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Abstract A quadtree-based adaptive Cartesian grid
generator and flow solver were developed. The grid adapta-
tion based on pressure or density gradient was performed and
a gridless method based on the least-square fashion was used
to treat the wall surface boundary condition, which is gene-
rally difficult to be handled for the common Cartesian grid.
First, to validate the technique of grid adaptation, the bench-
marks over a forward-facing step and double Mach reflection
were computed. Second, the flows over the NACA 0012 air-
foil and a two-element airfoil were calculated to validate the
developed gridless method. The computational results indi-
cate the developed method is reasonable for complex flows.

Keywords Cartesian grid - Gridless method -
Adaptation technique - Euler solution

1 Introduction

The technique of grid generation for complex geometry has
become a big obstacle to popularize CFD techniques, and is
also a key factor affecting the computation of CFD. Exis-
ting types of grid for CFD techniques include unstructured
grids, body-fitted curvilinear grids, and Cartesian grids. In
fact, structured Cartesian grid was widely used at the initial
stage of CFD due to its ease and rapidity of grid generation,
however, which was rapidly replaced of the curvilinear grid
due to its complexity and lower accuracy for the treatment
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of the wall surface boundary. Recently, for the unstructured
Cartesian grid, because the simplicity of data structure and
the ease in implementing adaptive refinement based on quad-
tree or octree topology tend to be mature, a renewed interest
was excited for Cartesian grids [1,2]. However, the main chal-
lenge in using a Cartesian method is in dealing with arbitrary
boundaries.

Because the Cartesian grids are not body aligned, Carte-
sian cells near the body can extend through the surfaces of
solid objects. So an accurate means of representations for
surface boundary conditions is essential for the success of
Cartesian method. Before the cut-cells method was used to
resolve the boundary conditions. A cut-cells method gene-
rates Cartesian grids over the whole flowfield in the first step,
and clears the cells in the solid object in the second step, and
then cut the cells which extend through the surfaces in the
last step. The shapes of cells generated by a cut-cells method
at the boundary are irregular, and this method can some-
times lead to the creation of very small cells at the boundary.
These irregularly shaped cut cells bring considerable com-
plexity to the computation of the volume and fluxes for them
and, moreover, these tiny cells pose the problem of numerical
stability.

An alternative to resolving the boundary conditions is
the gridless method [3,4]. Unlike the cut-cells method, this
method uses a direct least-squares fitting method to get
the flux variables and has a great flexibility in handling the
complex arbitrary distribution of grid points near solid
boundaries. In the present paper, we attempt to combine the
Cartesian grid method and the gridless method. We use
the Cartesian grids method for the grid point in the interior
of the computational domain, and use the gridless method
to implement the boundary conditions. A finite volume for-
mulation with Roe formulation for the Euler equations and
use gridless approach to discretize the wall surface was
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developed. The time-marching was implemented with the
modified four-stage Runge—Kutta scheme. The developed
method has been used to solve the flow field of shock reflec-
tion over a forward-facing step, double Mach reflection,
NACA 0012 airfoil and NLR 7301 two-element airfoil.
Results are compared with those of body-fitted curvilinear
grids or experimental data.

2 Numerical method
2.1 Two-dimensional Euler equations

The two-dimensional Euler equations consisting of the mass,
momentum, and energy conservation laws that govern the
motion of an inviscid fluid can be written in integral form as
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where S denotes the area; F is the flux vector; d/ is a surface
element, and # is the outward normal; and
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Here, p, p, u, v, and E denote the pressure, density,
Cartesian velocity components, and total energy. For a per-
fect gas,

2.2
F= b uc+v
(y = Dp 2
where y is the ratio of specific heats.

Spatial discretization of the Euler equations for an interior
node in the Cartesian grid is performed using Roe’s scheme
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The Runge—Kutta time marching method is applied in time
discretization. The scheme is explicit with a Courant—
Friedrichs—Lewy (CFL) condition of CFL < 24/2 and has
second-order accuracy in time for a nonlinear equation. To
increase the allowable stability bound, the local time stepping
is used to accelerate convergence to steady state.

2.2 Cartesian grid
2.2.1 Data structure
Data structure plays an important role in grid generation

and flow field calculation. The quadtree data structure is
employed in the adaptive Cartesian grid. The generation of

@ Springer

Depth Tree Grids
0
c
1
a
2
3 b
d
4 .
LI
Fig. 1 Generation of Cartesian grid based on quadtree
o} o} 0 o} o
o)
o] o] o} o] ] -
/‘
o) o) o) o] o] I//I
(o} o) 0 (o} a // ] a

o] (o] (o] - ]
| / R
o o 0 / a A
4
& Solid grids & Surface grids
O Flowfield grids ® Surface points

Fig. 2 The types of grid points

Cartesian grid based on quadtree data structure is illustrated
in Fig. 1.

