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Size- and Temperature-Dependent Thermal Expansion Coefficient of a Nanofilm *
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The thermal expansion coefficient (TEC) of an ideal crystal is derived by using a method of Boltzmann statistics.
The Morse potential energy function is adopted to show the dependence of the TEC on the temperature. By
taking the effects of the surface relaxation and the surface energy into consideration, the dimensionless TEC of
a nanofilm is derived. It is shown that with decreasing thickness, the TEC can increase or decrease, depending
on the surface relaxation of the nanofilm.
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At the nanoscale, many mechanical and physical
properties of structures exhibit some new effects (such
as surface effects, size effects and quantum effects),
which are neglected at the macroscale. The new ef-
fects put forward challenges to classical theory, and
simultaneously present an opportunity for a break-
through. A nanofilm is one of the most common
nanostructures, and it is a fundamental structural el-
ement of nano-electro-mechanical systems (NEMS),
nano-devices and nano-oscillators, etc. Thus the me-
chanical and physical properties of a nanofilm have
attracted a large amount of attention in recent years.

The elastic modulus and fracture toughness of a
nanofilm have been extensively studied by using the
experimental methods,[1−4] theoretical models[5−14]

and molecular dynamic simulations.[15−18] It has been
shown that the elastic modulus and fracture tough-
ness of a nanofilm are size-dependent and surface-
dependent. Some researchers[7−9] have also shown
that the elastic moduli of a nanofilm are temperature-
dependent. Besides the elastic modulus and fracture
toughness, in engineering applications, the thermal ex-
pansion coefficient (TEC) is also an important physi-
cal property. There have been some studies concern-
ing the size effects of the TEC.[19−24] Similar to re-
sults for the elastic modulus, there exist some de-
bates on the size effects of the TEC. Some experiments
showed that the TEC increases with decreasing crys-
tallite size,[19−20] but some other experiments showed
that the TEC could be smaller or larger than the TEC
of bulk material.[21] The theoretical studies give am-
biguous predictions too. Some models predicted that
TEC increases with decreasing crystallite size,[22,23]

but some other models showed the opposite result.[24]

In this Letter, the TEC of an ideal crystal will be
derived by using a method of Boltzmann statistics.
By taking the surface relaxation and the surface en-

ergy into consideration, the dimensionless TEC of a
nanofilm is obtained, and the dependence of the TEC
on the size, temperature, and surface is analyzed.

The thermal expansion of a crystal is caused by
the nonharmonic oscillation of the atoms according to
the theory of classical solid state physics. It is as-
sumed that the interatomic potential of an ideal crys-
tal is 𝑢(𝑟), where 𝑟 is the interatomic distance. If 𝑟0 is
the equilibrium interatomic distance, the average dis-
placement ⟨𝑟 − 𝑟0⟩ can be derived using a method of
Boltzmann statistics[25]

⟨𝑟 − 𝑟0⟩ =
∫︀

𝑟𝑒−𝑢(𝑟)/𝑘𝐵𝑇 𝑑𝑟∫︀
𝑒−𝑢(𝑟)/𝑘𝐵𝑇 𝑑𝑟

, (1)

where 𝑘𝐵 and 𝑇 are Boltzmann’s constant and tem-
perature, respectively. Thus the linear TEC of a crys-
tal should be

Ω =
𝑑⟨𝑟 − 𝑟0⟩

𝑟0𝑑𝑇
. (2)

The interatomic potential 𝑢(𝑟) can be expanded as
Taylor series at equilibrium position

𝑢(𝑟) = 𝑢(𝑟0) + 𝑒(𝑟 − 𝑟0) + 𝑓(𝑟 − 𝑟0)2 − 𝑔(𝑟 − 𝑟0)3

+ ℎ(𝑟 − 𝑟0)4 + · · · , (3)

where

𝑒 = 𝑢′(𝑟0) = 0, 𝑓 = (1/2!)𝑢′′(𝑟0),

𝑔 = −(1/3!)𝑢′′′(𝑟0), ℎ = −(1/4!)𝑢(4)(𝑟0).

