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Abstract A continuation method is applied to inves-
tigate the linear stability of the steady, axisymmetric
thermocapillary flows in liquid bridges. The method
is based upon an appropriate extended system of
perturbation equations depending on the nature of
transition of the basic flow. The dependence of the
critical Reynolds number and corresponding azimuthal
wavenumber on serval parameters is presented for both
cylindrical and non-cylindrical liquid bridges.
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Introduction

Thermocapillary flows refer to motion driven by
surface-tension gradients along the free surface. Liquid
bridge held between two solid, planar endwalls across
which a temperature difference is applied provides
a paradigm for the study of such flows owing to its
relevance to the float-zone crystal-growth technique.
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Considerable attention has been paid to determine
the stability boundaries of thermocapillary convection
in both cylindrical and non-cylindrical liquid bridges
(Wanschura et al. 1995; Nienhüser and Kuhlmann 2002;
Shevtsova 2005).

In this paper, instead of conducting time-dependent
simulation and directly computing the eigenvalues that
characterize a regular (stationary) or a Hopf (oscil-
latory) bifurcation, we used a continuation method
combined with finite-difference method to predict the
stability boundaries of the axisymmetric basic state in
liquid bridges for a wide range of parameters. The
essence of continuation method is to extend the system
of equations under investigation by adding an addi-
tional parameter and an additional equation so that the
combined system is non-singular at limit points where
the equations alone are singular (see for example,
Henry and Bergeon 2000).

The present paper is an extension of the previous
work by Chen et al. (1997) to the case of non-cylindrical
liquid bridges where the free-surface shape is deter-
mined by the volume of liquid and static pressure
difference. For cylindrical liquid bridges we report
an updated stability diagram including large-Prandtl-
number liquid bridges. For non-cylindrical liquid
bridges, a special effort is devoted to show the effect
of the relative volume of liquid on the stability of
thermocapillary flows.

Problem Formulation

We consider the flow of an incompressible Newtonian
fluid confined to a liquid bridge of length L held by
surface tension forces between two parallel, coaxial
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Fig. 1 Schematic of the
model system

solid rods of equal radii R (> L/2π). A temperature
difference is imposed over the liquid bridge by pre-
scribing Tu and Tl at the upper and lower disks re-
spectively (see Fig. 1). The liquid is a Newtonian fluid
with constant values of the viscosity μ, the reference
density ρ0, the specific heat cp, the thermal conductivity
κ , and the volume expansion coefficient β; α = κ/ρ0cp

is the thermal diffusivity, and ν = μ/ρ0 is the kinematic
viscosity. The surface tension on the free surface is
considered to be a linearly depend on the temperature

σ = σ0 − γ (T − T0), (1)

where σ0 is the mean surface tension at the reference
temperature T0 = 1

2 (Tl + Tu). For common liquids, we
have γ = − dσ

dT > 0, so that there is surface flow from
the hot end toward the cold end. Since the bulk fluids
are viscous, they are dragged along; bulk-fluid motion
results from free surface temperature gradients. The
liquid volume (= V) is bounded by a lateral-free sur-
face r = h(z), where z is the vertical coordinate. In the
limit of large mean surface tension, this free-surface
shape is independent of the flow and temperature fields
(see Nienhüser and Kuhlmann 2002).

We consider the fully three-dimensional system in
the usual cylindrical coordinate (r, φ, z) with origin
in the center of the bottom end face. Gravity acts
downward along the z-axis. The length (r, z), veloc-
ity vector �u = u�er + v�eφ + w�ez, pressure p, tempera-
ture difference T − T0, and time t are referred to

scales R, γΔT/μ, γΔT/R, ΔT = Tu − Tl and R2/ν,
respectively. As a result, there arise the following di-
mensionless groups:

Re = γΔT R
μν

, Pr = ν

α
, Gr = gβΔT R3

ν2

Γ = L
R

, Bi = �R
κ

, Bo = ρ0gL2

σ0
,

Here Re is the surface-tension Reynolds number, Pr
the Prandtl number, Gr the Grashof number, Γ the
aspect ratio, Bi the surface Biot number in which �

is the heat transfer coefficient and Bo the static Bond
number. The Marangoni number is Ma = RePr. The
relative volume of liquid is V = V/π R2L. Positive val-
ues of Re and Gr represent the system which is heated
from above, while negative ones correspond to the
system heated from below.