The depth, which denotes the times of grid subdivision, is
in the left of Fig. 1. The root grid has a depth of zero. The
quadtree data structure diagram is in the middle of Fig. 1, and
it shows the generation of grid based on quadtree. The graph
of grid generation is in the right of Fig. 1, and it shows the
process of grid subdivision from a root grid. The flow field
calculation is performed on the leaf grids, the grids that are
not subdivided.

2.2.2 Classification of grids

Three types of grids and one type of points are identified as
shown in Fig. 2.

Solid grids are grids that are inside the solid body and
they are deleted in the computation. Surface grids are grids
cut by solid body surfaces. Flowfield grids are grids that are
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outside the solid body, and surface points are discrete points
that represent the solid body surfaces.

2.2.3 Grid adaptation

A reasonable distribution of grids is very important for com-
putational efficiency and accuracy. In present work, the grid
adaptation is based on the gradient of density or pressure. For
any flowfield grid, when its adaptation parameter is greater
than the threshold, it is flagged for refinement, and contrarily
when its adaptation parameter is less than the threshold and
its depth is less than or equal to the depth of its adjacent grid,
itis flagged for coarsening. The threshold is defined by

CR(n]—nO)
Ve=—xF—

where V; is the threshold, n1 is the depth of present grid,
nQ is the depth of initial grids, and CR and N are control
parameters.

&)

2.3 Implementation of boundary conditions

Far-field boundary conditions are easily implemented in
the same way as in any structured grid method. In the
present work, the usual characteristic analysis based on
one-dimensional Riemann invariants is used to determine the
values of the inviscid flow variables. No special treatment is
needed. The main challenge in using Cartesian grids is in the
surface boundary condition implementation as the grids are
not body aligned. A gridless method with least-squares tech-
nique is used in the present work to implement the surface
boundary conditions. The boundary conditions are imple-
mented such that the boundary conditions are satisfied in the
process of solving the surface grid values.

2.4 Gridless treatment for surface grids

To avoid the complexity of cells-cutting method, a gridless
method is used to treat the surface grids in present work.
This is a very simple method for boundary treatment as it
uses only clouds of grids and does not require the grids to
have any prespecified connectivity among one another. The
surface grids are treated separately. This makes the method
easy to be implemented into any scheme.

The process of gridless approach treatment for the surface
grids is presented as follows:

(1) Foreach surface grid, the point P that is the nearest point
on the solid wall surface to the center of the surface grid
can be found as shown in Fig. 3.

(2) Acloud of grids for each surface grid is set up for boun-
dary condition implementation. For each surface grid, a
cloud of eight flowfield grids are selected from its vici-
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Fig. 3 The nearest point P to the center of surface grid

Fig. 4 Cloud grids (gray grids) for the surface grid M

(3)

nity. This selection is based on nearest distance to the
point P of the grid as shown in Fig. 4. The eight shaded
flowfield grids are included in the cloud for the surface
grid M. To avoid choosing grids from the wrong side of
the profile at thin surfaces, the selected cloud grids must
fall on the same side as the outward normal direction of
the surface as illustrated in Fig. 5.

For an inviscid condition the flow slips over the solid
surface, and hence it is tangent to the surface. The slip
condition is thus imposed on the boundary, and the
flow variables on the solid surface are approximated as
follows:

a Vv, ]
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Fig. 5 Cloud grids (gray grids) in the thin surfaces

Fig. 6 £-n coordinate systeptm

where the subscripts » and & stand for the normal and
tangential directions, respectively, along the surface.

As shown in Fig. 6, for each surface grid, the values of flow
variables at its cloud grids are resolved to the tangential &
and normal 7 directions of the local £—7 coordinate system
with its origin at the point P. This is for easy implementation
of the boundary conditions because they are given in the &
and 7 directions.

In each cloud, the flow variables p, p, u and v are assumed
to vary according to the function:

JFE. n) = by + b2k + ban + baén. (7N
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Taking p as an example and applying the boundary condi-
tion in Eq. (6) on the surface grid will result in the following:

pE,n) = by + ba§ + byn + byén, (8)
ap

™ = b3 + bat =b3=0. 9
an 0.0) I(0,0)

Substituting Eq. (9) into Eq. (8), a new function is obtained
with the number of unknowns reduced by one

p(&.n) = b1+ b€ + bakn. (10)

Substituting the values of pressure and coordinate at the cen-
ter of each cloud grid into the Eq. (10) will result a system
of eight equations with three unknowns:

p1 = b1+ boé + bakim,
p2 = b1+ b2 + baama,
P3 = b1 + b2z + baban,
P4 = b1 + ba€4 + babang,
ps = b1 + ba&s + baksns,
pe = by + babe + bakene.
p7 = b1+ b7 + ba&iny.
ps = b1 + ba&g + bakgns.

