
A block SPP algorithm for
multidimensional tridiagonal equations
with optimal message vector length*

Hong Guoa, Zhao-Hua Yinb and Li Yuana

a LSEC and Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics & Systems Science, Chinese Academy of

Sciences, Beijing 100190, P.R. China
b National Microgravity Laboratory, Institute of Mechanics, Chinese

Academy of Sciences, Beijing 100190, P.R. China

Received 02 November 2007; Accepted 13 August 2008

ABSTRACT
A parallel strategy for solving multidimensional tridiagonal equations is
investigated in this paper. We present in detail an improved version of single
parallel partition (SPP) algorithm in conjunction with message vectorization,
which aggregates several communication messages into one to reduce the
communication cost. We show the resulting block SPP can achieve good
speedup for a wide range of message vector length (MVL), especially when
the number of grid points in the divided direction is large. Instead of only
using the largest possible MVL, we adopt numerical tests and modeling
analysis to determine an optimal MVL so that significant improvement in
speedup can be obtained.

Key words: Tridiagonal equation, Single Parallel Partition, message
vectorization, message vector length.

1. INTRODUCTION
The system of linear tridiagonal equations plays an important role in
computational sciences. Many parallel strategies can be used together with
serial algorithms for solving tridiagonal equations in multidimensions, e.g. the
transpose strategy [1] and the pipelined method [2]. Moreover, some

Journal of Algorithms & Computational Technology Vol. 3 No. 2 229

*Email address: guoh@lsec.cc.ac.cn (Hong Guo), zhaohua.yin@imech.ac.cn (Zhao-hua Yin),
lyuan@lsec.cc.ac.cn (Li Yuan).

optimization techniques like message vectorization [3, 4] can also be used
together with direct parallel algorithms to solve multidimensional tridiagonal
equations.

The first parallel algorithm for solving a tridiagonal system referred to as
cyclic reduction was presented by Hockney in 1965 [5]. Stone introduced his
recursive doubling algorithm in 1973 [6]. Among other parallel tridiagonal
solvers, most are build on partitioning methods. One of them called P-scheme
is very attractive for solving a very large system on a parallel computer [7].
However, the P-scheme is unstable when any off-diagonal element is close to
zero. Of other direct parallel algorithms based on partitioning methods, the
Single Parallel Partition (SPP) algorithm [8], which was modified from Wang’s
partition method [9], is also noticeable. Compared with other parallel
algorithms, the SPP algorithm leads to a big reduction in data transport without
any significant increase in the number of computational operations. However,
the SPP could not yet achieve satisfactory speedup relative to the serial pursuit
method on a single processor. This is because the computational count of the
SPP is far more than that of the pursuit method.

When many unrelated (or, multidimensional) tridiagonal equations are to be
solved, the performance of many parallel algorithms mentioned above can be
improved more or less with the idea of message vectorization, which aggregates
several data sending instead of “one by one” sending. In Ref.[10], Wakatani
combined message vectorization with his parallel tridiagonal solver, the
P-scheme, to solve two-dimensional ADI equations with a wide range of
problem sizes, and super-linear speedup was observed when the size of the
problem was 16386 × 16386.

Although message vectorization has proved useful when applied to the
P-scheme, to the best knowledge of us, there are yet efforts so far to combine
message vectorization with the SPP algorithm. In this paper, we combine
message vectorization with the SPP. Section 2 briefly describes the original SPP
algorithm, and its computational complexity is also presented. In section 3, we
firstly provide the implementation of SPP with message vectorization, then
present description of the resulting block SPP algorithm, and then analyze and
test its parallel efficiency and performance on a parallel computer. We have
found the best speedup does not correspond to the maximum MVL, and
the block SPP algorithm performs well in high dimensional problems when the
number of grid points in the divided direction is large enough. Conclusions are
given finally.

230 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

2. THE ORIGINAL SPP ALGORITHM
2.1. A Brief Description of SPP
We consider a tridiagonal system of equations of order n:

(1)

and we restrict to the situation where there exists a nonsingular coefficient
matrix A. The matrix A is subdivided in p (the number of processors available)
groups of k rows, and we assume n = p × k. All processors have a local
memory and the data have been spread over the local memories. The local
memory of each processor contains only matrix- and vector-elements of k rows
of the i th group.

