Acta Mechanica Solida Sinica, Vol. 22, No. 1, February, 2009 ISSN 0894-9166
Published by AMSS Press, Wuhan, China

NEW STRAIN GRADIENT THEORY AND ANALYSIS**

Dake Yi Tzu Chiang Wang* Shaohua Chen
(LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China)

Received 19 June 2008, revision received 27 October 2008

ABSTRACT A new strain gradient theory which is based on energy nonlocal model is proposed
in this paper, and the theory is applied to investigate the size effects in thin metallic wire torsion,
ultra~thin beam bending and micro-indentation of polycrystalline copper. First, an energy nonlocal
model is suggested. Second, based on the model, a new strain gradient theory is derived. Third,
the new theory is applied to analyze three representative experiments.
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I. INTRODUCTION

Recent years, many experiments have shown that materials display strong size effects when the
characteristic length scale associated with non-uniform plastic deformation is on the order of microns.
For an aluminum-silicon matrix reinforced by silicon carbide particles, Lloyd!!] observed a substantial
strength increase when the particle diameter was reduced from 16 to 7.5 microns with the particle
volume fraction fixed at 16%. In the experiments of measuring micro-indentation hardness of metallic
materials, the square of hardness increases linearly as the depth of indentation decreases (Ma and
Clarkel®: McElhaney et al.Bl. Two direct experimental evidences that strong size effects exist have
been provided by Fleck et al.[4) and Stolken and Evans!Sl, The former is to measure torsion stress-strain
performed on copper wires, the scaled shear strength increases by a factor 3 as the thin copper wires
diatneter decreases from 170 to 12 microns. The latter is to bend uitra thin beams and measure the
bend motients, & sighificant inctease In the normalized bending hardening is observed as the beam
thickiess decreasés from 60 to 12.6 microns.

The classical plasticity theories can not predict this size dependence of material behavior at the
micron scale because their constitutive models possess no internal length scale.

In order t6 explain the size effects, developing strain gradient theory for micron level is needed.
Fleck and Hutchinson!® pruposed a phenomenological theory of strain gradient plasticity in which
rotational gradient is engaged. In otder to explain experimental findings of indentation (Ma and Clarkel?;
McElhaney et al.l¥l, fracture (Wei and Hutchinsonll; Chen and Wang!®, Fleck and Hutchinson!®
developed strain gradient (SG) plasticity theory in which rotational gradient and stretch gradient
are considered. In 1998, Nix ahd GaollY started from the Taylor relation and gave out one kind of
hardening law for gradient plasticity. Motivated by the indentation hardening law, Gao et al.l!1:12
proposed a mechanism-based theoty of strain gradient plasticity (MSG).
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In present paper, an energy nonlocal model is introduced in §II. Based on the model, a new strain
gradient theory is proposed in §III. The theory is applied to simulate three typical experiments in §IV,
§V and §VI.

II. ENERGY NONLOCAL MODEL
2.1. Classic Nonlocal Model ;

The classical elasticity and plasticity theories follow the local assumption that the stress at a given
material point is determined only by the strain, the history of deformation and temperature at that
point. However, in practice, both the nature materials and man-made materials have complicated
internal structures. When the macroscopic characteristic length of the material is much larger than the
internal characteristic length, the classical theories are accurate enough. Otherwise, the model needs
to be enriched so as to capture the real processes more adequately.

According to the classification in Bazant!!3], the non-local theories can be categorized into strongly
non-local theories and weakly non-local theories. In the weakly non-local theories, the strain gradient
and intrinsic length are introduced in the constitutive relations. In the strongly nonlocal theories, the
local assumption is abandoned, and the stress at a given material point is determined by the strain of
that point and its neighborhood. For an example, the constitutive equation of the nonlocal elasticity
can be written in the form,

o) = /V D.(z,)8(¢)d€ = D, /V ofz, £)E(€)dE (1)

where V is the interaction domain, o a weight function, D, elastic stiffness, and & the local strain
tensor.