(11)

This is an overdetermined system, and can be solved by a
least-squares method [5]. By determining the values of by,
b2, b3 and by, the functions (8) is found. Then the pressure
values at the boundaries of surface grids, which are needed
for the Roe’s scheme, are evaluated according to the func-
tion. Because the boundary condition is incorporated into
the system of equations to be solved, the values computed
automatically satisfy the boundary conditions.

The p and V; are computed in a similar fashion, because
the boundary conditions of p and V¢ are the same as that
of p.

The situation is different for V. because the boundary
condition about it is different from the others. Applying the
boundary condition in Eq. (6) for V, will result in the
following:

Vy(§,m) = b1 + ba& + byn + bakn, (12)
Vil o) =51 =0. (13)

Substituting Eq. (13) into Eq. (12), a new function is obtai-
ned with the number of unknowns reduced by one

Vp(§.n) = bak + b3n + bakn. (14)

Substituting the values of normal velocity and coordinate at
the center of each cloud grid into the Eq. (14) gives a system
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of eight equations with three unknowns:

Vit = ba2é1 + bany + ba&im,
V2 = ba&x + bana + ba&ama,
Vi3 = bafs + banz + bsésms,
Vina = ba&a + bana + babans,
Vs = bags + b3ns + baésns,
Ve = b286 + b3ne + bakens,
Viz = ba&7 + b3ng + bakng,
Vg = babg + bing + babsns.

(15)

Then this system is solved by using the same method as
described earlier.

In the end, the velocity Vi and V), are transformed back
into u and v in the x—y coordinate system.

Although simple to implement, the gridless method is not
a conservative method [6]. By applying the gridless method
only on surface grids, potential nonconservation is thus res-
tricted to a layer of grids surrounding the solid body while the
rest of the computational domain is computed using a fully
conservative finite volume formulation. The size of this layer
goes to zero, and thus the effect of the potential nonconser-
vative effect also goes to zero as the grid size is reduced. The
lack of conservativeness can be minimized with the use of
sufficient resolution near the surface.

3 Results and discussion

Results are presented for shock reflection over a forward-
facing step, double Mach reflection, NACA 0012 airfoil and
NLR 7301 two-element airfoil are computed.

3.1 Shock reflection over a forward-facing step

The computing model is a Mach 3.0 flow over a forward step.
The height of step is one-fifth of the width of tunnel. The ini-
tial condition of the inflow is Ma =3, p =1, p = 1/14,
u = 3. The initial grid is presented in Fig. 7 and the adap-
tive grid and unsteady pressure contour at typical nondimen-
sional time are presented in Figs. 8, 9 and 10. The results

Fig. 7 Initial grid for forward-facing step case
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Fig. 8 Result for forward-facing step case after S nondimensional time
units. a Adaptive Cartesian grid; b Pressure contours
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Fig. 9 Result for forward-facing step case after 15 nondimensioanl
time units. a Adaptive Cartesian grid; b Pressure contours
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Fig. 10 Result for forward-facing step case after 30 nondimesional
time units. @ Adaptive Cartesian grid; b Pressure contours

indicted the developed adaptive Cartesian method can simu-
late the complex unsteady shock generation and interaction
very well.
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3.2 Double mach refiection

Double Mach Reflection is a classic test of numerical algo-
rithm. Woodward and Colella have made a complete descrip-
tion of the problem [7]. The initial and boundary conditions
are illustrated in Fig. 11. AD is the surface of an oblique
shock at Mach 10, and the flows in two sides of gap AD are
identified by the Rankine-Hugoniot relation. AB is the wall
boundary, and the others are outlet boundaries. Because the
shockwave moves, the length of DE varies with time and can
be calculated by the function:

1 3
DEG") = 2 + %(1 + 2M;ct™), (16)

where M; is the Mach number, " is the number of time
step. The results are presented in Figs. 12 and 13. The results
also indicted the developed adaptive Cartesian method can
simulate the shock/vortex interaction very well.

3.3 NACA 0012 airfoil

For the NACA 0012 airfoil, four flow cases with various
combinations of free stream Mach number M, and angle of
attack o are computed: (1) My = 0.5, 0 =3.0°, (2) Mo =
0.85, 0 = 0° (3) Moo = 0.8, @ = 1.25°% (4) M = 2.0,
o = 0°. All four cases were computed using a CFL number

ey B

Fig. 11 Initial and boundary conditions
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Fig. 12 Result fordouble Mach reflection after 0.1 nondimesional time
unit. a Adaptive Cartesian grid; b Density contours
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Fig. 13 Result for double Mach reflection after 0.2 nondimensional
time unit. a Adaptive Cartesian grid; b Density contours

of 1.0 with local time stepping to accelerate the convergence
to steady state. For each of the cases, the distributions of the
pressure coefficient

_ 2(p = Poo)

C, = (17
d poovozo )

are plotted. All solutions are compared with those compu-
ted using a body-fitted grid. A close-up view of a typical
Cartesian grid and body-fitted grid is shown in Fig. 14.

