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Numerical study on transient flow in the deep naturally 
fractured reservoir with high pressure 
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According to the experimental results and the characteristics of the pressure-sensitive fractured for-
mation, a transient flow model is developed for the deep naturally-fractured reservoirs with different 
outer boundary conditions. The finite element equations for the model are derived. After generating the 
unstructured grids in the solution regions, the finite element method is used to calculate the pressure 
type curves for the pressure-sensitive fractured reservoir with different outer boundaries, such as the 
infinite boundary, circle boundary and combined linear boundaries, and the characteristics of the type 
curves are comparatively analyzed. The effects on the pressure curves caused by pressure sensitivity 
module and the effective radius combined parameter are determined, and the method for calculating 
the pressure-sensitive reservoir parameters is introduced. By analyzing the real field case in the high 
temperature and pressure reservoir, the perfect results show that the transient flow model for the 
pressure-sensitive fractured reservoir in this paper is correct. 
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With the improvement of the oilfield development tech-
nology and the growing demand for oil and gas re-
sources, deeper and deeper high-pressure reservoirs are 
developed. Because of the high pressure and tempera-
ture in the deep oil and gas reservoirs, the formation will 
be changed with partial or whole irreversible deforma-
tion during the development of the reservoir. With for-
mation deformation, as well as the variable properties of 
liquids and gases, the reservoir dynamic characteristics 
will obviously be affected. Without correct understand-
ing the transient flow mechanics in such reservoir, the 
well productivity will not be given reasonable. In such 
reservoir, the well productivity will decrease sharply and 
can not be rebuilt by any method. The reservoir recovery 
will decrease sharply in result. According to refs. [1－4], 
the largest permeability loss is 90%, while the largest 
well producing rate loss is 50%. 

In the current oil and gas reservoir developing process, 
the porous media deformation can be divided into three 
types: elastic deformation, plastic deformation and elas-
tic-plastic deformation. Based on the analysis of the in-

door experimental data, the high-pressure deep fractured 
reservoir mostly belongs to the second type, the plastic 
deformation reservoir. This type reservoir shows abnor-
mal characteristics: The initially large opening crack due 
to the high fluid pressure in the crack reduces largely as 
the fluid pressure sharply drops. The reduced opening 
crack is difficult to be reopened even with a high level 
fluid pressure, resulting in that the reservoir porosity and 
permeability will continue to be decreased. 

The pressure-sensitive fractured reservoir indicates 
that the reservoir properties change with the surrounding 
pressure in the porous media, and most of these kinds of 
changes are irreversible. The reservoir properties men-
tioned here are the properties of the skeleton, the poros-
ity and the fluid. These properties can be described by 
the parameters of porous media and fluid, such as  
permeability, porosity, fluid compressibility, density, 
viscosity, and so on. According to the experimental data, 
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Terzaghi[5] suggested that the variation of porosity can 
be ignored in the engineering calculation, but permeabil-
ity changes must be considered. 

Since 1925 Terzaghi[5] put forward the concept of ef-
fective stress in the study of soil consolidation theory, 
the seepage theory on deformable porous media has ex-
perienced a long development history. The development 
of effective stress principle has founded a basic theory 
for solving deformation problems in porous media. In 
1955, Biot[6] extended Terzaghi’s theory to the elastic 
consolidation theory in anisotropic porous media. Biot 
assumed that the fluid in a reservoir was compressible 
and viscous fluid. He distinguished solid framework 
stress from porous fluid pressure and differentiated solid 
frame deformation from fluid motion. In addition, he 
described the fluid flow relative to the solid framework 
in porous media by Darcy’s law. He also proposed the 
stress-strain relationship for the problem with anisot-
ropic visco-elasticity and the problem with relaxation 
phenomenon, which can be used to predict the 
stress-strain change history during the fluid flow in ani-
sotropic porous media. In 1957, Geertsma[7], based on 
the previous research, created the poroelasticity theory 
and the corresponding relationships, and explicitly gave 
the definition of the rock volume compressibility and the 
pore compressibility as well as their relationship, which 
can be used quantitatively to determine the pore volume 
variation caused by the pore pressure change. In 1975, 
by considering the influence of the rock compaction ef-
fect on seepage flow and reservoir exploitation, Finol 
and Farouq Ali[8] developed a three-dimensional and 
two-phase seepage flow model, and solved it by using 
finite difference method. This seepage model was com-
posed by oil and water seepage equation and an analyti-
cal equation group with the linear elastic deformation of 
the porous media. The model considered the effect that 
the variations of porosity and permeability caused by the 
rock compaction, which exerted on the final reservoir 
recovery. So this model was one typical model of the 
linear elastic deformation theory. 