For homogeneous material, we can take the weight function a(x, §) = 1 and assume &;; = &;;+€4, 1k,
then we can find that the first order gradient of strain tensor £;;, has no contributions to the stress
tensor, as a result, the strain gradient theory can not be derived from the nonlocal model of this type.
On the other hand, the nonlocal model of this type (as shown in the Eq.(1) for the nonlocal elasticity)
provides only the stress tensor and does not provide any formula for the high order stress tensor,

2.2. Energy Nonlocal Model
In the present paper, we proposed a new non-local model. In the model, the strain energy density

 at a typical point in representative volume element as shown in Fig.1, is assumed as the function of
the local strain &;; and the local rotation gradient Xi;(= epkifijk)-

Ve
I

@——1— Local w(E;j, Xij)

& &ij = €ij + Eij kbk
g Xpj = Xpj = €pkefijk
&

I &

Global
wiesj, €45 k)

Fig. 1. The representative volume element.

The global strain energy density of the representative volume element is taken as a non-local variable

as shown in Fig.1, i.e.
1 .
w=— [ @(X,§)dV; 2)
Ve Jv,
where V_ is the volume of a representative cubic element with each boundary length ., £ is the local
coordinate as shown in Fig.1, with the original point at the center of cubic volume. X is the global

coordinate, w is the global strain energy density and w (X, £) is the local one.
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The physical significance of I, which is similar to mesoscale cell size I, in MSG theory!!%, is the
boundary length of the cubic element. In MSG theory, the mesoscale cell size [, is in the range 10-100
nm. In the present paper, [, is taken to be 0.1 um order of magnitude.

The first variation of the global strain energy density w can be written as

bw = é /V (X av. = % /V (615 (X, 8) 884 (X,€) + s (X, 5% (X, OV ()

where G;; is the local stress tensor, 7m;; is the local couple stress.,
If I, is small enough, we have

€ij = €ij +€ijkk, Xpj = Xpj = €pkifijk 4)

where €;; and €, are the global strain and the global strain gradient respectively.
Substituting Eq.(4) into Eq.(3) yields

1 1
bw= = / G5 (X, €) 6ei; (X)AVe + — / 51 (X, €) deiji (X) ExdV,
Ve Jy, v. lv.

1 .
+7L My (X, epk.:ﬁs,-j,k (xX)H)dv, = O'ij(SEij + Tijkéé'ij,k (5)
Then we have
ow
Oij = 65@'3’ (6)
' 1/ ow ow
Tijk = 5 (—asij’k + aniJc) M

III. NEW STRAIN GRADIENT THEORY
3.1. Equilibrium Equations and Boundary Conditions
The first variation of total potential energy II can be written as

5H=/ 6de—/ fiéuidV—[ﬁiéu,-dS—/ﬁDéu,'dS ,
14 v S S .
=/ (0,']'(56,'_7' +T,-,-k55i,-,k)dV—/ f,'éuidV—/ﬁiéuidS—/FiD(Su,'dS (8)
v | S S

where V is the volume, S the boundary of V, f; the force per unit volume, and u; the displacement.
D =n -V, nis the unit outward normal to S, and V is the spatial gradient operator. ; and 7; are
generalized surface tractions.

According minimum total potential energy principle, we can obtain equilibrium equations

(045 — Tijks) ; + fi =0 in V (9)

and boundary conditions

(C"ij — Tijkk + (5,,11,,) ‘rijknk) n; — éjTijknk =P; on S, (10a)
w; = on S, (10b)
NNk Tijk = T on S, (11a)

Du; = Duy on Spu (11b)
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3.2. Constitutive Equation for Power Law Hardening Materials
According to Fleck and Hutchinsonjg], the local strain energy-density is assumed to be the function
of a local generalized effective strain E, and written as

E. 1 E. E " oye E e 1
- S 4. + K& = Ze i 2= XY [ e K&
_/0 ZedEe + K&, /o oy (Ey) dE. + K 1+n< ) +oKE  (12)

where X, is local generalized effective stress.
The local strain energy density W can be approximately expressed as

0
w
@ =w’ + whé + —’;l'gkfl on V. (13)
where Lin
. oyey [ Ee 1
wo . (w)fzo - 1 i (—) + EKE?’ (14)

2%y [2(n—1)(E)" el c
wkl (@) §=0" 3(6;,)" [ 3 ek 17 ”’ + (Ee)"” zJ, zJ, + Key,iev,k (15)