The governing equations for the flow and tempera-
ture fields in the liquid bridge are the Navier–Stokes,
the continuity and the energy equations, subject to the
Boussinesq approximation:

∂ �u
∂t

+ Re �u · ∇ �u = −∇ p + ∇2 �u + Gr
Re

θ �ez, (2)

∇ · �u = 0, (3)

Pr
(

∂θ

∂t
+ Re �u · ∇θ

)
= ∇2θ. (4)
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The boundary conditions at the rigid walls of constant
temperature are

�u = 0, θ = ∓1

2
, at z = 0, Γ (5)

At the free surface, r = h(z), the kinematic boundary,
tangential-stress and heat transfer between liquid zone
and surrounding gas are:

�n · �u = 0, (6)

�tz · (�S · �n) = −�tz · ∇θ, (7)

�tφ · (�S · �n) = −�tφ · ∇θ, (8)

�n · ∇θ = −Bi(θ − θa(z)). (9)

where �S = ∇�u + (∇�u)T is the viscous stress tensor in
non-dimensional form. θa(z) is the dimensionless am-
bient temperature. The vector �n denotes the outward-
directed normal vector of the free surface h(z), and the
vectors �tz and �tφ denote the unite vectors tangent to the
free surface in the (r, z)- and (r, φ)-plane, respectively
(see Nienhüser and Kuhlmann 2002).

In the limit of large mean surface tension σ0, the free-
surface shape is independent of the flow and temper-
ature fields. Thence at prescribed static Bond number
Bo, liquid bridge aspect ration Γ and liquid volume V
(or equivalently a contact angle), the static free-surface
shape h(z) can be obtained from the Young-Laplace
equation:

h′′

(1 + h′2)3/2
− 1

h(1 + h′2)1/2
+ Ps − Bo z = 0, (10)

where h′ = dh/dz. This second-order ordinary equa-
tion for h(z) and the constant Ps which is the dimen-
sionless static pressure jump is solved with following
three boundary conditions:

h(z = 0) = h(z = Γ ) = 1, (11)

V = 1

Γ

∫ Γ

0
h2(z)dz, (12)

or, equivalently,

h′(z = Γ ) = − tan(αh − π/2). (13)

Here αh is the hot-wall contact angle measured from
the rigid disk to the free surface.

Basic Flow

For small Reynolds number the flow in the liquid bridge
is steady and axisymmetric (∂t = ∂φ = v = 0) which can

be characterized as a single toroidal vortex in the (r,z)-
plane. The system of equations for the basic state,
denoted by �X(r, z) = (U, 0, W, P, Θ), is obtained from
Eqs. 2–9. For the sake of brevity, the details of this
system of equations are not given here, it suffices to
note that we used finite-difference method in the body-
fitted coordinates (ξ ,η)

ξ = r
h

, η = z (14)

which transform the original (curved) physical domain
(r,z) onto a rectangular domain (ξ ,η). Readers are
refereed to Shevtsova (2005) for the details of the trans-
formed equations in the curvilinear coordinates (ξ ,η).

The transformed system of equations and boundary
conditions are discretized by second-order finite differ-
ences on a non-uniform mesh consisting of Nr × Nz

points. The resulting nonlinear difference equations
can be written, in the vector form,

f ( �X; λ, �μ) = 0, (15)

in which λ is a specific parameter (Re in the present
case) and �μ is the vector of the remaining parameters
of the problem (Pr, Gr, Bi, Γ, Bo and V or αh). These
parameters are introduced for simplifying the notation
in the analysis below. The nonlinear equations (15) are
solved by successive Newton–Raphson iteration:

f �X( �Xn; λ, �μ)d �Xn = − f ( �Xn; λ, �μ), (16)

�Xn+1 = �Xn + d �Xn. (17)

where f �X = ∂ f /∂ �X is the Jacobian matrix. These it-
erations continue until the largest variation (relative)
of any U , W, P and Θ is less than some convergence
tolerance which we set to 10−6. Depending on the
parameters of the problem, 4 to 8 iterations can be
required provided that initial guess is close enough
to the solution. For an appropriate ordering of the
grid points and unknowns, the Jacobian matrix f �X
has banded structure with band width, say Nb , being
approximatively equal to min(8Nr, 8Nz). The required
band LU factorization and triangular solvers at each
Newton–Raphson iteration in (16) are performed by
using the DGBFA/DGBSL sequence in the LINPACK
subroutine library.

