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Abstract The beam lattice-type models, such as the Euler–
Bernoulli (or Timoshenko) beam lattice and the generalized
beam (GB) lattice, have been proved very effective in simu-
lating failure processes in concrete and rock due to its sim-
plicity and easy implementation. However, these existing
lattice models only take into account tensile failures, so it
may be not applicable to simulation of failure behaviors under
compressive states. The main aim in this paper is to incorpo-
rate Mohr–Coulomb failure criterion, which is widely used in
many kinds of materials, into the GB lattice procedure. The
improved GB lattice procedure has the capability of modeling
both element failures and contact/separation of cracked ele-
ments. The numerical examples show its effectiveness in sim-
ulating compressive failures. Furthermore, the influences of
lateral confinement, friction angle, stiffness of loading platen,
inclusion of aggregates on failure processes are respectively
analyzed in detail.
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1 Introduction

1.1 Short review of lattice-type fracture models

Fracture processes in heterogeneous materials such as rock
and concrete are very difficult to interpret without appeal-
ing to their microstructures (see for instance [20,32]). As for
concrete, the beam lattice model allows for a straightforward
implementation of the heterogeneity of the three-phase sys-
tem: aggregate, matrix and interface between them [21,25–
28,34,35,40]. There are arguments on the inclusion of ele-
mental bending deformations. For example, Cusatis et al. [9]
pointed out that the bending of beams is not a characteristic
of the physical phenomena in the microstructure, and calcu-
lated the shear strain assuming that influence zones of nodes
are rigid. At the same time, however, they also considered the
nodal rotations, and their proposed elements (called connect-
ing struts in [9]) also behave somewhat like beam elements
[3,22]. Chang et al. [5] have also shown the close relation-
ship between a lattice of beams [17,34,35] and a network
of particles [1,4,13,42]. Furthermore, beam elements have
the following advantage: When elements are removed during
simulation a substantial part of the lattice may be connected
to the reminder of the lattice through a single element only.
When either truss elements or springs (with free rotations
at their ends) are used instead of beams, the computation
becomes unstable [21,25,36]. This instability disappears nat-
urally in beam lattices. The GB lattice model was recently
developed by [26–28] and is also a kind of beam lattices.
All investigations in this paper are based on the GB lattice
model.

Another attractive feature of the beam lattice models lies
in its ability to simulate different stress states on different ori-
entations around a single node without any increase of com-
putational effort. As shown in Fig. 1, node i has interactions
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Fig. 1 The typical sketch-map of lattice-type beam models

with the six nodes around it, and the six interactions are
represented by six GB elements numbered 1–6, respectively.
Under the external actions, the six GB elements have inde-
pendent deformations, indicating that node i is permitted
to deform differently along directions of the six GB ele-
ments. This feature gives the GB lattice a great advantage
over both the distinct element method (DEM), which takes
nodes (particles) as rigid [8,31], and the discontinuous defor-
mation analysis (DDA) theory, which assumes a constant
strain state throughout every block [6,37,38]. Due to the
same reason, beams of different orientations can be assigned
different material properties in order to simulate behaviors
of anisotropic materials. Additionally, the lattice-type beam
models (not truss-lattices) are naturally capable of repro-
ducing the size effect due to the change of the microstruc-
ture characteristic size [12,39]. Finally, Ostoja-Starzewski
[29,30] gave a more systematic and detailed review on both
basic theories and applications of lattice models.

The two-dimensional GB lattice model is employed in this
paper. Of course, the 3D model is a more realistic approxi-
mation of materials because the micro structure in concrete is
3D in nature. However, the calibration of elemental parame-
ters remains a crucial difficulty even though the difficulty in
computational effort can be overcome with the rapid devel-
opment of computer hardware. In fact, we are investigating
the 3D modeling which will be a future topic.

There are mainly two methods to take the material het-
erogeneity into consideration in the lattice-type beam model,
that is, direct projection [2,21,25,34], and indirect statistical
assignment of material properties [40,43]. The former can
obtain more realistic results than the latter, but leads to a

substantial increase of the computational effort [2,40]. To
solve the problem of computational effort, the generalized
beam (GB) lattice model was developed by [26–28]. The key
idea of GB lattice is the proposal of a kind of two-node and
three-segment element. When the computational effort is not
the choke point, GB lattice model can also simulate the geom-
etry of aggregates more accurately than the classical beam
lattice [28]. In this paper, in order to obtain more detailed
crack growth, numerical simulations are mainly conducted
based on the GB lattice model proposed in [28] where every
big aggregate is simulated by dozens of nodes, and only one
compressive example is done based on the lattice proposed
in [26,27] where every aggregate is represented by only one
node.