If the Taylor series is truncated at the fourth term,
and we substitute it into Eqs. (1) and (2), then the
TEC of the crystal is

Ω𝑇 =
12𝑓2𝑔𝑘𝐵

𝑟0(4𝑓2 − 3ℎ𝑘𝐵𝑇 )2
, (4)

where 𝑘𝐵 is Boltzmann’s constant. For a bulk crystal
material, the parameters 𝑟0, 𝑓 , 𝑔 and ℎ are invariable,
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so the TEC of a bulk crystal material only depends
on the temperature, which has been proved by some
experiments.[26−28] However for a nanocrystal, due to
the influence of surface effects, the TEC also depends
on the characteristic dimension of the structure, as
shown in the following.

The interatomic potential for an ideal crystal can
generally be described by the Morse potential energy
function[29−31]

𝑢(𝑟) = 𝜀
[︀
𝑒−2𝛼(𝑟−𝑟0) − 2𝑒−𝛼(𝑟−𝑟0)

]︀
, (5)

where 𝜀 is the magnitude of the minimum well depth,
and the parameter 𝛼 controls the shape of the po-
tential energy curve. Thus the coefficients in Eq. (3)
are 𝑓 = 𝛼2𝜀, 𝑔 = 𝛼3𝜀 and ℎ = 7

12𝛼4𝜀, respectively.
Substituting them into Eq. (4), we have

Ω𝑇 =
192𝜀𝑘𝐵

𝑟0𝛼(16𝜀− 7𝑘𝐵𝑇 )2
, (6)

which is obviously temperature-dependent.
In what follows, we will prove that the TEC of a

nanofilm is also size- and surface-dependent. For sim-
plification of the model, we neglect the influence of
temperature, and truncate the Taylor series (Eq. (3))
at the third term. Then the thermal expansion coeffi-
cient of a crystal can be simplified to

Ω =
3𝑘𝐵

4𝑟0𝛼𝜀
. (7)

In the equation, 𝑘𝐵 and 𝛼 are constants, so the value
of the TEC is dependent only on 𝜀 and 𝑟0. Although
𝜀 and 𝑟0 are constants for an ideal bulk crystal, they
are surface-dependent for a nanostructural crystal due
to the influence of the surface effects. When the sur-
face effects are taken into consideration, we can rede-
fine the equilibrium interatomic distance and the well
depth as 𝑟𝑓

0 and 𝜀𝑓 , respectively. Assume that the
TEC of a nanofilm still has the form of Eq. (7). The
dimensionless TEC of the nanofilm can be written as

Ω* =
Ω𝑓

Ω
=

(︂
𝑟0

𝑟𝑓
0

)︂3(︂
𝜀

𝜀𝑓
0

)︂
. (8)

When the relaxation and the surface energy are taken
into account in the model, the surface-dependent ex-
pressions of 𝑟𝑓

0 and 𝜀𝑓 may be derived. Firstly, the
relaxation coefficient 𝑘 is introduced. On the free sur-
face of the nanofilm, several layers of atoms will relax
due to the imperfection of the coordination numbers
(CNs). As a result, the equilibrium interatomic dis-
tance may be changed. The relaxation coefficient 𝑘 is
a parameter scaling the variation, which is the ratio of
the relaxed interatomic distance and the unrelaxed in-
teratomic distance, i.e., 𝑟 = 𝑘𝑟0. It is straightforward
to understand that 𝑘 < 1 means that the interatomic
distance is in contraction, while 𝑘 > 1 means that it

is in expansion. We define an average value of the in-
teratomic distance 𝑟𝑓

0 of the nanofilm at which surface
relaxation occurs, i.e.,

𝑟𝑓
0 =

(𝑁 + 2𝑛𝑘)𝑟0

𝑁 + 2𝑛
, (9)

where 𝑁 is the number of unrelaxed atomic layers,
and 𝑛 the number of relaxed atomic layers. Thus the
dimensionless form of the distance can be written as

𝛿 =
𝑟0

𝑟𝑓
0

=
𝑁 + 2𝑛

𝑁 + 2𝑛𝑘
. (10)

The atomic number of an ideal crystal with the vol-
ume 𝑉 is assumed to be 𝑁0, and then the cohesion
energy of the crystal is in the form

𝑈(𝑟) =
1
2
𝑁0𝑛𝑐|𝑢(𝑟)|, (11)

where 𝑛𝑐 is the atomic coordination number, and the
volume 𝑉 can be calculated by 𝑉 = 𝑁0𝑟