SPP algorithm can be described as follows:
1. Each processor (denote as N0, N1, …, Np –1) reads its own data;
2. For N0, reduce d1 to 1, then eliminate a2, then reduce d2 to 1, and go on

until ai, i = 2, …, k are all eliminated;
For Np–1, reduce dn to 1, then eliminate cn–1, then reduce dn–1 to 1, and
go on until ci, i = n – k + 1, …, n are all eliminated;
For Ni, i = 1, …, p – 2, first do the reduction as N0, after all aik+j, j = 1,
…, k are eliminated, do the reduction as Np–1, until cik+j , j = 1, …, k
are all eliminated;

3. For Np –1, send a
(p−1)k+1 and b

(p−1)k+1 to Np –2;
For Ni, i = p – 2, …, 1, receive elements sent from Ni +1, eliminate
a

(i+1)k +1 on Ni, reduce the resulting d
(i+1)k +1 to 1 using the elements of

(i + 1)k th line, and then eliminate cik +1 on the first line. Send the new
aik+1 and bik +1 to Ni –1;
For N0, once receiving element ak +1 sent from N1, eliminate ak +1 on
N0, and then reduce dk +1 to 1 and eliminate ck . After the
communication of data, eliminate ci left on N1, …, Np –2;

4. For N0, send bk to N1;
For Ni , i = 1, …, p – 2, receive elements sent from Ni –1, then eliminate
a

(i+1)k, and then send b
(i+1)k to Ni +1;

For Np –1, receive elements sent from Np –2, and then eliminate a
(p–1)k +1.

Ax

d c
a d c

a d c
a d

n n n

n n

=







1 1

2 2 2

1 1 1

O O O

– – –













x
x

x
x
n

n

1

2

1

M

–








=







b
b

b
b
n

n

1

2

1

M

–









=b,

Journal of Algorithms & Computational Technology Vol. 3 No. 2 231

5. When communications are completed, eliminate the nondiagonal
elements remained on each processor. bi, i = 1, …, n, are the answers
to eqn (1).

Here, it should be noted that computation in step 2 can be fully parallelized
on p processors.

2.2. Computation and Communication Counts
The total time (Tsum) for each processor can be expressed as

Tsum = Tcomp + Tcomm = Tcomp + Tsendrecv + Tdelay, (2)

where Tcomp is the sum of the computation time and Tcomm the communication
time. Tcomm can be divided into two parts: transmission time (Tsendrecv) and
latency time (Tdelay) (e.g. see [11]). According to [8], we can obtain the total
time on multiprocessors for SPP:

(3)

Here, tc is the per-element computational time in a single processor, tsendrecv
is the time to transmit an element between processors, and tdelay is the latency
time for message passing.

According to [8], SPP has operation counts of O(n) but the actual counts
are smaller than most earlier parallel tridiagonal algorithms such as the
cyclic reduction (O(n log n))[5]. The communication times between
processors in the Cyclic Reduction are 2 log n, while in SPP they are 2(p – 1).
Therefore, SPP is more suitable for coarse-grained parallel computation,
where p << n.

Fig. 1 shows speedups of SPP and the Cyclic Reduction for solving Eq. (1).
The speedup factor is relative to the computing time of the pursuit method
on a single processor. We can see SPP has larger speedups than the Cyclic
Reduction.

It should be noted that the total time for the pursuit method on one computer is

Tpurs = (8n − 7)tc. (4)

It is clear that although the operation counts of SPP are slightly smaller than
those of other algorithms such as the P-scheme [7], they are still larger than
those in pursuit method. It is difficult to reduce the computation time of SPP, so
the only way to make SPP efficient is to lower the communication cost.

T n
p

n
p

t p tspp c sendrec= −








 + −21 26 6()

2
1 vv delayp t p+ − >4()1 1, .

232 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

3. THE BLOCK SPP ALGORITHM
In this section, we will try to use both modeling analysis and real runs on
parallel computers to reduce Tcomm on multidimensional tridiagonal systems.
On modern parallel computers, Tsendrecv is generally expected to be very low
and Tdelay should be reduced to make SPP efficient.