1.2 Extension of the GB lattice model to analyses
of compressive failures

One of big challenges for lattice-type beam models is simula-
tion of compressive failure processes. The most widely used
field of this kind of models is in the concrete/rock fracture
analyses. In practical engineering environments, these two
kinds of materials mainly serve under compressive states. In
the laboratory compressive tests, the vast majority of frac-
tured elements consist of the compression-induced tensile
cracks in the low loading stage, which are expected to be
captured by the beam lattice models with maximum effec-
tive tensile stress/strain criterion [21,26,40]. As is generally
known, however, the shearing deformation is dominant in
compressive failures and the corresponding fracture mecha-
nism is usually described as Mohr–Coulomb criterion, which
takes the shear deformation into consideration as well as the
normal deformation [3]. As a result, the existing beam lat-
tice models can not accurately simulate compressive failures.
This problem seriously shrinks their application range.

In this paper, we aim to extend the GB lattice model to
the compressive failure analysis. The Mohr–Coulomb cri-
terion is used as the strength criterion to judge successive
failures of critical elements. Due to the relatively low ten-
sion strength, the tension-cut-off Mohr–Coulomb curve is
adopted [3]. In compressive failures, the contact analysis
between crack surfaces is crucial. In this paper, under the
assumption of smooth-contact between contacting surfaces,
there only exist normal interactions, therefore two contact-
ing nodes (particles) can be represented by a link element
without tension resistance. Of course, the smooth contact
assumption may be too rough an approximation of reality,
but interlocking of crack surfaces happens frequently due
to the heterogeneous nature of concrete/rock in the meso-
level. The interlocking mechanism plays a more dominant
role than the friction in the sliding between crack surfaces,
so the numerical procedure in this paper is still effective to
simulate the essential features of compressive failures. It is
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notable that the algorithm in this paper can be also used in
the classical beam lattices.

The paper is structured as follows. The basic theory of the
GB lattice model is recalled in Sect. 2. The Mohr–Coulomb
criterion and the nonlinear algorithm are introduced in Sect. 3.
In Sect. 4, several numerical examples are given to verify the
effectiveness of the numerical procedure and to analyze influ-
ences of different factors on the fracture processes in concrete
subjected to compression. The paper ends with conclusions
in Sect. 5.

2 GB lattice model

In this model proposed by [26–28], a kind of two-node and
three-phase elements has been developed. Every element is
composed of three beams, which can be aggregate-phase,
matrix-phase or interface-phase independently (Fig. 2). As a
result, an aggregate can be simulated in principle by a single
node in the GB lattice, instead of 10–100 nodes in other
beam lattices [21,40]. Therefore the computational effort is
reduced greatly.

In the three-fragment GB element, every fragment is
regarded as a beam. These beams can be taken as Euler-
Bernoulli beams, Timoshenko beams or beams proposed by
[3]. No matter which beam theory is adopted, the beam stiff-
ness matrices have the following common expression (Fig. 3):
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where, F12 = {Q1 N1 M1 Q2 N2 M2}T and u12 = {u1 v1ϕ1

u2v2 ϕ2}T are the generalized force vector and the general-
ized displacement vector, respectively.

For the Euler–Bernoulli beam [12,29,30]:

M11 = 12E (b) I

h3 , M34 = 6E (b) I

h2 , M22 = E (b) A

h
,

M33 = 4E (b) I

h
, M36 = 2E (b) I

h
(2)

For the Timoshenko beam [19,44]:

M11 = 12E (b) I

(1 + b)h3 , M34 = 6E (b) I

(1 + b)h2 , M22 = E (b) A

h
,

M33 = E (b) I (4 + b)

h(1 + b)
, M36 = E (b) I (2 − b)

h(1 + b)
(3)

where, E (b) is the Young’s Modulus; t (b), h and l are
respectively the thickness, the span and the height of the
Timoshenko beam; A = t (b)l is the cross-section area;

Fig. 2 A GB lattice: a projection of particle structure onto the lattice;
b sketch-map of composition of an aggregate-interface-matrix element

Fig. 3 Kinematics and statics of a beam

I = t (b)l3
/

12 is the moment of inertia; b = aE (b)l2
/

G(b)h2

is the dimensionless parameter in Timoshenko beam theory;
G(b) = E (b)

/
2(1 + ν(b)) is the modulus of rigidity, where

ν(b) is the Poisson’s ratio.
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For the beam studied in [3]:
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h
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2
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h
,

M33 = G(b) Ah

4
+ E (b)′ I
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4
− E (b)′ I

h
(4)

where, E (b)′ = E (b)
/[1 − (ν(b))2].

The relationship between the lattice and its continuum
equivalent is obtained based on the equivalence of strain
energy stored in a unit cell of a lattice with its continuum
counterpart. The calibration results for a triangular GB lat-
tice are listed as follows.

