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The static and dynamic instabilities of a torsional MEMS/NEMS actuator caused by capillary effects are
studied, respectively. An instability number, η, is defined, and the critical gap distance, gcr, between the
mainplate and the substrate is derived. According to the values of η and g, the instability criteria of
the actuator are presented. The dimensionless motion equation of the MEMS/NEMS torsional actuator
is derived when it makes nonlinear oscillation under capillary force. The qualitative analysis of the
nonlinear equation is made, and the phase portraits are presented on the phase plane. In addition, the
bifurcation phenomena in the system are also analyzed.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Torsional actuators have broad applications in the micro-
electro-mechanical systems (MEMS) and nano-electro-mechanical
systems (NEMS) devices [1–4], such as torsional radio frequency
(RF) switches, tunable torsional capacitors, torsional micromirrors,
etc. Torsional actuators, like parallel plate actuators, are often fab-
ricated to be with suspended structures which have a minimum
gap distance and a large area between the moveable plate and
the underlying substrate. Under the condition, some surface and
intermolecular forces become very important due to the large
surface-to-volume ratio and the small gap distance [5]. As a re-
sult, the structures will lose their stability, and the moveable plate
could snap down and permanently adhere to their substrates due
to the actions of the surface forces.

The surface forces which play important roles in the MEMS and
NEMS devices include van der Waals (vdW) force, Casimir force
and capillary force, etc. The vdW and Casimir forces are electro-
magnetic in nature, and the Casimir force can be regarded as the
retarded vdW force [6–9]. And they always exist between two
objects close to each other. The influence of vdW and Casimir
forces on the stability of the MEMS and NEMS actuators with
suspended structures has been extensively reported in many lit-
eratures [6–19]. Chan et al. [10] showed that Casimir force can
be used to actuate the NEMS devices under certain condition. Lin
and Zhao [13–15] studied the influence of Casimir force on the
nanoscale electrostatic parallel plate RF switch. They found that
the pull-in and adhesion [13] could be induced by Casimir force
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when the ratio of the gap to the length was sufficiently small. They
also studied the dynamic behavior of the parallel plate NEMS RF
switches with the consideration of the vdW effects [14]. Guo and
Zhao [16] studied the inherent instability of an electrostatic tor-
sional NEMS actuator with the vdW and Casimir effects taken into
consideration, and derived the critical conditions when the pull-in
phenomena of the actuator occurred. The influence of vdW force
on dynamic stability of an electrostatic torsional NEMS actuator
was also studied [17], and the bifurcation behaviors were analyzed.
Gusso and Delben [18] performed a theoretical analysis focusing
on the effect of the Casimir force on the pull-in parameters of
electrostatic torsional actuators made from silicon. Ramezani and
coworkers [19] investigated the two-point boundary value problem
(BVP) of the nano-cantilever deflection subjected to Casimir and
electrostatic forces, and derived the instability point of the nano-
beam by using analytical and numerical methods.

Capillary force occurs between two objects when the liquid
bridge forms between them [20]. It is found that even for the
lowest attainable relative humidity the capillary forces are still
present [21]. Suspended structures are typically made by forming
a layer of the plate or beam material on top of a sacrificial layer
of another material and wet etching the sacrificial layer. Thus it
is easy for developing capillary force in the rinse-dry cycle fol-
lowing the wet removal of a sacrificial layer as the rinse solution
is gradually removed. If the capillary force is large enough, the
structure will collapse and adhere to the substrate. So it is very
important to study the instability conditions of the MEMS and
NEMS devices under capillary forces [22]. The mechanical stabil-
ity and adhesion phenomena of a parallel plate MEMS actuator
were studied by Mastrangelo and Hsu [23,24] with the influence
of capillary force taken into consideration. But there are few liter-
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Fig. 1. (a) Contact angle at a solid–liquid interface. (b) Liquid bridge between two
parallel circular plates.

atures about the stability of a torsional MEMS or NEMS actuator
under capillary forces. In the paper, the simplified one-degree-of-
freedom (1DOF) model is applied to study the static and dynamic
instability of a torsional MEMS/NEMS actuator, which is caused
by the capillary effects. And the instability criteria of the actua-
tor and the phase portraits of nonlinear oscillation will be pre-
sented.