Linear Stability Analysis

The linear stability of the basic state �X is examined by
considering small three-dimensional perturbations, de-
noted by �x′ = { �u′(r, φ, z, t), p′(r, φ, z), θ ′(r, φ, z)}, which
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satisfies the linearized perturbation equations (see
Chen et al. 1997; Nienhüser and Kuhlmann 2002). Since
the basic state is axisymmetric, we can expand the
perturbed velocity, pressure and temperature fields in
the form

⎡
⎣

�u′
p′
θ ′

⎤
⎦ =

+∞∑
m=−∞

⎡
⎣ �u(m)(r, z)

p(m)(r, z)

θ(m)(r, z)

⎤
⎦ eσ (m)t+ jmφ, (18)

where j = √−1, m is the (integer) azimuthal wave num-
ber, and σ (m)(= σr + jω) is the complex growth rate of
the corresponding mode perturbation.

Let �x = (u, jv, w, p, θ)T denote a vector of length of
4N + M, then, the discrete form of the linearized equa-
tions can be written as a generalized matrix eigenvalue
problem of the form

g(�x, �X, Re, m, �μ) ≡ A�x = σ B�x, (19)

where A ≡ g�x is a real-valued, non-symmetric matrix,
and B is a real-valued, diagonal matrix. The Jacobian
matrix g�x is not the same as for the stationary solution
f �X except for the case of m = 0, i.e. two-dimensional
perturbations. In such case we make no difference
between two Jacobian matrices and either of them can
be used in the analysis.

The condition that max(σr) = 0 defines a neutral
curve Re(m). The minimum of Re(m) over all m gives
a critical value of Re, Rec and corresponding values of
m and ω, mc and ωc.

Extended Systems for Locating Bifurcation Points

The general procedure we adopt for locating bifur-
cation points of the basic state is to solve the equa-
tions simultaneously with the conditions satisfied at
the bifurcation point. We describe below two appro-
priate extended systems to locate, respectively, regular
(stationary) bifurcations and Hopf (oscillatory) bifur-
cations. The resulting nonlinear algebraic set of equa-
tions are solved by Newton’s method to give both the
solution at the bifurcation point and the value of the
bifurcation parameter.

In order to have a good initial guess for the lead-
ing eigenvalues and corresponding eigenvectors of the
problem (19), we use the Arnoldi-based scheme which
yields iterative approximations to several eigenpairs
simultaneously, rather than once a time as in the usual
power or inverse iteration methods.

Stationary Bifurcation Points

The system of equations we use to calculate a stationary
bifurcation point is the one proposed by Moore and
Spence (1980) for locating limit points:

f ( �X, λ, �μ) = 0, (20)

g(�x, �X, λ, m, �μ) = 0, (21)

(�ek)
T · �x = 1, (22)

where the last equation defines a normalization condi-
tion of the eigenvector �x (note that �x ∈ �R), �ek is the
unit vector with components (�ek)i = δik. We solve for
the basic state �X, for the bifurcating eigenvector �x and
for the critical value of one specific parameter λ (Re
in the present case), at the prescribed values of all the
other parameters m and �μ.

The system of Eqs. 20–22 can be solved by the
quadratically convergent Newton iterations

⎛
⎝ f �X 0 f λ

g �X g�x gλ

0 �eT
k 0

⎞
⎠

⎛
⎝ d �Xn

d�xn

dλn

⎞
⎠ = −

⎛
⎝ f

g
0

⎞
⎠ , (23)

starting from a suitable initial guess, until the desired
convergence is satisfied. An efficient numerical proce-
dure for (23) is to first solve �α0 and �β0 from

f �X �α0 = − f ; f �X �β0 = − f λ, (24)

then we obtain a set of equations as follows

(
g�x gλ + g �X �β0

�eT
k 0

) (
d�xn

dλn

)
= −

(
g + g �X �α0

0

)
, (25)

Like the procedure (24), we solve �α1 and �β1 from

g�x �α1 = −(g + g �X �α0); g�x �β1 = −(gλ + g �X �β0), (26)

Finally, the required solution updates are easily ob-
tained from

dλn = −(�ek)
T · �α1/(�ek)

T · �β1; (27)

d �Xn = �α0 + �β0dλn; d�xn = �α1 + �β1dλn. (28)

Hopf Bifurcation Points

The prediction of Hopf bifurcations is more compli-
cated than stationary bifurcations as described above.
At the Hopf bifurcation point a complex-conjugate
pair of eigenvalues with non-zero imaginary parts, ± jω,
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crosses the imaginary axis. That bifurcation is the solu-
tion of the following extended system (Griewank and
Reddien 1983) of equations:

f ( �X, λ, �μ) = 0, (29)

g(�x, �X, λ, m, �μ) = jωB�x, (30)

(�ek + j�ek)
T · �x = j, (31)

where the last equation in the set is a normaliza-
tion condition for the eigenvector �x (note that �x ∈ �C).
We solve for the basic state �X, for the bifurcating
eigenvector �x, for the angular frequency ω and the
critical value of the bifurcation parameter λ, i.e. Re, at
the fixed values of all the other parameters m and �μ.