3.1. Message Vectorization
For multidimensional tridiagonal systems, SPP can be applied aggregately to
several data instead of the “one by one” approach. Several data sent in one time
can reduce the frequency for message passing, and the latency cost can be reduced
dramatically. By aggregating m data into one message, the communication cost is
reduced to tdelay + mtsendrecv instead of m(tdelay + tsendrecv) [10]. In this paper, we
denote SPP with message vectorization as the block SPP algorithm.

Without losing generality, we assume that only one dimension of arrays is
distributed among processors, and the SPP scheme can be implemented in the
divided dimension. We take three dimensional case as example, and let (idm, jdm,

kdm) denote the number of points in x, y and z coordinate directions,
respectively. If x direction of the grid is divided across the number of

Journal of Algorithms & Computational Technology Vol. 3 No. 2 233

2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of processors

S
pe

ed
up

SPP 16384
SPP 65536
SPP 262144
CR 16384
CR 65536
CR 262144

Figure 1. Speedups of the SPP and the cyclic reduction with varying system size n
for Eq.(1).

processors, the size of message transmitted from one processor to another in
one communication (i.e. MVL) can be arranged from 1 to jdm × kdm.

3.2. Description of Block SPP
In the present program structure of the block SPP, we assume that the x
direction of the grid is evenly divided by p processors. For simplicity, here we
use a 2D problem to present the block SPP algorithm.

Denote MVL as m. For 1 ≤ m ≤ jdm and idm = p × k, the process of the
block SPP is

for L = 1, …, do

for J = m(L − 1) + 1, …, mL do

{{

i = 0, …, p − 2

i = 0, …, p − 2

i = 0, …, p − 2

for j = 2, …, k do

{

dfik +j ,J ← dik +j ,J − gik +j − 1,J × aik +j ,J, i = 0, …, p − 2

i = 0, …, p − 2

i = 0, …, p − 2

i = 0, …, p − 2

}

i = p − 1

i = 1, …, p − 2f f
dik k J

ik k J

ik k J
+

+

+

←,
,

,

,

f a
dik k J

ik k J

ik k J
+

+

+

←,
,

,

,

f
f a

dfik j J
ik j J ik j J

ik j J
+

+ − +

+

←
− ×

,
, ,

,

,1

b
b b a

dfik j J
ik j J ik j J ik j J

ik j J
+

+ + − +

+

←
− ×

,
, , ,

,

,1

g
c
dfik j J

ik j J

ik j J
+

+

+

←,
,

,

,

f a
dik J

ik J

ik J
+

+

+

←1
1

1
,

,

,

,

b b
dik J

ik J

ik J
+

+

+

←1
1

1
,

,

,

,

g c
dik J

ik J

ik J
+

+

+

←1
1

1
,

,

,

,

j

m
dm

234 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

i = 1, …, p − 1

i = 1, …, p − 2

for j = k − 1, …, 1 do

{

dfik +j ,J ← dik +j ,J − cik +j ,J × fik +j +1,J, i = p − 1

i = p − 1

i = p − 1

fik +j ,J ← fik +j ,J − fik +j +1,J × gik +j ,J, i = 1, …, p − 2

bik +j ,J ← bik +j ,J − bik +j +1,J × gik +j ,J, i = 1, …, p − 2

gik +j ,J ← −gik +j ,J × gik +j +1,J, i = 1, …, p − 2

}

}

do the latter from Np–1 to N0 one by one

{

Recv f
(i+1)k +1,J, b(i+1)k +1,J, from Ni+1,

J = m(L − 1) + 1, …, mL; i = p − 2, …, 0

for J = m(L − 1) + 1, …, mL do

{

df
(i +1)k +1,J ← 1 − f

(i +1)k +1,J × g
(i +1)k ,J, i = p − 2, …, 0

i = p − 2, …, 0

i = p − 2, …, 1

bi k +1,J ← bi k +1,J − b
(i +1)k +1,J × gi k +1,J, i = p − 2, …, 1

fi k +1,J ← fi k +1,J − f
(i +1)k +1,J × gi k +1,J, i = p − 2, …, 1

f
f f

dfi k J
i k J i k J

i k
()