2. The capillary torque in a torsional MEMS/NEMS actuator

For a drop of liquid placed on the surface of a solid as shown in
Fig. 1a, the contact angle θc is determined by the balance among
the liquid–air (LA), solid–air (SA), and solid–liquid (SL) interfacial
tensions, which are denoted by γLA, γSA and γSL, respectively. At
equilibrium, these tensions satisfy Young’s equation [25–28]

γSA = γSL + γLA cos θc (0 < θc < π). (1)

At the equilibrium state, the energy of the system in Fig. 1b is [29]

US = U S0 − 2γlπr2
l cos θc, (2)

where U S0 is a constant, γl the surface energy of liquid, and
γl = γLA.

The force F is related to the interfacial energy by

F = −
(

dU S

dz

)
= −

(
dU S

drl

)
·
(

drl

dz

)
. (3)

Since the volume of the drop, V l = 2πr2
l z, is constant, then

drl/dz = −rl/2z. Thus the capillary pressure, q, exerted on the rigid
plate is

q = − F

πr2
l

= 2γl cos θc

z
. (4)

The pressure is proportional to the term γl cos θc, known as the
adhesion tension. Pressure q is attractive or repulsive depending
on the sign of cos θc and is nonlinear with respect to the spacing z
with a singularity at z = 0.

A torsional MEMS/NEMS actuator mainly consists of a main-
plate, a torsional beam and a substrate (as shown in Fig. 2). The
schematic of its 1DOF model is shown in Fig. 3, where the main-
plate of the device is considered to be a tiltable rigid body in
a first-order approximation. Hence, the angle of torsion ϕ is the
only variable in the model (shown as Fig. 3). When the mainplate
rotates anti-clockwise an angle ϕ , the capillary differential forces
acting on an arbitrary infinitesimal area dS (as shown in Fig. 2) at
the both sides of torsional beam are, respectively,

dF L
cap = 2γl cos θc

d − r sinϕ
· r dr dθ and dF R

cap = 2γl cos θc

d + r sinϕ
· r dr dθ, (5)

where θc is the contact angle of liquid–solid interface, and d is
the gap distance between mainplate and substrate. So the torque
of two capillary differential forces to fixed torsional beam can be
derived as
Fig. 2. Schematic side view and planform of a torsional NEMS actuator.

Fig. 3. 1DOF model of torsional actuator with capillary force.

Mcap =
∫ (

dF L
cap − dF R

cap

) · r

= −2πγl cos θc

sinϕ
·
[

R2 + d2

sin2 ϕ
· log

(
1 − R2 sin2 ϕ

d2

)]
, (6)

where R is the radius of the mainplate.
Due to d/R � 1, the tilting angle is small, and an approxima-

tion is used, i.e., sinϕ ≈ ϕ . Therefore, the maximum tilting angle
is ϕ0 ≈ sinϕ0 = d/R . Furthermore, the normalized tilting angle,
β = ϕ/ϕ0, is introduced, where the value of β is in the range of 0
and 1. Thus Eq. (6) can be rewritten as

Mcap = − Sγl cos θc

g
·
[

2

β
+ 1

β3
· log

(
1 − β2)2

]
, (7)

where S = π R2 is the area of mainplate, and g is a dimensionless
gap distance, which equals to d/R .

When the mainplate rotates around the torsional beam, a
restoring torque will be produced. The torque is caused by elastic
restoring force of the beam, which can be simplified as a flexure
spring with torsional stiffness, K . Then elastic restoring torque of
the torsional beam can be expressed as

Mels = Kϕ = K gβ = 2
G Iρ g

l
β, (8)

where G , Iρ , l, respectively, denotes the shear modulus, the polar
moment of inertia and the length of the torsional beam. The polar
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Fig. 4. The relations of the dimensionless capillary torque and the elastic restoring
torque for the different values of the instability number and the dimensionless gap.

moment of inertia, Iρ , of the circular cross-section is Iρ = πr4/2,
where r is the radius of the torsional beam.

3. Static instability caused by capillary torque

For the system in Fig. 3, the stability condition is the equi-
librium between capillary torque and elastic restoring torque of
torsional beam, i.e., Mcap = Mels. So the equilibrium equation of
the system can be derived, and its dimensionless form is

β + η ·
[

2

β
+ 1

β3
· log

(
1 − β2)2

]
= 0, (9)

where η is a dimensionless quantity, and it is the ratio between
the capillary torque and elastic restoring torque. η = Γ · f , where
the dimensionless quantity Γ equals to Sγl/K , which is the ratio
between the surface energy and elastic energy, and f = cos θc/g2,
which is a shape factor.