For the Euler–Bernoulli beam [29]:
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Note that the Poisson’s ratio for Euler-Bernoulli beams is
always zero.

For the Timoshenko beam [26]:

E (b) = 2√
3

(
l

h

)−1 t

t (b)

E

1 − ν
,

ν(b) = 5(1 + ν)

11(1 − 3ν)
− 20

11

(
l

h

)−2

− 12

11
(6)

For the beam studied in [3]:

E (b) = E, ν(b) = ν (7)

The stiffness matrix of a GB element is expressed as functions
of material and geometry parameters of its three beams. Take
the element shown in Fig. 4 as an example, let R be the matrix

relating the displacement vector ui j =
{

ui vi ϕi u j v j ϕ j
}T

and uIJ = {
uI vI ϕI u J vJ ϕJ

}T
:

uIJ = Rui j (8)

Then the stiffness matrix of the GB element K can be
expressed in the form

K =
[

Ma
I + Ma

IIRI Ma
IIRII

SYM (Mm
II)

TRIII + Mm
III

]

(9)

where, the superscript of M declares the material property; In
other words,Mm, Ma and Mi are respectively the stiffness
matrix of matrix, aggregate and interface beams. Ma

I , Ma
II

and Ma
III denote the top-left, top-right and bottom-right 3×

3 sub-matrix of Ma, respectively, and the same notation rule

Fig. 4 A GB element composed of an aggregate beam, an interface
beam and a matrix beam: a the GB element; b the aggregate beam; c
the interface beam; d the matrix beam

is also used to Mi and Mm.RI, RIIand RIII, respectively,
denote the top-left, top-right, bottom-right 3 × 3 sub-matrix
of R.

It can be proved that the matrix K generally has the fol-
lowing distribution of non-zero elements:
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It can be found that K in Eq. (10) has more independent
elements than M in Eq. (1). For the sake of convenience, the
following matrix KN is defined as
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(11)

If the computational effort is the main choke point in the
simulation, it is suggested to use the GB lattice in which every
aggregate is modeled by a single node [26,27]. Otherwise, if
the size of the simulated specimen is not very large and the
main aim is to observe the failure process in more details,
another kind of GB lattice is preferred, in which a single
aggregate covers dozens of nodes [28]. The simulations in
this paper are mainly based on the latter. Furthermore, every
GB element is composed of three beams of the same span and
the same depth, which are all described by the Timoshenko
beam theory.
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3 Mohr–Coulomb criterion and event-driven algorithm

3.1 Mohr–Coulomb criterion

Mohr–Coulomb theory is a mathematical model describing
the response of materials such as rock, rubble piles or con-
crete to shear stress as well as normal stress. Most of the
classical engineering materials somehow follow this rule in
at least a portion of their shear failure envelope. The criterion
can be expressed in the form

|τ | < c − σ tan φ (12)

where, c is the cohesive strength and φ is the friction angle;
τ and σ are the shear stress and the normal stress, respec-
tively.

Because materials such as concrete/rock have a very low
tensile strength ft as compared with their compressive
strength and shear strength, the Mohr–Coulomb strength sur-
face with tension cut-off [3] is adopted here (Fig. 5). Con-
crete’s compressive strength fc is generally 10–20 times the
value of its tensile strength, so fc = 12 ft is used in this paper.
Furthermore, the failure surface in Fig. 5 can be expressed
by the following three inequations:

σ < ft (13a)

|τ | < c − σ tan φ (13b)

σ > − fc (13c)

Then the implementation of the Mohr–Coulomb criterion
shown in Fig. 5 is introduced. It is notable that we find out
the critical element by checking the stresses in beams of GB

Fig. 5 Mohr–Coulomb strength surface with tension cut-off

elements. The normal stress can be expressed in the form
[40]

σ = N

A
+ α

(|Mi | ,
∣
∣M j

∣
∣)max

W
(14)

where, N is the normal force in the considered beam, Mi and
M j are the bending moments at the nodes i and j of the beam,
and W = t (b)l2

/
6 is the section modulus. The coefficient α

regulates what part of the bending moment is considered.
Lilliu and van Mier [25] have shown that simulation results
are also satisfactory in the case of α = 0 though α is usually
set to 0.005 [21,26,40]. Therefore, α is also set to zero in this
paper. Another advantage of α being zero lies in that three
beams in every GB element have the uniform normal stress
because both N and A are uniform throughout every GB
element.

