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Abstract

Carbon nanotubes (CNTs) have been regarded as ideal reinforcements of high-performance composites with enormous applications.
However, the waviness of the CNTs and the interfacial bonding condition between them and the matrix are two key factors that influence
the reinforcing efficiency. In this paper, the effects of the waviness of the CNTs and the interfacial debonding between them and the
matrix on the effective moduli of CNT–reinforced composites are studied. A simple analytical model is presented to investigate the influ-
ence of the waviness on the effective moduli. Then, two methods are proposed to examine the influence of the debonding. It is shown that
both the waviness and debonding can significantly reduce the stiffening effect of the CNTs. The effective moduli are very sensitive to the
waviness when the latter is small, and this sensitivity decreases with the increase of the waviness.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon nanotubes (CNTs) with exceptional stiffness
and strength have been regarded as ideal reinforcements
of composites. Enormous efforts and studies have been
devoted to the synthesis, characterization, modeling and
simulation of CNT–reinforced nanocomposites [1,2]. Many
encouraging experimental results have been reported. For
example, the CNT/alumina nanocomposites show an
enhanced hardness and toughness compared to monolithic
materials [3]. Qian et al. [4] reported CNT–reinforced poly-
styrene with good dispersion and CNT–matrix adhesion.
The elastic modulus and the strength are improved signifi-
cantly over that of the matrix with only a very small frac-
tion of the CNTs.

On the other hand, it is also widely recognized that the
experimental mechanical properties of CNT–reinforced
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nanocomposites are quite different from the theoretical
expectation [5,6]. There are also many analyses about the
causes for the difference, including waviness [4–10],
agglomeration [3,10], weak bonding between the matrix
and the CNTs [6,8,10], etc. However, the effects of these
defects on the effective mechanical properties of CNT–rein-
forced nanocomposites have not been well understood and
modeled. It is noted that Fisher et al. [9] investigated the
effect of waviness on the effective stiffness, by assuming a
sinusoidal waviness and using an approach combining
numerical (finite element) computation and the Mori–
Tanaka scheme. Shi et al. [10] studied the effects of
agglomeration and waviness on the effective moduli of
CNT–reinforced composites, while assuming that the CNTs
are in a helical shape. But according to experimental obser-
vations [4,7,8], the waviness of the CNTs may not be as
severe as helical. Anumandla and Gibson [11] developed
a micromechanics model for estimating the effective elastic
moduli of carbon nanotube–reinforced composites incor-
porating the waviness and random orientation of the nano-
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tubes. Their model is based on combining the predictions
of the effective elastic constants of composites containing
continuous wavy fibres by Chan and Wang [12], and Hsiao
and Daniel [13], and the model of Christensen and Waals
[14] that relates the elastic constants of a unidirectional
fiberous composite and those of a composite with ran-
domly orientated fibres. Considering the huge difference
between the stiffnesses and strengths of the CNTs and most
of the matrix materials, the load transfer at the interface is
a critical factor that decides the reinforcing efficiency of the
CNTs. There have been many studies on the interface load-
transferring mechanisms [15–17]. Also due to the huge dif-
ference of the stiffness and the complicated mechanisms at
the interface, weak bonding areas are quite likely to exist,
and debonding may occur at very low level of loading or
even during manufacturing. While the effect of partial deb-
onding in traditional particle–reinforced composites on
their effective properties has been well revealed [18,19],
the effect of partial debonding between the CTNs and
matrices on the properties of the composites has not been
well studied.

In this paper, first, we propose a simple model to predict
the effect of the waviness of CNTs on the effective elastic
constants of the nanocomposites. Then, we present two
simple methods to examine the effect of partial debonding
on the effective moduli. In the analyses, as in other theoret-
ical studies in the literature [20–22], the CNTs are treated
as solid short fibres. The curved CNTs and those with par-
tial debonding are replaced by equivalent straight short
fibres, and then the effective moduli are calculated using
the Mori–Tanaka scheme. Therefore, the models and the
derived formulas are simple and easy to use.
2. Micromechanics model for curved CNTs