The system of Eqs. 29–31 is solved by Newton–
Raphson iterations from a good enough initial guess.
The solution procedure is similar to that described in
Section Stationary Bifurcation Points.

Results and Discussion

We present our numerical results both for cylindri-
cal liquid bridges (V = 1, Bo = Gr = 0) and non-
cylindrical liquid bridges (V 
= 1, Bo = Gr = 0) in the
case of an adiabatic free surface (Bi = 0). Attention is
focused on the parametric dependence of the critical
Reynolds number Rec upon such as the Prandtl number
Pr, the aspect ratio Γ and the relative liquid-bridge-
volume V .

Cylindrical Liquid Bridge

The principal results of the calculations of stability
diagram of the thermocapillary flows in a cylindrical
liquid bridge for Γ = 1, are plotted in Fig. 2. A steady,
axisymmetric (2D) thermocapillary convection loses its
stability to a steady asymmetric (3D) flow when Pr <

0.06, the most unstable mode has azimuthal wavenum-
ber m = 2. When Pr goes to zero, the critical Reynolds
number Rec remains finite and tends to be a constant
indicating the instability is hydrodynamic in origin that
breaks the azimuthal symmetry of the basic state. The
critical Reynolds number Rec is strongly dependent on
the aspect ratio Γ , we obtained the following relation-
ship for small Pr

Rec = 2160Γ −5/4. (32)

When Pr ≥ 0.1, the instability of the basic state is
oscillatory with Hopf frequency ω. Two different crit-
ical modes were found: m = 2 for Pr ≥ 0.9 and m = 3
for 0.1 ≤ Pr ≤ 0.9. The Hopf frequency ω has the same
dependence on the Prandtl number as critical Reynolds
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Fig. 2 Stability diagram of the thermocapillary flows in a cylin-
drical liquid bridge for Γ = 1, Bi = 0 and Gr = 0

number, i.e., it decreases with increasing Prandtl num-
ber. Previous studies have shown that the large-Prandtl-
number instability is due to the surface hydrothermal
wave traveling azimuthally, and that there is non axial
component of this hydrothermal wave because of the
presence of endwalls. The phase speed c of the critical
disturbances can be obtained from the computed ω in
such a way: c = ω/m. The dependence of c as function
of Pr is presented in Fig. 3, showing two different
slopes when the most unstable mode changes from
m = 3 to m = 2, but the dependence of c on Pr is less

Pr
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Fig. 3 Phase speed c (= ω/m) of the disturbances at bifurcation
point as function of Prandtl number Pr in a cylindrical liquid
bridge for Γ = 1, Bi = 0 and Gr = 0
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pronounced than the dependence of ω on Pr since the
correction by m.

In the range of intermediate Pr (0.06 < Pr < 0.1),
the basic flow exhibits a striking stability property. This
feature is due to a competition between two different
underlying instability mechanisms and a change of the
most unstable mode (see also Levenstam et al. 2001).

More recently, Xun et al. (2008) performed the
calculations of stability in the case of large Prandtl
numbers (4 ≤ Pr ≤ 50). They found that for liquid
bridge with unit aspect ratio the stability boundary
exhibits different behaviors in different ranges of large
Prandtl numbers: an unexpected increase of Rec around
8 < Pr < 22 accompanied with a change of critical az-
imuthal wavenumber at m ≈ 22. From the computed
surface temperature gradient at bifurcation point, they
concluded that the dependence of Rec on Pr over
this Pr range is due to the development of thermal
boundary layers at endwalls of liquid bridge, and that
the behavior Rec and m relies more on the effective part
of liquid bridge beyond the boundary layers. However,
it should be pointed out that the critical Marangoni
(Mac = Rec Pr) increases monotonously with increas-
ing Prandtl number but with different slopes for differ-
ent m. In this sense, Marangoni number would be more
appropriate dimensionless parameter than Reynolds
number to characterize the onset of oscillatory thermo-
capillary flows for fluids with large Pr.