On the basis of the linear elastic seepage theory, the 
oil workers in the Soviet Union[9], developed some elas- 
toplastic seepage models and plastic seepage models.  
They only modified the model by expressing the poros- 
ity and permeability variations in the form of index or  
power function of the fluid pressure drawdown. In 1972,  
Raghavan et al.[10] developed a pressure-sensitive ho- 

mogeneous reservoir transient flow model, and gave a 
new formula of pseudo pressure. In this model, the 
change of permeability caused by the pressure variation 
was involved in the item of pseudo-pressure. So the 
model was changed from the nonlinear equations to the 
quasilinear equations, and the numerical solution for the 
pressure-sensitive problem was given. In 1977, Sama-
niego, Brigham and Miller[11] developed a transient flow 
model which considered the change of rock and fluid 
compressibility due to pressure variation. In 1983, Os-
tensen[12] mentioned the pressure sensitivity could cause 
the initial productivity to reduce up to 30% for typical 
tight sand gas reservoirs, and put forward that using the 
seepage model without the considering of pressure sen-
sitivity to analyze the pressure transient behavior would 
cause an enormous deviation. In 1990, Pedrosa[13] de-
veloped a deformable media transient flow model of the 
circle homogeneous reservoir. They used the perturba-
tion method to give the zero order, first order and second 
order perturbation solution, and gave a brief analysis of 
the flow characteristics in the deformable media. In the 
same year, Zhang et al.[14] applied the numerical method 
to give the pressure transient behavior characteristics of 
the infinite radial flow homogeneous system in pres-
sure-sensitive reservoirs. In 1993, Yeung[15] developed a 
spherical transient flow model for the deformable ho-
mogeneous reservoir, and gave the approximate solution 
to the model. This transient flow model was applicable 
to some partial penetrating wells, but not accurate. 

In 2000, Wu and Pruess[16] gave the integral solution 
of the transient flow model by considering the influence 
of pressure sensitivity on permeability, and compared 
their results with the numerical results. They pointed out 
that the injection pressure changed while the permeabil-
ity changed with pressure. In 2001, Davies et al.[17] 
studied the permeability variation in pressure-sensitive 
reservoirs, and developed a mathematical model of the 
permeability variation. In 2002, Osorio and Alcalde[18] 

and others studied how to determine the influence of 
rock deformation on the formation characteristics by 
using well test method, and developed a 3D stress-strain 
model. Based on the stress-strain relation and fluid flow 
equations, they got the radial variation mechanics of the 
principal stress, the permeability and the bottom pres-
sure by using the finite difference method. In 2003, 
Samaniego and Villalobos[19] gave a transient flow 
model for the pressure-sensitive naturally fractured res-
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1  Mathematical model  ervoir. The key issue they studied was the compressibil-
ity of fluid, cracks and pores. They used the pseudo- 
pressure method introduced by Raghanvan, which in-
volved the permeability variation in the pseudo pressure 
item. They mainly solved the problem for the 
semi-logarithm analysis and verified their method by 
field examples.  

In 2003, Gang and Dusseault[20] gave the variation 
mechanics and a mathematical model of porosity and 
permeability in the near wellbore regions for the pres-
sure-sensitive reservoir. In theory, they studied the stress 
and pressure variation around a single production well 
and the near wellbore formation damage caused by the 
formation rock compaction. Their results showed that 
the production rate reduced with time, since the near 
wellbore formation rock compaction caused by stress. 
This research had a positive significance on transient 
flow mechanics in the pressure-sensitive reservoir. In 
2007, Shunde et al.[21] gave the relationship between the 
pore elastic behavior and the formation pressure under 
super-pressure conditions. They found the formation 
pressure changed in different ways in various stress- 
sensitive formation. 

Zhou et al.[22] Ge[23], Tong et al.[24], Su et al.[25], 
Dong[26], and Wang et al.[27] gave some theoretical 
analysis on various aspects of deformable reservoirs. 