From Eq. (1), the shear force can be expressed in the form

Q1 = −Q2 = M11(u1 − u2) − M34(ϕ1 + ϕ2) (15)

In consideration of the equilibrium conditions at I and J
(Fig. 4), it can be found that the shear force is also uniform
throughout the GB element. Therefore, the shear stress can
be calculated as

|τ | = |Q1|
A

= 1

A
|M11(u1 − u2) − M34(ϕ1 + ϕ2)| (16)

Actually, in order to judge if a GB element becomes crit-
ical, it is not necessary to check all its three beams. Only its
middle beam needs to be checked instead. The reasons are
as follows:

• Both σ and τ are uniform in every GB element, which
has been discussed above.

• In all GB elements, the strength of the middle beam is
equal to or less than the strength of the other two beams.
In three-phase materials, there are four kinds of GB
elements: matrix–matrix–matrix, aggregate–aggregate–
aggregate, matrix–interface–aggregate, and aggregate–
interface–aggregate. For the first two kinds, three beams
have the same strength. For the last two kinds, the middle
beam is the weakest among three beams because the inter-
facial phase is the weakest phase among the three-phase
system.

As a result, the efficiency of the numerical procedure is
improved. Furthermore, it makes the following assumption
reasonable: when some GB element becomes critical, it cracks
into two fragments of the same span, that is, L

/
2, where L

is the length of the GB element. Therefore, if all six GB ele-
ments starting from node i have failed, the isolated material
domain around node i , called influence zone of node i has
the geometry shown as Fig. 6a. The GB lattice can be also
taken as a network by gluing a large amount of this kind of
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Fig. 6 A GB lattice with
circular nodal influence zones: a
a single nodal influence zone
isolated be surrounding failures;
b potential failure positions of
the lattice; c comparison of
circular and hexagon influence
zones; d sketch-map of contact

material domains, shown as Fig. 6b, where the short
line-segment crossing the middle of every GB element
indicates the potential crack path.

Then an important approximation is made: the material
domain around every node is circular and its diameter is
L , which is the same as the bonded-particle model (BPM)
[30]. The advantages of the GB lattice over the BPM will
be discussed later. When calibrating the GB lattice [26], it
is assumed that the influence zone (unit cell) is hexagonal,

which is π
/

2
√

3 times the area of the circle (Fig. 6c). This

difference can be avoided easily when using the equivalence
of strain energy between the GB lattice and its continuum
counterpart. But this difference is neglected in this paper. On
one hand, it does not influence the results seriously. On the
other hand, even though the model is a very rough approxima-
tion of reality, this appears throughout all kinds of lattice-type
approaches [25].

The adoption of circular influence zones (unit cells) brings
the following two advantages at least:

• The contact detection becomes very simple. To judge if
contact happens in a cracked element, we only need to
compare the initial length of the element with the current
distance between its two nodes. Although only cases of
small displacements are studied here, the circular-
influence-zone assumption can simplify the contact/
separation detection when large displacements are per-
mitted.

• The direct calculation of the stiffness matrix of recurred
elements, that is, contact elements, becomes possible. If
the crack path in an element is arbitrary, the corresponding
contact stiffness can not be calculated directly in princi-
ple without any assumption. There are mainly two kinds
of assumptions: one takes the influence zones as rigid
bodies [8,31], while the other assumes that the stress
field throughout every special influence zone is uniform
[16,37]. As shown in Fig. 6d, when the cracked element
i j contacts, the stiffness matrix of the contact element

can be calculated directly because the properties of the
two “half GB elements” are known. In this paper, we only
study the simplest case—smooth contact. Therefore, the
contact element can only bear compressive actions along
the direction of element i j , and the stiffness matrix can
be expressed in the form

Kcontact = (1 − D) KN (17)

where, D is the damage factor due to the deformation
history. Of course, the concept of the damage factor here
is extremely rough as compared with the one in the clas-
sical damage mechanics which increases gradually with
external loads [24]. However, D in Eq. (17) also indi-
cates the degradation of material properties, so basically
has the same physical meaning of the classical damage
factor [23].

In this paper, it is assumed that the failure modes violating
different inequations in Eqs. (13) may generally produce dif-
ferent damage factors. In the following of this section, the
nonlinear algorithm is introduced for that general case.

3.2 Event-driven algorithm

Fracture under compression is simulated by successive occur-
rences of “events”, which may be failure of critical intact
or partly failed elements, or contact/separation of former
cracked elements. Then, the essential of numerical simu-
lation is to detect new event(s) correctly. The event-driven
method (see for instance [7]), also called the event-by-event
method [3,33] is adopted here. The value of load increment
in every step depends on the appearance of new critical ele-
ment(s). After a load increment is applied, the normal stress
σ and the shear stress τ acting in each beam are compared
with the fracture surface, the criterion for fracture is

R = r

r f
> 1 (18)

123



Comput Mech (2009) 43:277–295 283

where r = (
σ 2 + τ 2

)0.5
and r f is as defined in Fig. 5.