Non-Cylindrical Liquid Bridge

The validity of the calculated Rec in the case of non-
cylindrical liquid bridge was first confirmed by compar-
ison with the Benchmark (Shevtsova 2005): for example
Test case 3.4 (Pr = 0.01, Gr = 0, Γ = 1.2 and αh = 60),
we obtained Rec = 1857, compared with Benchmark of
1863; the deviation being less than 0.5%.

We present here only the numerical results for a
small Pr liquid (Pr = 0.01). Attention is paid to de-
termine the influence of the free-surface shape on the
critical Reynolds numbers by varying the relative
liquid-bridge-volume. As in cylindrical liquid bridge,
the first instability of the basic flow, in the range of
relative liquid-bridge-volume V investigated, i.e., 0.6 ≤
V ≤ 1.4, is stationary. The neutral Reynolds number
Rec(m) as function of V is presented in Table 1. Listed
are also the contact angles αh computed from Eq. 13.
It can be seen that the most unstable mode is mc =
2 for moderately concave surface shapes (V < 1) as
well as for convex surface shapes (V > 1). The critical
wavenumber becomes mc = 1 for slender liquid bridges
(V < 0.7). A plausible explanation for the decrease
in the critical azimuthal wavenumber is through an

Table 1 Neutral Reynolds numbers Rec(m) as function of the
volume fraction V for Pr = 0.01

V Rec(m) m αh V Rec(m) m αh

0.6 2783 1 30 1.1 2080 2 106
3412 2

0.7 2475 1 42 1.2 2371 2 121
2404 2

0.8 2008 2 57 1.3 2731 2 134
0.9 1868 2 73 1.4 3131 2 145
1 1900 2 106

The contact angles αh (in deg.) are computed from Eq. 13. The
parameters are Γ = 1, Bo = 0 and Gr = 0

increase in the effective aspect ratio Γ ′. Indeed, the
relationship between the the aspect ratio Γ and the
critical azimuthal wavenumber mc holds for cylindrical
liquid bridges (Chen et al. 1997):

1.6 ≤ mcΓ ≤ 3.2.

If we substitute Γ by Γ ′ and relate Γ ′ with V in a
reasonably way such that:

Γ ′ = Γ/
√
V,

then the product of the critical azimuthal wavenum-
ber mc with effective aspect ratio Γ ′, mcΓ

′, satisfies
still the aforementioned relationship for non-cylindrical
bridges.

The influence of the relative volume on the
critical Reynolds numbers Rec and corresponding
azimuthal wavenumber mc is plotted in Fig. 4. The crit-
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Fig. 4 Dependence of the critical Reynolds numbers Rec and
corresponding azimuthal wavenumber m for Pr = 0.01 on the
volume fractions V for non-cylindrical liquid bridges. Γ = 1,
Bi = 0 and Gr = 0
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ical Reynolds numbers are found to take larger values
whatever the free-surface shape becomes more concave
or more convex. A minimum of Rec(V) is found for
a slightly concave free-surface shape (V ≈ 0.9) with a
contact angle (α ≈ 70◦), this indicates that a straight
cylindrical liquid bridge is not the most stable config-
uration in terms of hydrodynamic stability property.

Conclusions

We have presented a continuation method combined
with finite-difference method to investigate the linear
stability of the two-dimensional steady flow in thermo-
capillary liquid bridges with static free-surface shape.
The key idea was to solve an appropriate extended sys-
tem of perturbation equations, depending on the nature
of bifurcation of the basic state. The critical Reynolds
numbers and corresponding azimuthal wavenumbers
were obtained for a wide range of parameters.

Two distinct instabilities of the two-dimensional
flows exists both in cylindrical and non-cylindrical liq-
uid bridges. For small Prandtl numbers the instabil-
ity is stationary, whereas it is oscillatory for large
Prandtl numbers with non-zero Hopf frequency. The
latter takes the form of a pair of hydrothermal waves
traveling azimuthally. The phase speed of these waves
decreases when the Prandtl number is increased.

At a small Prandtl number (Pr = 0.01), we found
a decrease in the critical azimuthal mode when the
liquid bridge becomes more slender. This behavior was
interpreted as an increase in the effective aspect ratio
which was proposed to be scaled with the inverse of
the root of the relative volume. The critical Reynolds

number takes a smooth minimum near a volume
V ≈ 0.9.

The present numerical method is robust, particularly
for small-Prandtl-number liquid bridges, and computa-
tionally very efficient. The code can be run on a usual
PC with typical CPU time of a few minutes, depending
on numerical resolution. It offers the perspective of
further parametric study of the stability problem of
thermal convection in liquid bridges with relative high
resolution.
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