() ()

()

+ +
+ + +

+ +

←
− ×

1 1
1 1 1

1
,

, ,

11,

,
J

b
b b f

i k J
i k J i k J i k

()

() () ()

+ +
+ + + + +←

− ×
1 1

1 1 1 1 1
,

, , ,,

,

,J

i k Jdf()+ +1 1

b
b b g

dfik j J
ik j J ik j J ik j J

ik j J
+

+ + + +

+

←
− ×

,
, , ,

,

,1

f
a
dfik j J

ik j J

ik j J
+

+

+

←,
,

,

,

g g
dik k J

ik k J

ik k J
+

+

+

←,
,

,

,

b b
dik k J

ik k J

ik k J
+

+

+

←,
,

,

,

Journal of Algorithms & Computational Technology Vol. 3 No. 2 235

236 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

bk ,J ← bk ,J − bk +1,J × gk ,J, i = 0

}

Send fik +1,J, bik +1,J to Ni − 1,

J = m(L − 1) + 1, …, mL; i = p − 1, …, 1

for J = m(L − 1) + 1, …, mL do

for j = 2, …, k do
{{

bi k +j,J ← bi k +j,J − b
(i +1)k +j,J × gk +j,J , i = 1, …, p − 2

fi k +j,J ← fi k +j,J − f
(i +1)k +j,J × gk +j,J , i = 1, …, p − 2

}}

}

do the latter from N0 to Np–1 one by one

{

Recv b
(i+1)k +1,J from Ni+1,

J = m(L − 1) + 1, …, mL; i = 1, …, p − 1

for J = m(L − 1) + 1, …, mL do

{

b
(i +1)k ,J ← b

(i +1)k ,J − bik,J × f
(i +1)k ,J, i = 1, …, p − 2

}

Send b
(i +1)k ,J to Ni + 1,

J = m(L − 1) + 1, …, mL; i = 0, …, p − 2

}

for J = m(L − 1) + 1, …, mL do

for j = 1, …, k − 1 do
{{

bi k +j,J ← bi k +j,J − b
(i +1)k +j,J × fik+j,J , i = 1, …, p − 2

}}

for J = m(L − 1) + 1, …, mL do

Journal of Algorithms & Computational Technology Vol. 3 No. 2 237

for j = 1, …, k do
{{

bi k +j,J ← bi k +j,J − bi k +j−1,J × fik+j,J , i = p − 1

}}

}

It should be noted here that j and J correspond to different variables.
In the following, we will try to follow the structure of the program described

above to analyze the parallel characteristics of the block SPP. The performance
of a parallel algorithm is affected by many factors such that it is diffcult to
develop an exact model. What we do here is to simply employ an approximate
parallel model which has been used before in the block pipelined method [2].

The number of iterations for all the message vectors to be sent is

(5)

In the data propagation process of the block SPP algorithm, all processors
except the first one must wait for the data to be sent by the previous processor,
and the time for the last processor to receive the message will be the time for
the first processor to begin its p th iteration sending. The job is not done until all
processors finish their own iterations. Therefore, the whole number of sending
iterations is l + p − 1. Fig. 2 shows an example for l = p = 4. From Fig. 2 we
can see, the computation and data sending with the same number can be done
simultaneously.

In three dimensional cases, , we can get the total time used for

solving all jdm × kdm equations in x direction:

(6)

where

a = 6jdmkdm(p − 1)tsendrecv + ε(idm, p)jdmkdm(p − 1)tc,
b = 4tdelay,

T l p
j k

l
t t isum

dm dm
sendrecv delay dm= + − + +() (1 6 4 ε ,,p

j k
l

t

l
j k

l
i
p

i

dm dm
c

dm dm dm

)