In recent years, with the deep exploitation of su-
per-pressure gas reservoir in western China, the research 
of deformable reservoir becomes a new hot point in the 
oil and gas industry again. The previous research was 
mainly focused on the elastic and elastoplastic deform-
able reservoirs, and was mainly based on the theory that 
the permeability changes with the pressure. The research 
on plastic deformable reservoir was rare. Based on the 
previous research, this paper presents the exponential 
relation to describe the change of rock porosity and 
permeability with pressure, and establishes a transient 
flow model involving the porosity and permeability 
changes. In this paper, the finite element method is used 
to study the transient flow mechanics under various 
conditions such as various porosity, various permeability 
and both various porosity and permeability. The effect of 
changing porosity and permeability on the wellbore 
pressure is also analyzed. The transient flow model is 
verified by some field cases with approving reservoir 
permeability modules. 

1.1  Description of the physical model 

1) The reservoir is assumed to be homogeneous and 
thickness-fixed, and the production is scheduled for a 
fixed flow rate q. 

2) The fluid is single-phase and slight-compressible 
Newtonian fluid.  

3) The fluid flow is a kind of radial flow and obeys 
Darcy’s law, and the effects of gravity and capillary 
force are neglected.  

4) The dual-porosity formation contains two kinds of 
pore. The fractures are considered as the flow channels, 
the fluid in the matrix is the main flow source, and the 
fluid flow between the matrix and fracture is steady 
cross flow. 

5) The various permeability and porosity with the ef-
fective stress are expressed in exponential forms, both 
permeability modulus αk and porosity modulus αφ are 
assumed to be constant separately. 

6) The effects of wellbore storage and skin factor in 
the inner boundary conditions are considered by using 
the effective wellbore radius model.  

7) The outer boundaries may be infinite, circle and 
linear combination form in shape, and pressure-fixed 
and closed in boundary properties.  

8) The whole transient flow process is isothermal. 

1.2  Development of the mathematical model 

1.2.1  Mass continuity equation.  According to the 
transient flow model for the dual porosity reservoir with 
quasi-stable cross flow presented by Warren and Root[28], 
the mass continuity equation in the fracture of the pres-
sure-sensitive fractured reservoir is 

 f
f m

( )
( ) 0V q

t
.

ρφ
ρ

∂
+ ∇ ⋅ − =

∂
 (1) 

The continuity equation in the matrix is 

 m
m

( )
0.q

t
ρφ∂

+ =
∂

 (2) 

The equation of the cross flow from the matrix to the 
fracture is 

 (0
m m ,q pλ )fp

ρ
α

μ
= −  (3) 

where  is the cross flow rate and mq λα is the cross 
flow coefficient. 
1.2.2  Equation of the changing density fluid.  Under 
isothermal condition, the fluid compressibility is defined 
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as 

f
1 d 1 d .

d d
Vc

V p p
ρ

ρ
= − =  

By integrating the definition formula of the fluid 
compressibility, the state equation is 
  (4) f i( )

0e c p pρ ρ − −= .

1.

When the pressure variation is small, the state equa-
tion can be simplified as 

0 f i[1 ( )].c p pρ ρ= + −  
2.3  Equations of the changing porosity.  In 1953, 

Hall defined the rock effective compressibility by ex-
periment data, that is, the relative pore volume change 
with the unit pressure: 

d1 .
d

p
p

p

V
c

V p
=  

An equivalent expression of the above formula is 
1 d .

d
C

pφ
φ

φ
=  

By integrating the definition formula of the pore 
compressibility, the state equation is 

  (5) i( )
0e C p pφφ φ − −= .

1.                      

When the pressure variation is small, the state equation 
can be simplified as 

0 i[1 ( )].C p pφφ φ= + −  

For fractured media and porous media, the porosity 
change can respectively be presented as 

  (6) 
f i

m i

( )
0

( )
m m0

e ,

.