It can be derived from Eq. (9) that the expression of η is

η = − β4

2β2 + log(1 − β2)2
(0 < β < 1). (10)

The critical value of η can be calculated by

ηcr = lim
β→0

η = 1. (11)

Furthermore, according to η = Γ · f , we can derive the critical gap
distance of instability

gcr =
√

Sγl

K
cos θc. (12)

We can define the dimensionless quantity, η, as an instability
number. When η > 1, i.e., the gap distance g < gcr, the capillary
torque is always greater than the elastic restoring torque, and the
torsional actuator is unstable. An arbitrary small angle perturba-
tion of the torsional actuator can lead to the pull-in and collapse
of the structure. On the contrary, when η < 1, i.e., the gap distance
g > gcr, the capillary torque is smaller than the elastic restoring
torque. The system can not lose its stability until the tilting angle
reaches a certain value. These results can be intuitively illustrated
in Fig. 4. The values of geometric and physical parameters in the
calculation are listed in Table 1. The value of the tilting angle is
dependent on the gap distance. The function relation of d and β

can be derived by Eq. (10), which is illustrated in Fig. 5.
In Ref. [16], the influence of the vdW and Casimir effects on

the inherent instability of an electrostatic torsional NEMS actuator
was studied. We can compare the vdW and Casimir effects with
Table 1
Parameters of numerical calculation.

Items Symbol Value

Surface energy γl 7.2 × 10−2 Nm−1

Hamaker constant A (0.4–4) × 10−19 J
Reduced Planck’s constant h̄ 1.055 × 10−34 J s
Speed of light c 2.998 × 108 m s−1

Shear modulus G 6.6 × 1010 Pa

Contact angle θc 5π/12
Radius of rotational plate R 10−4 m
Radius of torsional beam r 2 × 10−6 m
Length of torsional beam l 5 × 10−5 m

Fig. 5. Variation of the dimensionless gap distance with the tilting angle.

capillary effects. The vdW torque and Casimir torque expressed by
normalized tilting angle can be derived as [11], respectively,

MvdW = A

6g3
· 1

β3
·
[

β2(3β2 − 1)

(1 − β2)2
− log

(
1 − β2)], (13)

MCasimir = π3h̄c

360R
· 1

g4
· β(3 + β2)

(1 − β2)3
, (14)

where A = π2Cρ2 is the Hamaker constant, which lies in the
range (0.4–4) × 10−19 J, h̄ is the Planck’s constant divided by 2π ,
which is equal to 1.055 × 10−34 J s, and c is the speed of light and
equals to 2.998 × 108 m s−1.

Introduce two dimensionless quantities, Mcap/vdW and
Mcap/Casimir,

Mcap/vdW = lim
β→0

Mcap

MvdW
= 4Sγl cos θc

A
· g2, (15)

Mcap/Casimir = lim
β→0

Mcap

MCasimir
= 120S Rγl cos θc

π3h̄c
· g3, (16)

where Mcap/vdW is the ratio between capillary torque and vdW
torque, and Mcap/Casimir is the ratio between capillary torque and
Casimir torque. The logarithm function curves of two dimension-
less torques are shown in Fig. 6. It can be shown that capillary
torque has a much longer range than the vdW and Casimir torques.

4. Dynamic instability caused by capillary torque

If the dynamic effects are considered in the process of the rota-
tion, the mainplate will make nonlinear oscillation. In the section,
the phase portraits of the nonlinear oscillation will be presented,
and the bifurcation behaviors of the system will be analyzed. With
the inertial and damping effects taken into consideration, there ex-
ist an inertia torque and a damping torque in the model,

Minteria = Iϕ̈ = I gβ̈ and Mdamping = C ϕ̇ = C gβ̇, (17)
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Fig. 6. The logarithm function curves of Mcap/vdW (the ratio between capillary
torque and vdW torque) and Mcap/Casimir (the ratio between capillary torque and
Casimir torque).

where C and I are the effective damping constant and inertia mo-
ment of the mainplate, respectively.

When the oscillation occurs, the dimensionless equation of mo-
tion including capillary torque can be written as

d2β

dτ 2
+ μ

dβ

dτ
+ ωβ = −ξ

(
1

β
+ 1

β3
· log

(
1 − β2)), (18)

where the dimensionless quantities are

μ = C T

I
, ω = K T 2

I
, ξ = 2SγlT 2 cos θc

I g2
, τ = t

T
,

and T is a characteristic time. Equation (18) is a second-order
nonlinear and inhomogeneous ordinary differential equation. The
qualitative analysis of the nonlinear equation is made below to ob-
tain the whole properties of the solutions.