Analogously, the criterion for separation/contact of cracked
elements is

R =
√

(�u)2 + (L + �v)2

L
> 1 (contact → separation)

(19)

R = L
√

(�u)2 + (L + �v)2
> 1 (separation → contact)

(20)

where, �u = u j − ui and �v = v j − vi are relative dis-
placements between nodes i and j in element i j (Fig. 6).

Only one event is permitted per computational cycle. If
several elements have R > 1, the element with the highest
R > 1 undergoes new event. As for the critical element, the
update of stiffness matrix and the release of internal forces
are introduced as follows:
(1) If Eq. (13a) is violated, {Qi Ni Mi Q j N j

M j
}T is released, and the element stiffness matrix K is set to

zero. It is notable that this element is definitely under tensile
state in the current step. However, this element is possible
to recur due to contact in the following steps. Once contact
happens, the recurred stiffness matrix is

T
K = (1 − T

D)KN (21)

where, the superscript “T” in
T
K and

T
D represents “Ten-

sion”. Thus,
T
D denotes the damage factor due to the failure by

violating Eq. (13a), that is, maximum tensile stress criterion.
KN has been defined in Eq. (11).
(2) If Eq. (13b) is violated, there are two possible cases.
In one case, the normal stress σ acting in the critical ele-
ment is positive, that is, tensile stress, so the element is not
possible to become contact at the very beginning of stress
redistribution. As a result, {Qi Ni Mi Q j N j M j

}T is
released, and the element stiffness matrix K is set to zero.
In the other case, σ is negative, that is, compressive stress,
so the critical element becomes contacting once violation

happens. Then, {Qi
MC
D Ni Mi Q j

MC
D N j M j

}T is released,
and the stiffness matrix is updated as

MC
K = (1 − MC

D )KN (22)

where, the superscript “MC” stands for “Mohr–Coulomb”.
MC
D denotes the damage factor due to the failure under the
actions of both the shear stress and the normal stress, defined
as Mohr–Coulomb criterion in Eq. (13b).
(3) Three kinds of elements are possible to violate Eq. (13c):
intact elements, elements damaged by violating Eq. (13a)
previously, and elements damaged by violating Eq. (13b) pre-

viously. As for intact elements, {Qi
C
D Ni Mi Q j

C
D N j

M j
}T is released, and the stiffness matrix is updated as

C
K = (1 − C

D)KN (23)

where, the superscript “C” represents “Compression”. As for

the second kind of elements, {Qi (
C
D − T

D)Ni
/
(1 − T

D)Mi

Q j (
C
D − T

D)N j
/
(1 − T

D) M j
}T is released, and the stiffness

matrix is set to
C
K. As for the third kind of elements, {Qi

(
C
D − MC

D )Ni
/
(1 − MC

D )Mi Q j (
C
D − MC

D )N j
/
(1 − MC

D ) M j
}T

is released, and the stiffness matrix is also set to
C
K.

It can be found that the above numerical algorithm is much
more complex than that for simulations of tensile failures
[21,26,40], due to the inclusion of separation/contact phe-
nomena.

4 Numerical examples and discussions

The compressive/tensile tests are performed on a GB lattice
with a rectangular geometry of 117/10 by 49

√
3/5 cm. The

employed lattice is triangular and has a total of 22,990 GB
elements and 7,781 nodes. All elements are

√
3/10 cm long.

The depth-to-span ratio is set to 1.0 for all beams. The load
is applied to the lattice by setting a uniform displacement at
the upper edge.

Seven examples called case 1–7 respectively are simu-
lated.

The first example, case 1, has the following settings:

• The micro elastic and strength properties are shown as
Table 1.

• The loading platens, that is, the upper edge and the bot-
tom edge, have matrix-phase’s elastic properties, and are
100 times of the strength of matrix-phase. All vertical
translation degrees of freedom are fixed along the bottom
edge, while a uniform compression is applied to the upper
edge through a controlled displacement. The sketch of the
numerical experiment is shown in Fig. 7.

• The left and right edges have free boundary conditions.
• A particle overlay including 286 aggregates of different

sizes is employed.

Table 1 The micro elastic and strength properties of phases

E (Mpa) ft (Mpa) fc (Mpa) c (Mpa) φ(◦) D

Aggregate 70,000 10.0 120.0 15.0 45 0.9
Interface 25,000 1.25 15.0 1.875 45 0.9
Matrix 25,000 5.0 60.0 7.5 45 0.9

In the table, D = T
D = MC

D = C
D.
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Fig. 7 Sketch of the numerical experiments

Case 2 is the same as case 1 except that a uniform tension
instead of compression is applied to the upper edge.

Case 3 is the same as case 1 except that the horizontal
translation degrees of freedom are fixed along both the left
and right edges.