Substituting Eq.(13) into Eq.(2) yields

1 w
w=— w® + whék + 2266 |dVe = w° + A’ + Buwl (16)
Ve Jv, ’ 2 ) )
where 1 1
A - == = — c
b= e Bu= g /V EidV, (17)
&, is an anti-symmetric function in V. about center of cubic region, then
1 2 2
A = = B(S = — c = £
£=0, Bu M=o /Vc (61)°dVedu 540K (18)
w=uw’+ Bklw?k, (19)

According work conjugate relation, the global stress ¢;; and high order stress 7% can be written
very easily as

ow 20y -1
ij = = E, " I v0i
Oij 651’]‘ 3(5 )n( ) +K€ 5.7
4oy (n—l)B (" 3) (E )n— mnE’ k€ £ s it
+ Q(Ey)n 3 nh pq pak (E) 3 :nn ksmnk Eu

+8(’n— 1) Boy

9 (€Y)n (Ee)n -3 E:m'z“:'lm'n P z],k (20)

and

L _lfow . dw >=4ayB(Ee)"-‘E,“ SoyB(n—n(E )"~ el EmnEnn,
ik Oeije  Ocjik 3(ey)” ik 9(ey)"

4 l2 (E )" 1 4B (n - 1) (n - 3) (E )n 5 e:nnE;nn rEatEat T
3(ev % 9
2B(n—1)(E)" el €0,
+ : mn 1€mn,l (pkiXpj + €pkjXpi) + 2BK ey kb (21)
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IV. THIN WIRE TORSION

The size effects emerging in the experiment of thin-wire torsion(¥ is analyzed using the present strain
gradient theory. A Cartesian coordinate system (zi, 2, 3) and a cylindrical polar coordinate system
(v, 6, x3) are introduced. The radius of the wire denotes as a, and « is the twist per unit length of the
wire.

The displacement fields

U] = —KZT2T3, Uz = KT1Z3, uUz=0 (22)

lead to the non-vanishing strain components, strain gradient and rotation gradient components as

1 1
€13 = €31 = —Eﬁil:z, €23 = €32 = 5'91'1 (23)
1 1
€132 = €312 = —-K, €231 =¢€321= K (29)
2 2
1
X1 =X22=-3K X3=K (25)

The total strain energy for a unit length of the bar is given by

W=/ de=/ (w°+Bklwf’k,)dV=/ Q (k)dx
v v 0

21ay 1) 72 (n+3)/2 (n+3)/2
T @EEneg (5) K [(a2 +315,) " (i) ]

)("'l-l)/2

4rBoy k™1 [(a2 + 312,

312, (2| a2 \(n-1)/2
3D/ ()" 2 - (@ 43k (26)

Let 3 = 312, /a2, the torque Q can be written as

aw 2noy ka3 (n+3)/2 _ am+3)/2] , B1+n) (@B +n) (n-1)/2
Q‘E‘(n+3)s¢3(1+n>/2{[(1+5) - pr] ¢ TR T R (145)

(27)
When I./a << 1, l.;/a << 1, Eq.(27) can be simplified as

(1+4n)/2
Q _ _2moy (ka)" (l) (28)

@~ B+n)ep 3

Since the intrinsic lengths [, and l; are much smaller than 170 um, we choose the torque experiment

results of the thin-wire with diameter 2a = 170 um as a calibration curve and obtain (T?r%)l’? (%) a+m)/2
Y

232.7 MPa, n = 0.21, which is close to the tensile experimental results given by Fleck et al.l4.

According to Gao et al.l'!l and Fleck et al.¥, we take I, = 0.1 ym and [, = 3.7 #m . The theoretical
results compared with the experiment ones are shown in Fig.2. One can see both are consistent very
well with each other.

V. ULTRA-THIN BEAM BEND

Now, we study the problem of Ultra-thin beam bending with different micro-meters thickness using
the present strain gradient theory. A Cartesian coordinate system (1, Z2, £3) is introduced. h is the
thickness of beams, b the width and & the curvature.