Many experimental observations have shown that CNTs
generally exist in a curved shape in the nanocomposites
[4,7,8]. To simplify the analysis we will treat the nanotubes
as solid short fibres with a circular cross-section and exhib-
iting a bow-like waviness, as shown in Fig. 1. Here a and k
are the amplitude (vertical projection) and half-wavelength
(horizontal projection) of a curved CNT, respectively. The
diameter and the volume fraction of the CNTs are denoted
by d and fr. It is obvious that a curved CNT will have rein-
forcing effects both in the direction of the chord and in the
perpendicular. Therefore, in order to simulate the reinforc-
ing effect of a curved CNT in a composite, it is projected
onto the vertical and horizontal directions, respectively,
a

λ

Fig. 1. The model of a curved CNT.
as shown in Fig. 2. Then we replace the curved fibre by
one straight fibre along the chord, and two another straight
fibres in the perpendicular direction. The length and the
volume fraction of the chord fibre are denoted by k and
f2, respectively. The length and the volume fraction of the
fibres in the perpendicular direction are denoted by a and
f3, respectively. The diameters of all the projected fibres
are assumed to be the same as that of the original curved
fibre, denoted by d.

Considering a representative volume Vof a CNT–rein-
forced composite, then we have the relation

f2 ¼ N
pd2k
4V

; f 3 ¼ 2 � N pd2a
4V

ð1Þ

where N is the number of the CNTs. Denoting the waviness
index by a

k ¼ d, from Eq. (1), we get

f2

f3

¼ 1

2d
ð2Þ

f2 þ f3 ¼ fr ð3Þ

From Eqs. (2) and (3), we get the volume fractions as
follows:

f2 ¼
fr

1þ 2d
; f 3 ¼

fr

1=2dþ 1
ð4Þ

Next, we need to calculate the effective elastic constants of
the projected equivalent fibres, namely, we shall replace the
curved fibre by a straight equivalent fibre in the chord
direction under the condition that the curved fibre and
the straight one have the same reinforcing effect in the
chord direction. For this, we assume that the effective mod-
ulus of the horizontally projected fibre in Fig. 2 is Ef2, and
the effective modulus of a composite which contains these
uniaxial fibres is Ex. From the rules-of-mixtures we get
Ef2f2 + Emfm = Ex, then

Ef 2 ¼
Ex � Emfm

f2

ð5Þ

where Em is Young’s modulus of the matrix, fm and f2 are
the volume fractions of the matrix and the fibres with the
length k, respectively. It is noted that there have been some
studies predicting the effective moduli of composites rein-
forced by continuous curved fibres [12–14,23,24]. We adopt
the result of the effective longitudinal modulus in Ref. [23]

Ex ¼
ð1þ cÞ3=2

1þ c
2

� �
S11 � 1þ 3c

2
� ð1þ cÞ3=2

h i
S22 þ c

2
ð2S12 þ S66Þ

ð6Þ
a

λ

Fig. 2. The projection of a curved CNT.



Table 1
Elastic constants and geometry parameters [9]

Em (GPa) ENT (GPa) EERM (GPa) a/k k/d mm = mNT

2.25 450 383 0.05 60 0.30
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where

c ¼ pa
k

� �2

¼ p2d2 ð7Þ

S11 ¼ 1
EL

; S22 ¼ 1
ET

S12 ¼ � mLT
EL

; S66 ¼ 1
GLT

)
ð8Þ

In the above formulas, EL, ET and GLT are the longitudi-
nal, transverse and shear moduli of the composite with
the uniaxial straight fibres. mLT is the longitudinal-trans-
verse Poisson’s ratio. To simplify the analysis we will calcu-
late these parameters using the rules-of-mixtures

EL ¼ ff Ef þ fmEm

ET ¼ ff

Ef
þ fm

Em

� ��1

mLT ¼ ff mf þ fmmm

GLT ¼ ff Gf þ fmGm

9>>>>=
>>>>;

ð9Þ

Gf ¼
Ef

2ð1þ mf Þ
;Gm ¼

Em

2ð1þ mmÞ
ð10Þ

where Em, Ef, Gm, Gf and mm, mf are Young’s moduli and
Poisson’s ratios of the matrix and the fibres. fm and ff are
the volume fractions of the matrix and the effective fibres,
respectively. Substituting Eqs. (6)–(10) into Eq. (5) we ob-
tain the effective modulus of the horizontally projected
equivalent fibre.