Case 4 is the same as case 1 except that the friction angle
φ is 30◦ instead of 45◦.

Case 5 has much stiffer upper and bottom loading platens,
which are 5 times of the elastic modulus of loading platens
in case 1.

Case 6 is the same as case 1 except that 3,000 aggregates
with radii smaller than the element length L is projected to
the lattice.

Case 7 is the same as case 1 except that no aggregate is
projected on to the lattice. As a result, the lattice is purely
matrix-phase.

4.1 Results

Figures 8, 9, 10, 11, 12, 13 and 14 show curves of
reaction forces versus controlled displacements, curves of
cumulative numbers of cracked elements versus controlled
displacements, distributions of cracked elements and crack
patterns for the seven cases, respectively. Figures of distri-
butions of cracked elements and corresponding crack pat-
terns may seem repetitious, but they are provided here for the
reason: distributions of cracked elements show a more clear

picture of both micro and macro cracks, while the crack
patterns provide the relative relationships between cracks
and material structures of the three-phase system. Figure 15
shows curves of cumulative numbers of cracked aggregate
elements versus controlled displacements.

4.2 Fracture analyses

Case 1: Analyses of a typical compressive test
As observed from Fig. 8a, the fracture process can be sep-

arated by the peak load level “a” into two main branches,
that is, pre- and post-peak branches. In the pre-peak stage,
the reaction force P increases approximately linearly with
controlled displacement δ, except a strong nonlinearity just
before the peak point a. Many elements have failed at level a,
and the vast majority of cracked elements consist of elements
due to compression-induced tensile cracking (Fig. 8b, c). It is
shown in Fig. 8d that cracked elements mainly concentrate
in the interfacial zones between aggregates and surround-
ing matrix-phase, and form many local cracks parallel to the
loading direction. This kind of fracture mechanism has also
been observed by other investigators [14,31]. It can be imag-
ined easily that local cracks parallel to the loading direction
will not lead to obvious decrease of the specimen’s capability
of standing against deformation along the loading direction.
This is the reason that P increases approximately linearly
with δ during the pre-peak branch.

A steep drop of load, that is, from point a to point b, follows
directly after the peak a (Fig. 8a). The steep drop is associated
to the sharp increase of number of cracked elements (Fig. 8b).
From Fig. 8e and f, the most remarkable phenomenon is the
formation of a macroscopic crack band, which is roughly
at the middle and near the right edge of the specimen. In
this macro crack band, many matrix elements parallel to the
loading direction have failed, leading to the steep drop of
specimen’s carrying capacity, that is, the a→b steep drop.

During b–c stage, P changes very irregularly with δ, but
does not decrease (Fig. 8a). The number of cracked interface
elements increases from 1,559 at level b to 3,187 at level
c, while the number of cracked matrix elements increases
from 340 at level b to 2,115 at level c (Fig. 8b). There-
fore, most of failure events happen and macroscopic cracks
form, grow and connect each other in this stage. Meanwhile,
however, newly cracked elements parallel to the controlled
displacement become contact elements, so still remain their
normal stiffness. Observing Fig. 8g and h, we find the follow-
ing toughening mechanism: extension of macroscopic crack
bands is frequently deflected by aggregates, and forms the
crack path in a zigzag shape, which leads to crack surfaces’
interlocking and hampers the crack extension temporarily
or changes the extension direction. Both contact phenomena
and various toughening mechanisms hamper the decrease of
reaction force P during the b–c stage.
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Fig. 8 In case 1, a the P-δ curve; b the cumulative number of cracked elements versus displacement; and distributions of cracked elements and
crack patterns at three load levels: c and d for point a; e and f for point b; g and h for point c

Additionally, aggregate elements fail during the fracture
process, which is reasonable at least for the parameter val-
ues used here (Table 1). This feature is different from tensile
experiments based on lattice models where the fracture of
aggregate elements is questionable. This can be explained
as follows. In the three-phase system, the aggregate element
has a tensile strength smaller than compressive strengths of
the interface element and the matrix element even though
the aggregate fraction is the strongest component of such
a system. Figure 15 shows the cumulative number of
failed aggregate elements versus displacement for different
cases.
Case 2: Comparison of compressive test and tensile test

Detailed analyses of uniaxial tensile tests have been
conducted by [26–28]. Here, the discussion will focus on
the difference between case 2 and case 1.

After the steep drop a–b directly following the peak level a,
the reaction force P becomes 18.7% of the peak load (Fig. 9a),
much smaller than 83.5% in case 1. The explanation is as fol-
lows: macroscopic cracks nearly run through the specimen
and separate the specimen into two parts (Fig. 9d), while the
specimen is far from being separated by macroscopic cracks
in case 1 (Fig. 8e, f). Furthermore, elements along the macro-
scopic crack fail due to tension in case 2. While elements
along the macroscopic crack mainly fail due to compres-
sion or combined action of compression and shear, so these
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Fig. 8 continued

elements become contact elements and this contact mecha-
nism is a kind of toughening mechanisms as stated in analyses
of case 1.