For case 1 with My, = 0.5, o = 3.0°, the adaptive Carte-
sian grid for the subsonic flow is presented in Fig. 15a and the

A
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Fig. 14 Close-up view of a initial Cartesian grid; b body-fitted grid
for the NACA 0012 airfoil
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pressure contour in Fig. 15b. Figure 15¢ shows the compa-
rison of C), distribution between the adaptive Cartesian grid
and body-fitted grid. They are agreement with each other
except the pressure peak at the leading edge is little lower for
Cartesian grid.

For case 2 with M, = 0.85, a = 0°, the adaptive Carte-
sian grid for the transonic flow is presented in Fig. 16a and
the pressure contour in Fig. 16b. Figure 16c shows the C),
comparison for the adaptive Cartesian grid and body-fitted
grid. They are also agreement very well.

In case 3, the transonic flow of My, = 0.8 witha = 1.25°
is computed. The adaptive Cartesian grid, pressure contour
and C, plot are shown in Fig. 17a—c, respectively. Pres-
sure distributions agree very well for the two grid methods,
which have a strong shock and a weak shock on the upper
and lower surfaces separately. The shock wave in the flow
field is well resolved. Because the conventional finite volume
method is used in the interior flowfield on a Cartesian grid,
the scheme is strictly conservative. The preceding transonic
cases demonstrate that this method gives the correct shock
speed and strength as expected.

Supersonic flow of M, = 2.0 with @ = 0° is tested in
case 4, and the results are presented in Fig. 18a—. The C,
distribution of the adaptive Cartesian grid matches also very
well with the body-fitted grid.

3.4 Two-element airfoil

To demonstrate the robustness and accuracy of the present
method for complex configurations, the NLR 7301
two-element airfoil was taken a validated case [8]. The flow
of My, = 0.185 with « = 6° and Gap = 1.3% is com-
puted in current case. The adaptive Cartesian grid is shown
in Fig. 19a and the pressure contour in Fig. 19b. Figure 19¢
compares the distributions of surface pressure distribution
over each element with the experiment result. The computed
result is in good agreement with the experiment result except
in the leading edge, where the computed solution underpre-
dicts the surface-pressure coefficient. Nevertheless, this two-
element test case demonstrates the flexibility of the adaptive
Cartesian grid method with the present gridless boundary
condition implementation.

4 Conclusions

A quadtree-based adaptive Cartesian grid generator and flow
solver have been developed successfully in this study. Fea-
tures of the developed approach are summarized below:

(1) Quadtree data structure was used for Cartesian grid and
grid adaptation technique was performed.
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Fig. 15 Solution for NACA 0012 with My, = 0.5, « = 3.0°. a Adap-
tive Cartesian grid; b Pressure contour; ¢ C;, distribution

‘2_) Springer



194

L. Xiang, G. Yang

nnE

T
T

C -1.5 7
I [0 Cartesian grid
10 L 4 Body-fitted grid
=]
[ g
00 a8
05 | L
10 F
o = S (O ST (PSR [OOSR I ST
—0.25 000 025 050 075 1.00 1.25

% Chord
Fig. 16 Solution for NACA 0012 with My, = 0.85, o = 0°. a Adap-

tive Cartesian grid; b Pressure contour; ¢ C), distribution

(2) A gridless method is used for solid surface boundary
treatment and this makes the Cartesian grid have good
flexibility in handling complex geometry.
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Fig. 17 Solution for NACA 0012 with M, = 0.8, @« = 1.25°.
a Adaptive Cartesian grid; b Pressure contour; ¢ C), distribution

(3) The developed method was validated with the many
benchmarks. The results indicate that the approach
offers accurate solutions and the grid adaptation. The

© 1994-2013 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net
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Fig. 18 Solution for NACA 0012 with Mo, = 2.0, = 0°. a Adaptive
Cartesian grid; b Pressure contour; ¢ C, distribution
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Fig. 19 Solution for NLR 7301 with My = 0.185, @ = 6°, Gap =
1.3%. a Adaptive Cartesian grid; b Pressure contour; ¢ C,, distribution
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efficiency, ease and flexibility make the method to have
great potential for the flow problems with complex geo-
metries. Future work can explore the extension of the
method to three dimensions.
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