Similarly, assuming that the effective modulus of the ver-
tically projected fibre in Fig. 2 is Ef3, and the effective mod-
ulus of a composite containing such straight uniaxial fibres
is Ey. From the rules-of-mixtures we get 2Ef3f3 +
Emfm = Ey, and

Ef 3 ¼
Ey � Emfm

2f 3

ð11Þ

where Em is Young’s modulus of the matrix, fm and f3 are
the volume fractions of the matrix and the fibres with the
length a, respectively. Kuo et al. [24] previously predicted
the the effective transverse modulus of a composite con-
taining curved fibres having the sinusoidal waviness

Ey ¼
ð1þ cÞ3=2

ð1þ cÞ3=2 � 1� 3c
2

h i
S11 þ 1þ c

2

� �
S22 þ c

2
ð2S12 þ S66Þ

ð12Þ
Substituting Eqs. (7)–(10) and (12) into Eq. (11) we can ob-
tain the effective modulus of the vertically projected equiv-
alent fibre.

Now, the curved fibre has been replaced by two kinds of
equivalent straight fibre whose volume fractions and effec-
tive elastic constants have been known. In this paper, we
consider the nanocomposites in which the CNTs are ran-
domly distributed and orientated. Then we calculate the
effective moduli of the curved CNT–reinforced nanocom-
posite using the Mori–Tanaka method, with the properties
of the above-obtained equivalent straight fibres and taking
into account the average over the orientations of the fibres
[25–27],
C ¼ C1 þ
XM

r¼2

mrfðCr � C1Þ : Hrg :
XM

r¼1

mrfHrg
" #�1

ð13Þ

where C denotes the effective modulus tensor of the com-
posite, and M denotes the number of the types of the rein-
forcements. The volume fraction of the rth phase is
denoted by mr. Curly brackets {�} represent an average over
all possible orientations. The tensor Hr is

Hr ¼ ½Iþ Sr : C�1
1 : ðCr � C1Þ��1 ð14Þ

where I denotes the fourth-order symmetric unit tensor, C1

and Cr denote the tensors of elastic moduli of the matrix
and the rth phase, respectively, and Sr is the Eshelby tensor
corresponding to the rth phase which is simulated by a pro-
late spheroid. When the CNTs are randomly orientated,
the composite exhibits isotropy. In this case, the stiffness
tensor C in Eq. (14) degenerates into a fourth-order isotro-
pic tensor which can be written as

C ¼ 3KJþ 2lK � ð3K; 2lÞ ð15Þ
where K and l are the effective bulk and shear moduli of
the composite, and J and K are two fourth-order projection
tensors. The details of the Mori–Tanaka scheme can be
found in many references, e.g. [26,27], and thus they are
not reproduced here. In particular, it has been widely rec-
ognized that for stiff inclusions, the Mori–Tanaka method
can give fairly accurate prediction for low volume fractions
of the inclusions [27].

Fisher et al. [9] have modeled a wavy CNT by a sinusoi-
dal curved fibre. In order to analyze the effect of the curved
shape, we consider three cases: arc of a circle, sinusoid and
parabola, respectively. For these wavinesses, we calculate
the respective effective moduli of the composites containing
curved fibres and the corresponding straight fibres which
have the same lengths as the curved ones. In order to com-
pare the present predictions with those of Fisher et al. [9],
all the calculations are based on the parameters in Table 1,
where EERM is the so-called effective reinforced modulus of
a straight fibre that replaces a curved CNT given by Fisher
et al. [9] using the finite element computation for a sinusoi-
dal wavy CNT. Thus, E ERM can also be used in the Mori–
Tanaka micromechanical scheme to calculate the effective
elastic moduli of the composite.