The displacement fields
(«2 + 23)

2 2

lead to the non-vanishing strain components, strain gradient and rotation gradient components as
follows:

U] = KL1T2, U2 =K uz =0 (29)

€11 = —€22 = K2, €11,2= —€222=K, X31=-—K (30)
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Fig. 2. Plots of torque against the surface strain for copper wires with different diameters. The solid lines denote the
present theoretical results and the dotted lines denote the experiment onesl4l.,

Following Stolken and Evansl®!, neglecting the elastic deformation, the relation between the local
generalized effective stress and the local generalized effective strain can be expressed as
. 3 3 .
Ye = \/T—Z‘O + ZE,,Ee (31)
where L is the yield strength, E, is the hardening coefficient.
The total strain energy per unit length is given by

h [h2 12, lgs h h2?
1 4+2+41n \/ilc,+ EE-FI

W= / (w° + BrwSy) dV = 2bk.5,
\Z

1 BXykh h? 12
2 | — Epk?h® + ————— + BEpr*—E,x*<2h
+ (48 ph + h2 + 2135 + Pk + pK 8 (32)
Substituting Eq.(32) into
daw
M= r (33)
yields the non-dimensional bending moment
aM 212, 202 h h?
- 14 c8 5+ cs In + ~ 41
bh?2%, h? h? ( V2l 212, )
8B 2 16BE,e;, AE,l% e
—_—_— —F P Prcs 34
T it e 3% P R, h2%, (34)

where ¢, = hk/2 is surface plastic strain.

The yield strength Xy and the hardening coefficient E, with different thicknesses were measured by
Stélken and Evans(®). We take [, = 0.1 um and fit the experiment results given by Stolken and Evans/®]
with Eq.(34). The comparison among the present results, SG theory results (Fleck and Hutchinson(®)
and the experiment ones is shown in Fig.3. From Fig.3, one can find the two theoretical results are
close and agree with the experiment results. In the present theory, intrinsic length for rotation gradient
l.s(= 5.8 p m), which lies in a micro-meter range, agrees with the result in Stélken and Evans!®l (intrinsic
length for rotation gradient [z = 5 pum) and the result in Chen and Wang!!*4! (intrinsic length for rotation
gradient Iz = 7 pm).

VI. ANALYSIS OF MICRO-INDENTATION
6.1. Indentation Model
The indenter is assumed to be axisymmetric and conical. The half-angle of the indenter, 3 = 72°. The
indenter is assumed to be frictionless. The depth of indentation is §, the contact radius of indentation
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Fig. 4. Comparison of (H/Hp)? with the inverse of inden-

tation depth, 1/4.

is a, and the contact depth A = a/tan . The total force, P, exerted on the indenter is the sum of
nodal forces in the z-direction for those nodes in contact with the indenter .The indentation hardness

is defined as

_ 17l
H= s (35)
The displacement boundary conditions can be written as
(ur),.=0 =0 (36)
(uz)z=0 = 0 (37)
and .
us(r)=—-6+ tanp’ 0 <r<a onthe contacted surface (38)
The force boundary conditions can be written as
P:=0 (r>a) (39)
pr=0 (r>0) (40)
and
Fo=7=0 (r>0) (41)

where p is the surface traction, and 7 is the higher order surface traction.
6.2. Calculation Results

Referring to Qiul'®, the elastic modulus, Poisson’s ratio, reference stress and the plastic hardening
exponent of the polycrystalline copper are E = 109.2 GPa, v = 0.3, 0ot = 688 MPa, and N = 0.3,
respectively.

The stress-strain law of copper in uniaxial tension is shown as

Ee, (e<oy/E)
o=
Oresel) (e >0y/E)

From Fig.4, one can clearly see that the linear relation between the square of indentation hardness,
H?, and the inverse of indentation depth, 1/8, exists when the indentation depth & is less than 1 pm.

VII. SUMMARY

A new framework of non-local model is proposed, in which the strain energy density of a representative
volume element is taken as a non-local variable. Based on the non-local model, a new strain gradient
theory is derived. Compared with existing gradient theories, the present one has a clearer physical
background.

Size effects in three typical experiments, i.e., the thin wire torsion, the micro-beam bending and
the micro indentation of polycrystalline copper, have been analyzed using the present strain gradient
theory. It is found that the results predicted by the present theoretical model are consistent well with
the experimental ones.

(42)
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