C p p
f f

C p pe

φ

φ

φ φ

φ φ

− −

− −

=

=

2.4  Equation of the changing permeability.  Experi- 
mental results show that under high temperature and 
high pressure conditions, the relation between the rock 
permeability and pressure can be expressed by 

 
0

1 d ,
dk
k

k p
α =  (7) 

where kα  is named rock deformation coefficient or 

rmula of deformation coefficient, 
th

 (8) 
For the fractured media, the chan

 
ecause the permeability of the ma

Equation of the fluid flow rate.  The fluid flow 
ra

permeability modulus. 
By integrating the fo

e state equation is 
 k i( )

0e .k p pk α− −=

ge of permeability is 
f i( )

f f0e .k p pk k α− −=  (9) 
B trix is far less than 

that of fracture, matrix permeability is neglected in our 
model just like the steady model developed by Warren & 
Root. 
1.2.5  

te in fracture can be expressed by Darcy law: 

 f .kV pf fμ
= − ∇  (10) 

1.3  The dimensional mathematical model 

d state 

 transient flow equation is 

By substituting the fluid flow rate equation an
equation into the mass continuity equations eqs. (1)－(3), 
the fluid flow control equation can be expressed as fol-
lows. 

The
( )( )( ) ( )( )

f f ie C C p pφ + −∂
f f i0 0 f

f 0 0

0
m f

e

  ( ) 0.

k C p p

i i

k p
t x x

p p

α

λ

ρ
φ ρ

μ
α ρ

μ

+ −⎡ ⎤∂∂
− ⎢ ⎥∂ ∂ ∂⎣ ⎦

− − =

 

The cross flow equation is 

 

( )( )( )m ie p pφ ρα α+ −∂
0

m0 0 m f( ) 0.p p
t

λα ρ
φ ρ

μ
+ − =

∂
 (12) 

The initial condition is 
 i  at  (13) 

The inner boundary conditions are 

 

f mp p= = ,p  0.t =

( )w fd 2πp phqB C k p rf ,
dt μ r

⎡ ∂ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥∂⎝ ⎠⎣ ⎦
 at  (14)  w ,r r=

 w
w f

d ,
d
pp p Sr
r

⎡ ⎤= −⎢ ⎥⎣ ⎦
 at  (15) 

The outer boundary conditions are 

 while (for infinite reservoir), (16) 

 at 

 w .r r=

f m i ,p p p= =  
 r → ∞  

f m i ,p p= =  p

er r= (for pressure-fixed circle boundary), (17) 

f mp p 0,
r r

∂ ∂
= =

∂ ∂
 

 at er r=  (for closed circle boundary), (18) 

 (for pressure-fixed linear boundary), (19) 
f mp = i ,p p=  while , ix y Γ∈  

f m 0,p p
n n

∂ ∂
= =  while , jx y Γ∈  

∂ ∂
 (for closed linear boundary), (20) 

3. C is

(1

w the fluid volume factor, m3/m  the here B is 

1)
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wellbore storage coefficient, m3/MPa. Ct is the total 
compressibility, m3/MPa. h is the net pay of the forma-
tion, m. k is the reservoir permeability, μm2. p is the res-
ervoir pressure, MPa. pf is the pressure in the fracture, 
MPa. pi is the initial pressure of the reservoir, MPa. pm is 
the pressure in the matrix, MPa. pw is the wellbore pres-
sure, MPa. q is the production rate of the well, m3/d. r is 
the distance, m. S is the skin factor, 1. φm is the porosity 
of the matrix, 1. μ is the viscosity of the fluid, mPa·s. 
ρ 0 is the reference density of the fluid, kg/m3. Γi as well 
as Γj is the liner boundary. 

1.4  The dimensionless mathematical model 

ematical 
m

 control equation is 

 

1.4.1  The dimensionless process of the math
odel.  In order to obtain a more universal transient 

flow model, we change the mathematical model into 
dimensionless form. The dimensionless mathematical 
model is expressed as follows. 

The dimensionless fluid flow

fD f D D f Df D f D

D D D

mD f D

e e

  ( ) 0.

t tkC p pp pα− −

i it x x
p p

ω

λ

⎡ ⎤∂ ∂∂
− ⎢ ⎥∂ ∂ ∂⎣ ⎦

− − =

 
(21)

 

The cross flow equation is 

 ( ) mD mD mD1 e tC p p
ω − ∂

− + mD fD
D

( ) 0.p p
t

λ − =
∂

 (22) 

The initial condition is 
  at  (23) 

The inner boundary conditions are 

 

fD mDp p= = 0,  D 0.t =

fD fDwD fD1 e ,k pp pC α−∂
D

Dt rD

∂
− = +  at

∂ ∂
 (24) 