Fig. 3 shows the variation of the non-dimensionalized
effective Young’s modulus E/Em with the volume fraction
fr of the CNTs. For the considered small waviness, the values
for the three different wavy shapes mentioned above are
almost identical, which means that in this case the shape
has little effect on the effective elastic moduli. It is seen that
the effective Young’s modulus predicted by the present
model is very close to the result predicted by using EERM in
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the Mori–Tanaka scheme. However, the present prediction
is slightly higher than that of the latter. The reason for this
difference may be due to that in the model of Fisher et al.
[9] a wavy CNT is replaced by only one straight fibre in the
chord direction, whereas in the present model, the wavy
CNT is replaced by three fibres, namely, one in the chord
direction and two in the perpendicular direction (Fig. 2).

Figs. 4 and 5 show the variations of the non-dimension-
alized effective bulk modulus K/K1 and shear modulus l/l1

with the waviness dðd ¼ a
kÞ when the volume fraction

fr = 0.1. It is seen that when d < 0.4, the effective moduli
of the composite decrease drastically with the increase of
d. When d > 0.4, the variation is not significant. Therefore,
for the considered material, the reinforcing efficiency of the
CNTs is very sensitive to the waviness when it is less than
about 0.4.

3. Micromechanics model for debonding of CNTs

Properties of the fibre–matrix interface in composites
have been of scientific and technological interest for a long
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Fig. 4. Variation of effective bulk modulus K/K1 with waviness d.
time, because interfacial debonding intensely affects the
fracture toughness [28,29], yield strength [30], and other
properties of composites. Debonding can result in early
void formation, and also ductile matrix failure can be pro-
moted by the stress and strain concentrations occurring
around sharp fibre edges [31]. When the interfacial strength
is relatively weak and a two-phase system is under a triaxial
tension, interfacial debonding is likely to be the principal
mode of damage process. Upon continuous loading such
a process is a progressive one, so that as more and more
interfacial debonding takes place, the composite will lose
its load-carrying capacity and the overall stiffness [18,19].
Weak interfacial bonding and debonding will greatly affect
the overall properties of CNT–reinforced nanocomposites.
In this section, we will present a model to forecast the effec-
tive moduli of composites reinforced by randomly orien-
tated short fibres, which have debonded along the axial
direction. Then we will analyze the effect of the debonding
extent and other factors on the effective moduli.

3.1. Methods and theory

We consider a representative volume V of a composite
which contains N short fibres, among which there are Np

perfectly-bonded fibres and Nd partially debonded and
fully debonded fibres so that N = Np + Nd. Here the sub-
script p denotes perfectly bonded and d denotes partially
debonded and fully debonded fibres. For a single fibre with
partial interfacial debodning, as shown in Fig. 6, the length
and radius of the fibre are denoted by L and rf, respectively.
Assuming that the debonding length, and the area of the
fibre cross-section are ld, and A, respectively. We denote
x ¼ ld

L , y ¼ Np

N .
We propose two methods to analyze the effect of deb-

onding. In the first method, we divide a debonded fibre into
two parts: the debonded part and the bonded part, and
then treat the two parts separately. Thus, there are 4 phases
in the composite, namely, the matrix (the 1st phase), the



l
d

L

Fig. 6. Debonding of interface between a fibre and matrix.
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perfectly bonded fibres (the 2nd phase), the perfectly
bonded part of the debonded fibres (the 3rd phase) and
the fully debonded part of the debonded fibres (the 4th
phase). The volume fractions and the aspect ratios of the
three reinforcing phases are as follows:

(1) The 2nd phase: the volume fraction is
f2 ¼ N p � AL

V ¼ fr � y, and the aspect ratio is f2 = L/
2rf � f. fr ¼ NAL

V is the volume fraction of all fibres
in the composite.

(2) The 3rd phase: the volume fraction is
f3 ¼ N d � AðL�ld Þ

V ¼ fr � ð1� xÞð1� yÞ, and the aspect
ratio is f3 ¼ L�ld

2rf
¼ f � ð1� xÞ.

(3) The 4th phase: the volume fraction is
f4 ¼ N d � Ald

V ¼ fr � xð1� yÞ, and the aspect ratio is
f4 ¼ ld

2rf
¼ f � x.

A fibre itself is treated as an isotropic medium. Then,
from the analysis, we know that the 2nd and the 3rd phases
are isotropic, having the same property as the original
intact fibre. However, because of the debonding, the
in situ properties of the 4th phase must be reduced. Using
the method in Ref. [19], the isotropic debonded inclusion is
replaced by a fictitious transversely isotropic one, whose
elastic properties are calculated in the following [19].