Setting dβ/dτ = ψ , Eq. (18) can be transformed into the follow-
ing autonomous system
⎧⎪⎪⎨
⎪⎪⎩

dβ

dτ
= ψ,

dψ

dτ
= −μψ − ωβ − ξ

(
1

β
+ 1

β3
· log

(
1 − β2)).

(19)

The Jacobian matrix of the autonomous system is(
0 1

F ′(β) −μ

)
, (20)

where

F (β) = −ωβ − ξ

(
1

β
+ 1

β3
· log

(
1 − β2)),

and the prime denotes the differentiation with respect to β . The
corresponding eigenvalues of the Jacobian matrix are

λ1,2 = 1

2

(
−μ ±

√
μ2 + 4F ′(β)

)
.

The equilibrium states of the autonomous system depend on
the solutions of the equation F (β) = 0. According to the values of
the instability number η and the dimensionless gap distance g , we
can discuss the equilibrium states of the autonomous system by
following three cases:

(i) When η < 1, i.e., g > gcr.
For a specified value of the dimensionless gap g satisfying the
condition, the equation F (β) = 0 has two real roots with the
Fig. 7. The phase portrait on the phase plane without the damping effects: periodic
orbits and homoclinic orbits.

Fig. 8. The phase portrait on the phase plane with the damping effects taken into
consideration: heteroclinic orbits.

variable β in the range of [0,1). They are β1 = 0 and β2, re-
spectively. So the autonomous system has at least two equilib-
rium points Q 1(0,0), Q 2(β2,0). Since the system has a sym-
metric structure, and the load of capillary torque is antisym-
metric, there exists the third equilibrium point Q 3(−β2,0) in
the system.
The equilibrium point Q 1 is a center point when the parame-
ter μ = 0, and is a stable focus point when the parameter μ �=
0. It can be concluded that the mainplate makes convergent
oscillation near the focus point because of the damping, and
makes periodic oscillation if the damping is neglected. The
equilibrium point Q 2 and Q 3 are unstable saddle points for
any μ. The phase orbits connecting three equilibrium points
on the phase plane are shown in Figs. 7 and 8, which include
the periodic, heteroclinic and homoclinic orbits. In addition, to
equilibrium point Q 1, because the eigenvalues of the Jacobian
matrix are a couple of pure imaginary roots when the param-
eter μ = 0, the point (β,ψ;μ) = (0,0;0) is a Hopf bifurcation
point.

(ii) When η = 1, i.e., g = gcr.
When the dimensionless gap g approaches the critical value
gcr, the point of intersection Q 2 tends towards the point Q 1,
and they finally converge at the point Q 1(0,0), which satis-
fies simultaneously the equation F (β) = 0 and the equation
F ′(β) = 0. The eigenvalues of corresponding Jacobian matrix
are two repeated zero roots when the parameter μ = 0, and
a zero root and a nonzero real root when μ �= 0. In addition,
the nonzero real root is negative if the parameter μ > 0, and
is positive if μ < 0. So when the dimensionless gap g reaches
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critical value gcr, the equilibrium point (β,ψ;μ) = (0,0;0)

becomes a fork bifurcation point.
(iii) When η > 1, i.e., g < gcr.

The structure is instability, and the pull-in will automatically
happen when η > 1, i.e., g < gcr. So the autonomous system
has no equilibrium point in the case.

5. Summary

The static and dynamic instabilities of a torsional MEMS/NEMS
actuator caused by capillary effects are studied in the present pa-
per. Due to the action of capillary effects, the torsional MEMS/
NEMS actuator can be inherently instable. In certain condition, the
actuators can collapse and permanently adhere to their substrates
in the process of fabrication. An instability number η is defined in
the paper, and the critical gap distance gcr between the mainplate
and the substrate is derived. And then the instability criteria are
presented.

The dynamics analysis of the torsional NEMS actuator shows
that it makes nonlinear oscillation under capillary torque. The di-
mensionless motion equation of the nonlinear oscillation is pre-
sented. The qualitative analysis of the nonlinear equation shows
that the equilibrium points of its corresponding autonomous sys-
tem include stable focus point, center point, and unstable saddle
point. The phase portraits show the periodic, heteroclinic and ho-
moclinic orbits. There are bifurcation phenomena in the nonlinear
system, and the Hopf bifurcation point and the fork bifurcation
point are presented, respectively.
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