+ −ε 21 26 ddm
cp
t

a l b l c

2



























= + × +/

l j k
m

dm dm=
×

l j
m
dm=

c = 6jdmkdmtsendrecv + 4(p − 1)tdelay

+ εidm jdmkdm tc + ε(idm, p) jdmkdmtc,

and ε(idm, p) < 1 is a factor representing the influence of the cache hit rate on
computational time. (idm, p) means ε depends on the the grid numbers, number
of processors and maybe other factors. It should be mentioned that ε(idm, p)

tc is an idle time term for waiting in receive for other processors to complete

their computations before they can send. While in Eq. (3) there is no such term
because the idle time is so small that can be neglected. When the grid number
is large enough, for the fixed p, ε(idm, p) will be larger when idm is larger. It is
easy to show there is an equilibrium l, which makes Tsum minimal:

(7)

Thus we have the optimal message vector length:

(8)
m j k b

a
k t

t i

opt dm dm

jdm dm delay

sendrecv

= ×

=
+
4

6((ε ddm c,p t p))())−1
.

l a
bopt = .

j k
l

dm dm

21 26
p p

−








2

238 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

y

x

4 5 6 7

3 4 5 6

2 3 4 5

1 2 3 4

p0 p1 p2 p3

Figure 2. Data sending iterations.

The idea of message vectorization gives people the feeling that larger MVL will
lead to better parallel efficiency since coarser grained parallelism may save the
latency time more. However, this is not always the case since normally we have

(9)

therefore 1 < mopt < jdmkdm.
Moreover, from Eq. (8), we can easily get the following conclusions:

1. For the fixed p and jdm × kdm, mopt is smaller when idm is larger.
2. For the fixed idm × jdm × kdm, mopt is smaller when p is larger.

These conclusion will be confirmed in the following numerical tests.

3.3. Experiment with the Block SPP and Optimal Message Vector Length in 3D
Tridiagonal Linear Systems
We firstly apply the block SPP algorithm presented in section 3.2 with MPI
FORTRAN on Lenovo DeepComp 1800 cluster, which has two Intel 2GHz
Xeon CPUs on each node of total 256 nodes and a 512KB cache size, connected
with Myrinet 2000 with 10 microseconds latency and 2Gbps bandwidth. The
block SPP is implemented in the x direction which has the largest number of
grid points. We measure the wall time for executing only the x direction sweep.
The speedup factor is the wall clock time of the pursuit method divided by that
of the block SPP algorithm in the same resolution. Three different grid
resolutions are used: 64 × 642, 256 × 642 and 1024 × 642, and the possible
values of MVL are from 1 to 4096.

Fig. 3 shows speedups for the 64 × 642 resolution. We can see that although
the speedup of the block SPP is better than the original SPP without any
message vectorization (or MVL equals to 1), it is far lower than the ideal
speedup for such small-scale problems. This is due to larger computational
complexities of the SPP compared with the pursuit method. For the second
resolution problem, the speedup is slightly better (Fig. 4).

The situation is quite different when idm is larger. For the 1024 × 642

problem (Fig. 5), we see super-linear speedups are achieved for MVL in the
range of 2 to 4096 on 2 processors and 64 to 256 on 4 processors, respectively.
When the size of array is large, the effect of the computational complexity is
counteracted by the improved cache hit rate. Although there is no super-linear
speedup achieved on 8 processors, the parallel efficiency of 1024 × 642 is much
better than that of the 256 × 642 problem.

4t
t i ,p t p

j kdelay

sendrecv dm c
dm dm

(())())6 1+ −
<

ε
,,

Journal of Algorithms & Computational Technology Vol. 3 No. 2 239

240 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

0

2

4

6

8

10

S
pe

ed
up

1 4 16 64 256 1024 4096
Message vector length

2 processors
4 processors
8 processors
Ideal speedup(2)
Ideal speedup(4)
Ideal speedup(8)

Figure 3. Speedups of the SPP with message vectorization for a 64 × 642 problem on
Lenovo DeepComp 1800 cluster.

0

2

4

6

8

10

S
pe

ed
up

1 4 16 64 256 1024 4096
Message vector length

2 processors
4 processors
8 processors
Ideal speedup(2)
Ideal speedup(4)
Ideal speedup(8)

Figure 4. Speedups of the SPP with message vectorization for a 256 × 642 problem on
Lenovo DeepComp 1800 cluster.