In order to deal with a transversely isotropic material, it
is convenient to use Hill’s stress–strain relations [32]

1

2
ðr22 þ r33Þ ¼ kðe22 þ e33Þ þ l0e11

r11 ¼ lðe22 þ e33Þ þ ne11

r22 � r33 ¼ 2mðe22 � e33Þ
r23 ¼ 2me23; r12 ¼ 2pe12; r13 ¼ 2pe13

ð16Þ

where direction 1 is along the axis of symmetry, and plane
2–3 is isotropic. Then, in Walpole’s short-hand notations,
the transversely isotropic elastic modulus tensor can be
written as [33]
C ¼ ð2k; n; 2m; 2p; l; l0Þ ð17Þ
Because tensor C is diagonally symmetric (l = l0), it can be
further expressed as

C ¼ ð2k; n; 2m; 2p; l; lÞ ð18Þ
When the material is isotropic, tensor C reduces to

C ¼ ð2k; k þ l; 2l; 2l; k � lÞ ð19Þ

The elastic constants k,n,m,p,l are in Hill’s notation. For
isotropic case, they are related to the bulk and shear con-
stants K and l through

k ¼ K þ 1

3
l; n ¼ K þ 4

3
l; m ¼ p ¼ l;

l ¼ K � 2

3
l ð20Þ

As shown in Fig. 6, the debonding takes place on the lat-
eral 2–3 surface so that r22 = r33 = 0. It follows from Eq.
(16)

ðe22 þ e33Þ ¼ �
l0

k0

e11; r11 ¼ n0 �
l2

0

k0

� �
e11 ð21Þ

The debonded part carries no shear stress, r12 = r23 = 0.
Thus, the elastic modulus of the fictitious transversely iso-
tropic inclusion is

C�4 ¼ ð0; n0 �
l2

0

k0

; 0; 0; 0; 0Þ ð22Þ

The modulus of an original intact fibre is denoted by the
subscript ‘‘0”.

The analysis above fits the partially debonded case
(x < 1). If a fibre is not fully debonded, the bonded part
can still carry some stress r11, and thus Eq. (21) is reason-
able. However, when a fibre is fully debonded (x = 1), it is
difficult for the ends of the fibre to carry the axial load
because of its small sectional area. In this case, the assump-
tion r11 = 0 should be a better approximation. Considering
that the load is transferred from the interface of the bonded
part to the debonded part, and this transfer is related to the
area of the bonded part, through a simple analysis [34], we
multiply the modulus in Eq. (22) by a factor ð1� ld

LÞ and get

a modified modulus ð1� xÞðn0 �
l2
0

k0
Þ. Then Eq. (22) is chan-

ged to

C�4 ¼ ð0; ð1� xÞ n0 �
l2

0

k0

� �
; 0; 0; 0; 0Þ ð23Þ

Therefore, with the elastic constants and geometric param-
eters of the constituents known, we can predict the effective
moduli of the composite using the Mori–Tanaka scheme
for multi-phase composites.

In the above, we presented the first method to deal with
the debonding, where a debonded fibre is divided into two
phases. Here, we present the second method to model the
effect of debonding. In this method, a single debonded fibre
is simply replaced by one fictitious transversely isotropic
fibre, so there are 3 phases in the composite, namely, the
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matrix (1st phase), the perfectly bonded fibres (2nd phase)
whose properties are the same as the 2nd phase in the
above first method, and the fictitious transversely isotropic
fibres (3rd phase) which replaces the partially debonded
fibres. The volume fraction and the aspect ratio of the
3rd phase are v3 ¼ N d � AL

V ¼ frð1� yÞ and f2 = L/2rf � f,
respectively. The elastic constants of the fictitious trans-
versely isotropic fibres are calculated below.