 

 D 1,r =

wD
wD fD D

D

d
,

d
p

p p Sr
r

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 D 1.r = at  (25) 

The outer boundary conditions are 

 (for infinite reservoir), (26) 

D

 (for pressure-fixed c ndary), (27) 

fD mD 0,p p= =  while Dr → ∞  

fD mD 0,p= =  at Dr r=p e  
ircle bou

fD mD 0,p p∂ ∂
= =  at r r=  

D Dr r∂ ∂ D

 (for closed circle boundary), (28) 

 (for pressure-fixed linear boundary), (29) 

D e

fDp mD 0,p= =  while D D,x y ∈ iΓ  

fD mD 0,p p∂ ∂
= =  while ,x y Γ∈

n n∂ ∂

 (for closed linear boundary), (30) 
where the dimensionless pa  are define as 

Dimension

D D i  

rameters d 
less pressure in the fracture:  

( )f 0 .
hk

p p p= −  fD i f31.842 10 qBμ−×

Dimensionless pressure in the matrix:  

( )f 0
mD i m31.842 10

p p
qBμ−= −

×
.

hk
p  

Dimensionless distance:  

D
w

,r
r

=  r
D

w
,xx = D

w
.yy

r
=  

r
 

Dimensionless time: f 0
D 2

f f m m w

3.6
.

( )t t

k
t t

C C rφ φ μ
=

+
 

Dimensionless wellbore storage coefficient:  

D 2
f f m m w

.
2π ( )t t

C
h C C rφ φ

=
+

 C

Dimensionless reserve storage ratio:  
f f

f f m m
.

t tC C
tCφ

ω
φ φ

=
+

 

Dimensionless cross flow coefficient: 2
w

f 0
.r

k
λα

λ =  

Dimensionless deformation coefficient:  
3

0
.k

k h
1.842 10 qBα μ×

1.4.2  Quasi-linearization of the mathematical model. 
matter of convenience to solve the mathematical 

dl

 

β =  
−

  As a 
model, the method of quasi-linearization is used to han-

e the nonlinear equations. The results obtained are ex-
pressed as follows: 

D 1
f

2e

tk
C

S
U U
TC

α
ω −⎡ ⎤∂ ∂∂

−
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f f

D D DD

f
D m f

m
  0.

t
f

i i

t

t

U
x x

C
U U

C
λ

⎢ ⎥
∂⎢ ⎥⎣ ⎦

⎛ ⎞− − =⎜ ⎟
⎝ ⎠

 
(31)

 

 f fm
m f2

m D mD

1 0.
e

t t
S

t t

C CU U U
C t CC

ω λ
∂− ⎛ ⎞+ − =⎜ ⎟∂ ⎝ ⎠

 (32) 

he initial condition: 
 
T

( ) ( )f D m D,0 ,0 1.U R U R= =  (33) 

nditions is The inner boundary co

 
DD 1

D
RR

R U=
f f

f D

1 .U U
T

β
∂ ∂

= +
∂

The outer boundary conditions are 
∂

 (34) 
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( ) ( )f D D m D,U R T U R T→ ∞ = → ∞ D 1=  ,

 (for infinite reservoir), (35) 
( ) ( )D,T  f D D m D,e eU R T U R= 1=

 (for pressure-fixed circle boundary), (36) 
( ) ( )f D

D D

U
R R

∂ ∂
= =

∂ ∂
 

 while 
 (for pressure-fixed linear boundary), (38) 

D m D D, ,e eR T U R T
0

 (for closed circle boundary), (37) 

fD mD 1,U U= = D D, ix y Γ∈  

fD mD 0,U∂
= =  while ,x yU

n n
∂

∂ ∂

where   

D D ∈  iΓ

 (for closed linear boundary), (39) 

D D D/ ,T t C= fD fDe tC p
fU −= , mD mD

m e ,tC pU −=  

D
w

,
e S
r

−  R 2
D e .λ λ=  

r
=

2  Solution of the mathematical model 

2.1  Finite element method 

e 
ted 

ight function is used. The 

S−

To solve the above mathematical model, Galerkin finit
element method with weighted residual and selec
interpolation function ϕi as we
dimensionless model is changed into the finite element 
equations: 