As predicted in the previous subsection, the maximum speedup does not
always occur at the largest MVL but rather at some intermediate MVL. In the
case of the 643 problem, the optimal MVL is 4096 only in the case of 2
processors. For 4 or 8 processors, the optimal MVL is 512. In the 256 × 642 and
1024 × 642 problems, the optimal MVL never occurs at the largest MVL.
Moreover, as predicted by our model, the value of optimal MVL decreases
when p becomes larger. In the case of 1024 × 642 problem, the value of optimal
MVL will be divided by four when p is doubled each time.

Table 1. shows the relation of p and optimal MVL for three resolutions, and we
can see that mopt becomes smaller when idm gets larger for fixed p and jdm × kdm.
Thus, conclusions drawn from Eq. (8) are verified.

Fig. 6 shows the optimal speedups of our code vs. CPU numbers on Lenovo
DeepComp 1800 cluster. The values adopted here are the speedup factors when
optimal MVL is applied for certain p and resolution. We see good parallel
efficiency is obtained with the optimal MVL for the 1024 × 642 resolution.

We also test the block SPP algorithm on SGI Origin3800 which has a large
cache (8M) and fast interconnect (0.5GB/s of data bandwidth). From Table 2,
we can observe the same varying trends as in Table 1. It is again show that our

Journal of Algorithms & Computational Technology Vol. 3 No. 2 241

0

2

4

6

8

10

S
pe

ed
up

1 4 16 64 256 1024 4096
Message vector length

2 processors
4 processors
8 processors
Ideal speedup(2)
Ideal speedup(4)
Ideal speedup(8)

Figure 5. Speedups of the SPP with message vectorization for a 1024 × 642 problem
on Lenovo DeepComp 1800 cluster.

242 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

Table 1. The values of optimal MVL for different resolutions and processor numbers on
Lenovo DeepComp 1800 cluster.

2 Processors 4 Processors 8 Processors

64 × 642 MVL = 4096 MVL = 512 MVL = 512

256 × 642 MVL = 2048 MVL = 512 MVL = 256

1024 × 642 MVL = 2048 MVL = 256 MVL = 64

S
pe

ed
up

Number of processors

64*64*64
256*64*64
1024*64*64
Ideal speedup

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Figure 6. Optimal Speedups on Lenovo DeepComp 1800 cluster.

Table 2. The values of optimal MVL for different resolutions and processor numbers on
SGI Origin 3800.

2 Processors 4 Processors 8 Processors

64 × 642 MVL = 4096 MVL = 1024 MVL = 512

256 × 642 MVL = 2048 MVL = 1024 MVL = 256

1024 × 642 MVL = 2048 MVL = 512 MVL = 128

analyzing model (Eq. (8)), although simple, is effective in explaining the
parallel behavior of our block SPP algorithm.

Fig. 7 also shows an optimal speedup figure as Fig. 6 on SGI Origin 3800.
The speedups are a little better than those on Lenovo DeepComp 1800 cluster
because of the large cache on SGI Origin 3800.

4. APPLICATION IN FLUID FLOW SIMULATION
We implement the present block SPP algorithm into a finite-difference flow
solver [12] where the artificial compressibility method is adopted to solve the 3D
incompressible Navier-Stokes equations. We compute the spherical Couette flow
between two concentric rotating spheres (the inner one rotating and the outer one
stationary). The resulting discretized linear algebraic equations are solved with a
diagonalized approximate factorization scheme, leading to a 3D ADI scheme
(see [12] for more details).

The computation adopts 360 × 153 × 34 grid points on 24 CPUs on Lenovo
DeepComp 1800 cluster. The block SPP is only implemented in the first dimension,
and the optimal MVL is found to be 153 by numerical test. Fig. 8 shows computed

Journal of Algorithms & Computational Technology Vol. 3 No. 2 243

S
pe

ed
up

Number of processors

64*64*64
256*64*64
1024*64*64
Ideal speedup

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Figure 7. Optimal Speedups on SGI Origin 3800.

spiral vortex patterns. Fig. 8(a) shows nine spiral vortices in the polar region and
two pairs of toroidal Taylor vortices near the equator, and Fig. 8(b) shows five spiral
vortices near the polar region and one pair of Taylor vortex near the equator. These
newly simulated flow patterns agree with experiments in Ref. [13].