Consider a fibre as shown in Fig. 6. We assume that the
matrix carries the stress r11 remotely and the modulus of
the fibre is much larger than that of the matrix. The load
is transferred from the interface of the bonded part to
the debonded part. Through a simple analysis [34], the
effective longitudinal elastic modulus of the fictitious trans-
versely isotropic fibre can be calculated by

Ef
1 ¼ 1� ld

L

� �
E0 ¼ ð1� xÞE0 ð24Þ

The effective transverse elastic modulus is

Ef
2 ¼ ð1� xÞE0 ð25Þ

The effective longitudinal and transverse shear moduli are

Gf
12 ¼ Gf

23 ¼ ð1� xÞG0 ð26Þ
The plane-strain bulk modulus in the transversely isotropic
plane is

kf
23 ¼ ð1� xÞk0 ð27Þ

In the above formulas, the parameters with the subscript
‘‘0” denote those of the intact fibre. Eqs. (24)–(27) give
the five elastic constants of the fictitious transversely isotro-
pic fibre. Thus, we are ready to predict the effective elastic
moduli of the composite that contains perfectly bonded
and debonded short fibres using the Mori–Tanaka scheme.

3.2. Numerical analysis

For the case of debonding, we first calculate the effective
elastic constants using the first method. The elastic modu-
lus tensor of the intact fibre is C0=(2k0,k0 + l0,2l0,
2l0,k0 � l0). We have n4 ¼ ð1� xÞ l0ð3k0�l0Þ

k0
, k4 = l4 = 0,

m4 = p4 = 0. The aspect ratio is assumed to be f = 250.
The Young’s modulus of the isotropic matrix and the car-
bon nanotubes are E1 = 20 GPa[35] and E0 = 910 GPa
[36], respectively. The Poisson’s ratio is m1 = m0 = 0.3.

Fig. 7 shows the variation of K/K1 with the volume frac-
tion fr, where K and K1 are the bulk modulus of the com-
posite and the matrix, respectively. In the figure, curve B

shows the case when all fibres are perfectly bonded with
the matrix; curve C is for the case when fifty percent of
the fibres are debonded by 20%; curve D is for the case
when all fibres have debonded by 20%; and curve E is for
the case when all fibres are fully debonded. The effective
shear modulus l/l1 exhibits the same variation, as shown
in Fig. 8. In curve E, the effective moduli of the composite
decrease with the increase of the volume fraction when all
the fibres are fully debonded. This is because the fully
debonded fibres do not carry any load; they simply play
the role of voids.

Fig. 9 depicts the variation of K/K1 with the debonding
extent x for volume fraction fr = 0.2. All the fibres have the
same debonding extent for curve B. There are fifty percent
of fibres having the same debonding extent for curve C. All
the fibres are perfectly bonded for curve D, and in this case
the modulus does not depend on x. The effective shear
modulus l/l1 exhibits the same variation, as shown in
Fig. 10.

Figs. 11 and 12 show the effective bulk modulus K/K1

varying with the volume fraction fr when x = 0.2,y = 0.5
and x = 0.2,y = 0, respectively. The results that are
obtained using the two methods dealing with the debond-
ing are almost identical when the volume fraction of the
fibre is below 40%. It is also the case for the effective shear
modulus l/l1. Generally, the content of carbon nanotubes
in current nanocomposites is much less than 40%, so either
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method can be used to analyze the effect of debonding on
the effective elastic moduli of the composites.

4. Conclusions and discussion

Waviness of carbon nanotubes and interfacial bonding
conditions play a critical role in determining their reinforc-
ing efficiency in CNT–reinforced nanocomposites. The
studies of these effects on the mechanical properties are
of highly theoretical and technological significance for both
mico-size and nano-size fibre–reinforced composites. In
this paper, the influences of the waviness and debonding
of carbon nanotubes on the effective elastic moduli of the
composites are investigated. The proposed methods are
very simple and easy to use. It is shown that both the wav-
iness and debonding can significantly reduce the stiffening
effect of the nanotubes, though they have exceptionally
high modulus. In particular, the effective elastic constants
of the composites are very sensitive to the waviness when
the latter is small. Nevertheless, the load-transferring
mechanisms at the interface between the nanotubes and
the matrices may be very complicated, and both waviness
and debonding may exist simultaneously. Thus, more
detailed studies are needed in understanding and predicting
the mechanical properties of carbon nanotube–reinforced
nanocomposites.
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