The peak-load ratio of case 2 to case 1 is 1:13.8 (Fig. 9a),
and not equal to ft

/
fc = 1 : 12 for three material-phases

(Table 1). Is it questionable? The answer is NO for the fol-
lowing three reasons:

(1) The macroscopic behavior depends on both the micro
material properties and the microstructure. The heteroge-
neous material structure has an important influence on macro-
scopic properties [26,32].

(2) The carrying capacity of the specimen depends on
the strength distribution along potential macroscopic cracks
[20,40]. Case 2 has a macroscopic crack path completely
different from that of case 1.
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Fig. 9 In case 2, a the P-δ curve compared with case 1; b the cumulative number of cracked elements versus displacement; and distributions of
cracked elements at two load levels: c for point a; d for point b

(3) In case 2, elements fail due to tension. In case 1,
however, failure mechanisms include compression-induced
tensile failure, compressive failure, and failure due to com-
bined action of compression and shear, therefore the peak
load of case 1 is the compositive indicator of the following
three strengths: tensile strength, compressive strength and
shear strength, instead of only compression strength.
Case 3: Influence of lateral confinement

The carrying capacity and crack patterns are strongly influ-
enced by the nature and magnitude of confinement pressure
[18]. In case 3, the lateral constraints along the left and right
edges are regarded as lateral confinements. Figure 10a shows

the confinement force versus controlled displacement, that is,
the curve called “reaction on right edge”.

The lateral constraint confines the horizontal dilatation of
the specimen and leads to the following differences between
case 3 and case 1:

(1) At the beginning of the curve, the slope of the pre-peak
regime is larger than that in case 1 (Fig. 10a).

(2) The peak load is 1087.2N (δ = 61.0µm), and is larger
than that in case 1, 996.1N (δ = 61.1µm). At the peak-load
level, the total numbers of cracked elements are 109 for case
3 (Fig. 10b), and 925 for case 1 (Fig. 8b). It indicates that the
specimen in case 1 is damaged much more seriously than the
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Fig. 10 In case 3, a the P-δ curve compared with case 1; b the cumulative number of cracked elements versus displacement; c distribution of
cracked elements and d crack pattern at the load level a

specimen in case 3 at the peak load level, leading to the larger
peak load in case 3. The confinement hampers the formation
and growth of microscopic cracks during the pre-peak stage.

(3) The angle between the macroscopic cracks and the
loading direction is much bigger than that in case 1. When the
macro crack meets local compression-induced tensile cracks
roughly parallel to the loading direction, its path is usually
deflected and may extend along the loading direction tem-
porarily. There are much more compression-induced tensile
cracks in Case 1 (Fig. 8g, h) than case 3 (Fig. 10c, d), so
the macro cracks in case 1 are influenced more frequently by
tensile cracks than in case 3.

(4) At the end of the simulation, the percentage of fractured
matrix elements is 69.6%, much larger than 38.9% in case 1.
The reason is as follows: the vast majority of fractured inter-
face elements consist of those due to compression-induced
tensile actions, while the compression-induced tensile fail-
ures are more difficult to occur in case 3 than in case 1.

Additionally, the reaction on the loading platen and the
reaction on the right edge vary differently with controlled
displacement. For example, when δ = 94.3µm (Fig. 10a),
there occurs a steep drop in the former, but a steep increase
happens in the latter. As more and more elements breaks,
the material behaves more and more like a granular material.
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Fig. 11 In case 4, a the P-δ curve and b the cumulative number of cracked elements versus displacement compared with case 1; c distribution of
cracked elements and d crack pattern at the load level a

Therefore, the lateral dilatation increases with the increase
of failed elemental number, which is the reason for the steep
increase of the lateral confinement reaction.
Case 4: Influence of friction angle

The unique different experimental condition between case
4 and case 1 is that case 4 has a smaller friction angle. It can
be found from Fig. 5 that the safe domain in case 4 will be
smaller than that in case 1. As a result, the specimen in case
4 will be destroyed more easily, or in other words has a lower
carrying capacity. This is also shown in Fig. 11a, in which
the peak load of case 4 is 937.8N, smaller than 996.1N in
case 1.