5. CONCLUSIONS
In this paper, we have presented an improved version of the SPP algorithm with
message vectorization for solving multidimensional tridiagonal equations, and
demonstrated that good speedup for 3D problems can be obtained with the
block SPP algorithm. We have also presented a simple parallel model which can
forecast the optimal MVL. The use of optimal MVL leads to better speedup.
Because we only use the block SPP in the longest dimension of a 3D problem,
current work has good speedup only for small number of processors (e.g., less
than 24 CPUs). Other directions should be divided to reach good parallel
efficiency for larger-scale computations, and this will be done in the future.

ACKNOWLEDGEMENTS
This project is supported by NSF of China (G10502054, G10432060) and CAS
Innovation Program. LY is supported by NSF of China (G10476032,
G10531080).

REFERENCES
[1] Edison, T. W. and Erlebacher, G., Implementation of a fully-balanced periodic

tridiagonal solver on a parallel distributed memory architecture, Concurrency-pract
EX 7, 1995, 4, 273–302.

244 A block SPP algorithm for multidimensional tridiagonal equations
with optimal message vector length

(a) (b)

Figure 8. Isocontours of meridional velocity vm = 0.11 for the spherical Couette flow at
Re = 7200 (a) and Re = 8500 (b). The resolution is 360 × 153 × 34.

[2] Zhang, L. B., On pipelined computation of a set of recurrences on distributed
memory systems, Journal on Numerical Methods and Computer Applications, 1999,
3, 184–191.

[3] Balasundaram, V., Fox, G., Kennedy, K. and Kremer, U., An Interactive Environment
for Data Partitioning and Distribution, in: Walker, D.W. and Stout, Q.F. ed.,
Architectures, Software Tools and Other General Issues (Vol. 2): Proceedings of the
5th Distributed Memory Computing Conference, ACM Press, New York, 1990,
1160–1170.

[4] Hall, M. W., Hiranandani, S., Kennedy, K. and Tseng, C. W., Interprocedural
compilation of fortran d for mimd distributed-memory machines, in: Werner, R., ed.,
Conference on High Performance Networking and Computing: Proceedings of the
1992 ACM/IEEE conference on Supercomputing, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1992, 522–534.

[5] Hockney, R. W., A fast direct solution of poissons equation using fourier analysis,
Appendix Golub, G. H., Journal of the Association for Computing Machinery, 1965,
12, 95–113.

[6] Hockney, R. W., An effcient parallel algorithm for the solution of a tridiagonal linear
system of equations, Journal of the Association for Computing Machinery, 1973, 20,
27–38.

[7] Wakatani, A., A parallel scheme for solving a tridiagonal matrix with prepropagation,
LECTURE NOTES IN COMPUTER SCIENCE, 2003, 2840, 222–226.

[8] Wang, C. R., Wang, Z. H. and Yang, X. H., Computational Fluid Dynamics and Parallel
Algorithms, National University of Defence Technology Press, Changsha, CHINA,
2000.

[9] Wang, H. H., A Parallel Method for Tridiagonal Equations, ACM Transactions on
Mathematical Software, 1981, 7, 170–183.

[10] Wakatani, A., A parallel and scalable algorithm for ADI method with pre-propagation
and message vectorization, Parallel Computing, 2004, 30, 1345–1359.

[11] Yin, Z., Yuan, L. and Tang, T., A new parallel strategy for two-dimensional
incompressible flow simulations using pseudo-spectral methods, Journal of
Computational Physics, 2005, 210, 325–341.

[12] Yuan, L., Comparison of implicit multigrid schemes for three-dimensional
incompressible flows, Journal of Computational Physics, 2002, 177, 134–155.

[13] Wimmer, M., Experiments on a viscous fluid flow between concentric rotating
spheres, Journal of Fluid Mechanics, 1976, 78, 317–335.

Journal of Algorithms & Computational Technology Vol. 3 No. 2 245

