orthorhombic, or rhombohedral one when cooling through the Curie point. This leads to the
spontaneous polarization Ds

i and strain γ s
i j . If the recoverable strain γi j − γ s

i j and the recoverable electric
displacement Di − Ds

i are taken as independent variables, Eq. (25) can be inverted to the form [25,39]

σi j = cD
i jkl

(
γi j − γ s

i j

)
− hki j

(
Dk − Ds

k

)
,

Ei = −hikl
(
γkl − γ s

kl

) + β
γ

ik

(
Dk − Ds

k

) (30)

where cD
i jkl is an elastic stiffness tensor, hki j is a piezoelectric tensor and β

γ

i j is a dielectric permeability tensor.
It can be clearly seen that the state variable (σi j , Ei ) is homogeneously and linearly related to the state variable
(γi j − γ s

i j , Di − Ds
i ). Both the state variable (σi j , Ei ) and the state variable (γi j − γ s

i j , Di − Ds
i ) are the one

to one correspondence.
According to Lines and Glass [53] and Elhadrouz et al. [54], the Gibbs free energy density G for ferro-

electrics can be expressed as

G = −1

2
σi j

(
γi j − γ s

i j

)
− 1

2
Ei

(
Di − Ds

i

)
. (31)

The Gibbs free energy density G defined by Eq. (31) is distinct from that defined by Eq. (29).
According to the thermodynamics law [53,54], when temperature is constant, the Gibbs free energy density

G is a function of the independent variables (σi j , Ei ). It infers from Eq. (31) that the state variable (γi j − γ s
i j ,

Di − Ds
i ) is the work conjugate to the state variable (σi j , Ei ).
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According to the above work conjugate law, the electric enthalpy density W and the Gibbs free energy G
for ferroelectrics should be defined by

W = U − Ei
(
Di − Ds

i

) = 1

2
σi j

(
γi j − γ s

i j

)
− 1

2
Ei

(
Di − Ds

i

)
, (32)

G = U − σi j

(
γi j − γ s

i j

)
− E

(
Di − Ds

i

) = −1

2
σi j

(
γi j − γ s

i j

)
− 1

2
Ei

(
Di − Ds

i

)
. (33)

One can clearly find that the new G defined by Eq. (33) is the same as that of Eq. (31) defined by Lines and
Glass [53] and Elhadrouz et al. [54]. In contrast to Eqs. (28) and (29), Eqs. (32) and (33) are more reasonable
from the physical point view. In terms of the electric enthalpy W defined by Eq. (32) the total electric entropy
potential 	 of the system is

	 =
∫

V

W dV −
∫

sσ

t̄i ui d S +
∫

sω

ω̄φd S. (34)

The first variation of the total electric entropy potential of the system is

δ	 =
∫

V

δW dV −
∫

sσ

t̄iδui d S +
∫

sω

ω̄δφd S

=
∫

V

[
σi jδγi j − (

Di − Ds
i

)
δEi

]
dV −

∫

sσ

t̄iδui d S +
∫

sω

ω̄δφd S

=
∫

V

[
σi jδui, j + (

Di − Ds
i

)
δφ,i

]
dV −

∫

sσ

t̄iδui d S +
∫

sω

ω̄δφd S. (35)

Based on the principle of stationary total electric entropy potential, one can obtain the following new field
equation:

σi j, j = 0 (36.1)
, in V(

Di − Ds
i

)
,i = 0 (36.2)

and boundary conditions (37) and (38)

σi j n j = t̄i , on Sσ (37)
(
Di − Ds

i

)
ni = −ω̄, on Sω. (38)

3.2 The physical meaning of the new Eqs. (36.1) and (38)

The ferroelectric ceramics consists of numerous domains. Within each single domain, the spontaneous polar-
ization is uniform, hence Eq. (36.1) becomes

σi j, j = 0

Di,i = 0
in V . (39)

The above equation is identical with Eq. (1). It means that the new field Eq. (36.1) is essentially the same as the
original field Eq. (1) of ferroelectrics within each single domain. On the other hand, one can get the following
interface condition based on Eq. (36.2):

[Di − Ds
i ]ni = 0 on Sin (40)

where Sin is the interface (domain wall) between two adjacent domains as shown in Fig. 1. Here, the symbol
[ ] denotes the jump across Sin of the quantity within. Equation (40) can be rewritten as

[Di ]ni = −ωs

ωs = −[Ds
i ]ni

on Sin (41)

where ωs is the interface free charge density induced by the spontaneous polarization gradient. Equation (41)
is the actual new equation presented in this paper.
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9domain wall

Fig. 1 An aggregate with domains as sub-regions

3.3 Finite element formulations

The 90◦ domain switch will produce a very thin surface layer on the charge-free boundary of the specimen
of ferroelectric ceramics. The recent finite calculations [36,41–43] did not simulate the surface layers. The
finite element formulations presented in this paper are also neglecting the surface layers. The reason is given
in Appendix A.