3. Thus the
cohesion energy of the crystal in its equilibrium state
can be written as[14]

𝑈 =
1
2
𝑁0𝑛𝑐𝜀. (12)

The cohesion energy of a nanofilm in its equilibrium
state has the form[14]

𝑈𝑓 =
1
2
[︀
(𝑛𝑐 −𝑚)𝜂 + 𝑛𝑐(1− 𝜂)

]︀
𝑁0𝜀

𝑓

=
1
2
𝑁0(𝑛𝑐 −𝑚𝜂)𝜀𝑓 , (13)

where the parameter 𝑚 denotes the decrease of the
atomic coordination number on the free surface of the
nanofilm, and 𝜂 denotes the ratio of surface atom num-
bers and total atom numbers, which can be expressed
as

𝜂 =
2𝑛

𝑁 + 2𝑛
. (14)

If we split an ideal crystal into a nanofilm with two
free surfaces, there is the following potential energy
relationship, 𝑈 − 𝑈𝑓 = 𝛾𝐴. Thus we have

𝜀

𝜀𝑓
=

𝑛𝑐 −𝑚𝜂

𝑛𝑐
·
(︁

1− 2𝜂

𝑛𝑐
· 𝑟2

0𝛾

𝜀

)︁−1

, (15)

where 𝛾 is the surface energy, and the area 𝐴 can be
calculated by 𝐴 = 𝑁0𝜂𝑟2

0.
Substituting Eqs. (10) and (15) into Eq. (8), we can

derive the dimensionless TEC of the nanofilm,

Ω* =
𝛿𝜉

1− 𝛽
, (16)

where 𝜉 =
𝑛𝑐 −𝑚𝜂

𝑛𝑐
and 𝛽 =

2𝜂

𝑛𝑐

𝑟2
0𝛾

𝜀
. It can be proved

that Ω* is size- and surface-dependent.
As an example, the TEC of an aluminum (Al) crys-

tal will be discussed in the following. The values of
the parameters in the calculation are listed as follows:
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𝑘𝐵 = 1.38054× 10−23 J·K−1, 𝜀 = 4.3264× 10−20 J,[31]

𝛼 = 1.0341 × 1010 m−1,[32] 𝑟0 = 3.4068 × 10−10 m,[32]

𝛾 = 0.96 N·m−1,[33] 𝑛𝑐 = 12, 𝑛 = 2, 𝑚 = 6.
According to Eq. (6), the variation of the TEC

with the temperature can be obtained as illustrated in
Fig. 1. It can be found from the figure that the TEC
of an ideal crystal decreases with decreasing temper-
ature, consistent with the experimental results.[26−28]

Fig. 1. TEC versus temperature.

Fig. 2. Dimensionless TEC with the decrease of the
atomic layer number for different values of the surface re-
laxation coefficient 𝑘.

The variations of the dimensionless TEC of an Al
nanofilm with decreasing atomic layer number are il-
lustrated in Fig. 2. It is seen that the TEC of the
Al nanofilm is size- and surface-dependent. It can
increase or decrease with decreasing thickness of the
nanofilm, depending on the surface relaxation. With a
decrease of the film thickness, when the relaxation is in
contraction, the TEC increases, but it decreases when
the relaxation is in expansion. The present theoret-
ical prediction gives in fact a reasonable explanation
for the ambiguous results in the literature. When the
number of atomic layers is relatively small (less than
about 50 in this case), the thickness shows a significant
effect on the TEC, which agrees with the experimen-
tal results qualitatively.[21] Even for nanofilms with
the same thickness, the value of the TEC may be dif-

ferent due to the difference of the surface relaxation
coefficient 𝑘.

In summary, we have presented an analytic ex-
pression of the TEC using a method of Boltzmann
statistics. The TEC is temperature-dependent, and
it is also size-dependent for a nanostructure. When
the Morse potential energy function is adopted to de-
scribe the interatomic potential, and the effects of the
surface relaxation and the surface energy are taken
into consideration, the TEC of a nanofilm is shown to
be size-dependent and surface-dependent. It is shown
that, with decreasing thickness, the TEC can increase
or decrease, depending on the surface relaxation of the
nanofilm.
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