 

D

f ff

e e1
e

f2
D D DDe
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tCe
i S

i iA

U U
U

T x xC

α
ωϕ
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m

m f

e
e ef f
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m D mD

1 d 0
e

t t
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U U A
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⎤
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  (41) 

where 

 

( 1, 2, 3),i =
e
iϕ  is element linear interpolation function and 

  e
i ,i i ia b x c yϕ = + + 1,  2,  3i = .  

e
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1,
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ϕ∂
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e
2
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x
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=
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e
3
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=
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e
1
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y

ϕ∂
=
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e
2
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ϕ∂
=
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e
3
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=
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A

= −  2 3 1 1
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A
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3 1 2 2
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2
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A
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A
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2
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2
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A
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1 ( )32

c x x
A

= − ,  

3 2
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2
c x

A
= −  1 .x

A is the triangle area: 

( )

1 2 3

1 2 3

2 3 1 2 3 1 2 1 3 2 1 3

1 1 1
1
2

1 ,
2

A x x x
y y y

x y x y x y x y x y x y

=

= + + − − −

 

e e e e e e e
1 1 2 2 3 3 ,U U U Uϕ ϕ ϕ= + +  

where  and  are the values at the three 
element nodes respectively. From the above equation, 
we can easily derive the following equations: 

e
1 ,U  e

2U e
3U

 
ee ee

e e e 31 2

1 ;y

1 2
U

3 ;U U U
x x x x

ϕϕ ϕ ∂∂ ∂∂
= + +

∂ ∂ ∂ ∂
 (42) 

 
ee ee

e e e 31 2
1 2 3 .U U U U

y y y y
ϕϕ ϕ ∂∂ ∂∂

= + +
∂ ∂ ∂ ∂

 (43) 

Finally, we get the system equations from 
the element equations. By solving the system equation, 

e value U(x,y) at the node (x,y) at time step 
alculated. So the pressure value p(x,y) can

ca

he solution area needs to be dis-
es, lines or planes first. In this 

assembling 

th n+1 can be 
c  be easily 

lculated from U(x,y). 

2.2  Mesh generation 

In order to get the appropriate solution of the definite 
problem, the finite element method is used to solve the 
differential equations. T
cretized in terms of nod
paper, the unstructured triangular grid self-adaptive 
technology presented in 1990s is used to discretize the 
research region. The technology is the improved method 
of Delaunay triangulation based on Watson algorithm. 
For the transient seepage problem near a single well, the 
pressure gradient near-wellbore is much larger than that 
at the point far from the well. Therefore, mesh densifica-
tion in the near-wellbore region is needed to ensure the 
accuracy of the solution while relatively coarse grids can 
be used in distant area. Figure 1 gives the triangular 
grids of single well with circle outer boundary for radial 
flow. Figure 2 represents the amplified grids in the near- 
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wellbore region. The mesh near-wellbore can be thick-
ened in an arbitrary way. 

 

 
 

Figure 1  The triangular grids for the circle reservoir. 
 

 
 

Figure 2  The grids in the near-wellbore region. 
 

2.3  Finite element program design 

The computer program frame for solving the mathe-
matical m he finite 
element method is shown in Figure 3. According to the 

responding finite 

Based on the transient flow model for the pressure-sen-    
sitive fractured reservoir, we get the type curves of the 
wellbore pressure with four conditions: (1) just consid-
ering permeability variation; (2) just considering the  

odel of well test analysis by using t
 

computer diagram in Figure 3, the cor
element calculation program is compiled. The double 
logarithm curves that reflect the change of the wellbore 
pressure and pressure derivative with time are calculated 
by using the finite element method. 

3  Characteristics analysis of type curves 

3.1  Type curves for the infinite pressure-sensitive 
fractured reservoir 

                               

 
 

Figure 3  The finite element program diagram. 
 

porosity variation; (3) considering both permeability and 
porosity variation; (4) considering neither permeability 
nor porosity variation. These four kinds of type curves 
are shown as Figure 4. 