Neglecting the body force and free body charge and supposing that the displacement ui and the elec-
tric potential φ satisfy the boundary conditions (3) and (5), respectively, the field Eq. (36.1) and boundary
conditions (37) and (38) are equivalent to the following variational equation:

∫

V

(
σi j, jδui + (

Di − Ds
i

)
,i δφ

)
dV −

∫

Sσ

(
σi j n j − t̄i

)
δui d S−

∫

Sω

[(
Di − Ds

i

)
ni + ω̄

]
δφd S = 0. (42)

Substituting Eq. (8) into Eq. (42), we get

δ

⎡

⎣
∫

V

(
1

2
ci jklγklγi j − eki j Ekγi j − 1

2
ε
γ

i j Ei E j

)
dV

⎤

⎦ −
∫

V

[
Ci jklγ

s
klδγi j − ei jkγ

s
jkδEi

]
dV

−
∫

Sσ

t̄ jδu j d S +
∫

Sω

ω̄δφd S = 0. (43)

Hence, the total electric entropy potential 	 of the ferroelectrics can be expressed as

	 =
∫

V

(
1

2
ci jklγklγi j − eki j Ekγi j − 1

2
εr

i j Ei E j

)
dV −

∫

V

[
Ci jklγ

s
klγi j − ei jkγ

s
jk Ei

]
dV

−
∫

Sσ

t̄ j u j d S +
∫

Sω

ω̄φd S. (44)

The variational principle is

δ	 = 0. (45)

Equation (45) can be written in a discretized form as

	 =
∑

e

aTGT
∫


e

1

2
BTCBGadV −

∑

e

aTGT
∫


e

BTC�sdV −
∑

e

aTGT
∫

Sσ

NTT̄d S

+
∑

e

aTGT
∫

Sω

NTω̄d S. (46)
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Then, Eq. (46) yields the finite element equation

∑

e

GT
∫


e

BTCBGadV =
∑

e

GT
∫


e

BTC�sdV +
∑

e

GT
∫

Sσ

NTT̄d S

−
∑

e

GT
∫

Sω

NTω̄d S. (47)

In contrast to Eq. (22), the equivalent nodal load Fs disappears on the right-hand side of Eq. (47). It can confirm
that the effect of the spontaneous polarization does not exist really in the new finite element formulation. Now
there is not any difficulty in the finite element calculation when the new basic equations derived in this paper
are used.

4 Concluding remarks

This paper carefully analyzes the puzzle in the current finite element modeling of nonlinear behavior of
ferroelectrics. The puzzle arises from neglecting the equivalent nodal load Fs induced by the spontaneous
polarization [36,41–43]. According to the currently used basic equations, the equivalent nodal load Fs does
exist, and it is very large to cause the illogical computational results [2,36,41–43]. A rigorous mathematical
verification is presented to overcome the puzzle. According to the work conjugate law, we modify the formula
of certain current energy functions which are incompatible with the constitutive equations of ferroelectrics
and propose a set of new formulae of energy functions for ferroelectrics. Based on the new formulae of energy
functions, the new basic equations for ferroelectrics are derived. Employing the new basic equations, one can
smoothly overcome the difficulty in the current finite element computation for ferroelectrics and obtain good
computational results.

Appendix A

Figure 2 shows a specimen of ferroelectric ceramics with single domain. The specimen is subjected to uniform
compression on the boundaries BC and DA and satisfies the charge-free condition on the boundaries AB and
CD. When the compression is large enough, the 90◦ domain switch will occur in the body. On the surface AB
and CD, the situation will be complicated. The 90◦ domain switch will produce two very thin surface layers as

0,

0,

B C

A D

sP

surface layersurface layer

Fig. 2 A specimen with single domain under compression
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inside the specimen 

Fig. 3 Domain configurations of the surface layer

shown in Fig. 2. Within the surface layers, the microstructure is much more complicated than inside the body.
Figure 3 is an enlargement of the surface layer. A possible microstructure is shown in Fig. 3. The original single
domain in the surface layer is divided into small pieces of sub-domains to form complicated domain patterns.
The 90◦ domain switches are accompanied by 180◦ domain switches in the surface layer. The spontaneous
polarization in all sub-domains on the surface is parallel to the surface as shown in Fig. 3, which satisfies
the original boundary condition (4). But the spontaneous polarization of the sub-domain within the surface
layer may perpendicular to the surface. If the specimen is a single crystal, such kinds of the domain patterns
can propagate into the body with domain wall elongation and propagation. But for the ferroelectric ceramics,
thousands of grain boundaries become strong barriers to prevent a continuous movement of the domain wall.
Each grain may be divided into several pieces of sub-domains with parallel spontaneous polarization. Across
the grain boundary, the spontaneous polarization gradient could be balanced by ωs .

The recent finite calculations [36,41–43] did not simulate the surface layers. One reason is that the sim-
ulation of the surface layers needs too much consuming of computation time. On the other hand, there is
not any mechanical principle to deal with the domain patterns in the surface layers. There are thousands of
varieties of possible domain patterns. It is nearly impossible to simulate so many possible domain patterns. The
recent finite calculations [36,41–43] have neglected the surface layers. This paper provides a mathematical
verification for the recent finite calculations [36,41–43].
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