Figure 4 shows that: (1) Only with porosity variation, 
the type curves of the wellbore pressure and its riva-
tive in th r to that 
of non-pressure-sensitive re rvoir. This is in agreement 

ilar to the one with the si-
m

       

       

de
e pressure-sensitive reservoir is simila

se
with the experimental results. In other words, this com-
parison presented here obviously verifies the correctness 
of our model in this paper. (2) The type curve with mere 
permeability change is sim

ultaneous change of permeability and porosity, which 
is in accordance with the experiments. This conclusion 
can be explained that the porosity has little influence on 
the type curve. (3) If the pressure-sensitive effect is con-
sidered only, there will be certain difference between the 
type curves for the pressure-sensitive reservoir and that 
of the non-pressure-sensitive reservoir. These conclu-
sions coincide with the present qualitative understanding 
and the results are quantitatively expressed in this paper. 

3.2  Type curves for the closed circle pressure-sensi-    
tive fractured reservoir 

Based on the transient flow model for the pressure-sen- 
sitive fractured reservoir, the type curves with perme-
ability modulus change in the closed circle boundary 
condition are got, shown as Figure 5, from which, we 
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transition section gradually reduces. 

the con-
ve

   

he pressure derivative 
of

      

 

can see that: (1) With the increase of the permeability (1) Pure wellbore storage section: Both the slopes of 
the pressure and the pressure derivative curve are equal 
to 1.0. 

modulus, the pressure curve of the pressure-sensitive 
reservoir deviates upwards from that of non-pressure- 
sensitive reservoir, while the pressure derivative curve 
of the pressure-sensitive reservoir deviates downwards 
from that of non-pressure-sensitive reservoir. (2) With 
the increase of the pressure-sensitive fractured reservoir 
permeability modulus, the distance between the pressure 
curve and the pressure derivative curve increase. Thus, it 
can be inferred that the skin factor will be not correctly 
explained by conventional well test interpretation soft-
ware. (3) With the increase of the permeability modulus, 
the effect on the boundary reflect time is not obvious. 

In addition, from the pressure derivative curve in 
Figure 5, we can see that the type curves can be divided 
into 5 sections: 

(2) The after flow and pressure-sensitive effect inter-
action section: With the permeability modulus increase, 
the time of 

(3) Dual-porosity characteristics reflection section: 
There is an almost symmetrical hollow region in the 
pressure derivative curve, which is the same as 

ntional dual-porosity reservoir. 
(4) The infinite radial flow section: The pressure de-  

rivative curve is very different from that of conventional 
infinite homogeneous reservoir. T

 conventional infinite homogeneous reservoir is equal 
to constant 0.5, but that of the pressure-sensitive reser- 

 
 

Figure 4  The type curves of the infinite pressure-sensitive fractured reservoir. 

 
 

le pressure-sensitive reservoir (CDE2S = 1, ω = 0.01, λ = 0.01). Figure 5  The type curves of pressure and pressure derivative for the closed circ
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voir is equal to a constant which is smaller than 0.5. 
(5) Outer boundary reflecting section: For closed cir-    

cle reservoir, the pressure derivative curve upwarps 
when the pressure wave reaches the outer boundary, and 
the pressure curve and its derivative curve merge into a 
straight line with the slope of 1.0. 

3.3  Type curves for the pressure-sensitive fractured 
reservoir with linear combination quadrilateral 
boundaries 

In order to verify the correctness of mathematical model 
and the practicality of calculation method, the type 
curves of the pressure-sensitive fractured reservoir with 
linear combination quadrilateral outer boundaries are 
calculated in this paper. In the calculating region, there 
are three 

ure keeps steady, but 

itive reservoir. 

closed linear boundaries and one pressure-fixed 
and boundary. Figure 6 shows the grids of the domain 

Figure 7 describes the type curves. Figure 7 shows that 
when the pressure wave reaches the closed boundaries, 
the pressure declines, but the pressure difference in-
creases and both pressure curve and pressure derivative 
curve go upwarps. And when the pressure wave reaches 
pressure-fixed boundary, the press
the pressure derivative decline. This conclusion is in 
accordance with the boundary reflection of the non- 
pressure-sens
 

 
 

Figure 6  The grids in the solution region. 
 

3.4  Simplified analysis of the type curves for the 
pressure-sensitive fractured reservoir 

 for the pressure-sensitive 
aper can be simplified as that 
ogenous sandstone reservoir. 
sults are somewhat universal. 

rves of pressure and pressure  

aged, it is only
pressure-sensitive c
mation is 5000 
proved very we

In addition, an
bility modulus
ctly applied to th
field applicati
predicted by us
perfectly agrees w

The transient flow model
fractured reservoir in this p
of pressure-sensitive hom
Therefore, the obtained re
The degenerate type cu

derivative are given in Figure 8. 

4  The field case of well test data analysis 
for the pressure-sensitive fractured reservoir 

In order to verify the correctness of mathematical model 
and the practicality of numerical method for the pres-
sure-sensitive fractured reservoir, some field test data in 
the high pressure deep wells are analyzed and good 
analysis results are got. These results have been used in 
the oilfield development plan’s design. Here, we show 
the application of the transient flow model for pres-
sure-sensitive fractured reservoir by one of the field 
cases. 

4.1  Introduction of one well in some oil field 

 m, 
belongs to the high-pressure ultra-deep well and is 

very difficult to test. It took 12 days to accomplish the 
well test to get the test data. The whole test history data 
is shown in Figure 9. 

4.2  Well test analysis results  

According to the well test analysis requirement, it is 
necessary to get correct analysis results for matching the 
double logarithm, semi-logarithm superposition and 
whole history all perfectly. Our analysis fitting graphs 
are presented in Figures 10－12. 

.3  Evaluation of the w

 a kind of fractured reservoir with some 
haracteristics as the production for-

m under ground. This conclusion is 
ll by the indoor core experiments. 

 important parameter, namely permea-          
, is obtained in this paper. It can be dire-          

e well productivity rate prediction. The 
on results show that the production rate 
ing the permeability modulus in our study 

ith the actual production situation. 

The well completed in the formation at depth of 5101
and 

4 ell test results  

The comparison between our analysis results and con-
ventional analysis results are shown in Table 1. Seen 
from the table, except the permeability has lager differ-
ence, the skin factor has the largest difference, which is 
in accordance with the result from above theoretical 
analysis. According to the field analysis, the skin factor 
of 63.46 expresses the formation damaged seriously. But 
the formation in this region actually has not been dam-

1082 LIU YueWu et al. Sci China Ser G-Phys Mech Astron | Jul. 2009 | vol. 52 | no. 7 | 1074-1085 

javascript:showjdsw('showjd_0','j_0')


 

 

eral boundaries (CDE2S = 1, ω = 0.05, λ = 0.05). 
 

ilat

 
Figure 7  The type curves of combination quadr       

 
 

homogenous sandstone reservoir (α = 0.00, CDE2S = 1). 

sis results Conventional analysis results 

Figure 8  The type curves for the pressure-sensitive 

 
Table 1  The comparative analysis of the well test results 

Parameter name Our analy

Flow coefficient (um2·m/mPa·s) 0.7925 2.0972 

Reservoir factor (um2·m) 0.

Reservoir permeability (um2) 14.

Reserve storage coef  

Cross flow coefficient 0.3× −3 / 

Permeability modulus (MPa−1) 0.01921 / 

Wellbore storage coefficient (m3/MPa) 8.291×10−3 1.597×10−6 

Skin factor −1.485 63.46 

Reservoir pressure (MPa) 105.2 105.063  

03065  

95×10−3 39.21×10−3 

ficient 0.06 / 

10
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Figure 9  The well test pressure and flow rate history. 

 

 
 

Figure 10  The double logarithm matching diagr
 

am. 

 
 

Figure 11  The semi-logarithm 
 

5  Conclusions 

he tr

superposition verification diagram. 

er has  T ansient flow model presented in this pap

 
 

Figure 12  The whole histor

the transient flow 
ed reservoir is 

erived. 
(3) Based on the unstructur of the research 

pplied, we calculate ellbore pressure 
curves for the pressure-sensitive fractured reservoir with 
different outer boundaries, such as infinite boundary, 
circle boundary and combined linear boundaries are 
calculated by using the finite element method. The 
characteristics of the type curves are comparatively 
analyzed. 

(4) The effects on the pressure curves cased by 
pressure sensitivity coefficient and the effective well-
bore radius combined parameter CDe2S are determined. 
The method for calculating the reservoir factor of the 
pressure-sensitive reservoir is introduced. 

 analyzing the well test data of a gas well in the 
perature and high pressure deep reservoir, w
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ow ed 

reservoir in this paper is verified. 
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