The compressive strengths of the three material phases
are the same as those in case 1 respectively, but the smaller
friction angle makes failures by violating Eq. 13c happen less
possibly than in case 1. In other words, elements parallel to
loading direction will fail less possibly. As shown in Fig. 11b,
the curve of the cumulative number of failed matrix number
versus displacement is roughly the same as that in case 1, but
the number of fractured interface elements is much larger
than that in case 1 when the controlled displacement is fixed.
By comparing Fig. 11c and d with Fig. 8g and h, it can be
found that less failures of elements parallel to the loading
direction happen than in case 1.
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Fig. 12 In case 5, a the P-δ curve and b the cumulative number of cracked elements versus displacement compared with case 1; c distribution of
cracked elements and d crack pattern at the load level a

Case 5: Influence of the loading-platen’s stiffness
The stiffness of the loading platen influences the fracture

behavior, especially the crack patterns [14,41]. The loading
platen’s stiffness in case 5 is five times of that in case 1. Stiffer
loading platens confine the lateral dilatation near the platens:
from Fig. 12c and d, it can be seen that the distribution of local
cracks parallel to loading direction near two loading platens
is much sparser than that in the middle of the specimen, and
the parallel local cracks are generally longer than those near
the loading platen. These phenomena are different from
case 1.

The stiffer loading platen can be taken as a kind of lateral
confinement from the viewpoint of hampering compression-
induced tensile failures. Therefore, the peak load, the slope
of the pre-peak stage in case 5 are both larger than those
in case 1 (Fig. 12a), which is due to the reason similar to
that in the confined case, that is, case 3. But, the difference
between case 5 and case 1 (Fig. 12a) is much smaller than
that between case 3 and case 1 (Fig. 10a), because the lateral
confinement produced by the stiffer loading platen in case 5 is
much weaker than that in case 3 where lateral displacements
of both the right and left edges are set to zero.
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Fig. 13 In case 6, a the P-δ curve compared with case 1; b the cumulative number of cracked elements versus displacement; c distribution of
cracked elements and d crack pattern at the load level a

The stiffer loading platen also makes the crack pattern in
case 5 (Fig. 12c, d) obviously different from that in case 1
(Fig. 8g, h).
Case 6: Effectiveness of another kind of GB lattice

This case is conducted on the GB lattice proposed by [26],
where every aggregate is modeled by a single node. The aim
here is to show its effectiveness for simulating compressive
failure.

The aggregate distribution, average radii of aggregates and
aggregate volume content are all different from the other
cases, so it is not necessary to compare them. The P-δ curve
is also divided into the pre-peak stage and the post-peak stage
by the peak load (Fig. 13a). The steep drop directly following

the peak load corresponds to the steep increase of cracked
elements (Fig. 13b). As shown in Fig. 13c and d, there are two
macro cracks roughly parallel to the loading direction in the
middle of the specimen, and several inclining macro cracks
appear near the top edge. These features are all reasonable
as discussed in case 1.

It is notable that the lattice having a total of 7,781 nodes
accommodates 3,000 aggregates, but it can even accommo-
date more [26]. In consideration of its high accommodating
capacity, this kind of GB lattice is preferred when the large
problem is considered.

Case 7: Influence of aggregate inclusion
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Fig. 14 In case 7, a the P-δ curve and b the cumulative number of cracked elements versus displacement compared with case 1; c distribution of
cracked elements and d crack pattern at the load level a

In this case, the specimen is purely matrix-phased and has
no inclusion of aggregates. Therefore, all kinds of toughening
mechanisms due to particle structure, such as deflection and
temporary blockage of crack extension, are excluded from
this case. This leads to the following differences between
case 7 and case 1:

(1) After the steep drop of load directly following the
peak, load P becomes 62.6% of the peak load (Fig. 14a),
much smaller than the corresponding percentage 83.0% in
case 1, indicating that case 7 is much brittle than case 1,
or equivalently less ductile than case 1 [25]. As shown in
Fig. 14b, the number of cracked elements increases much
steeply directly following the peak load than case 1.

(2) The slope of the pre-peak stage is much smaller than
in case 1, indicating a lower capacity of bearing deforma-
tion. The inclusion of stiffer aggregates (Table 1) into matrix
makes the specimen much stiffer that the purely matrix-phase
specimen under the compressive condition. However, this
feature disappears in the tensile condition [25,26,40] because
aggregates are isolated by the surrounding interfaces and
higher stress cannot be transferred onto aggregates, and the
other reason is that the contact mechanism partly recurs the
bearing capacity of many cracked elements in compressive
tests.

(3) The crack pattern (Fig. 14c, d) is much more regular
than that in case 1 (Fig. 8c, h). Case 7 roughly has two kinds of
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Fig. 15 The cumulative number of cracked aggregate elements versus
displacement compared for case 1, case 3, case 4 and case 5. Note that
there is no aggregate failed in case 2, case 6 and case 7

macro cracks: two shear deformation crack bands near the top
edge and forming an angle of 30◦ with the horizontal loading
platens, and several straight splitting cracks around the shear
bands. At the middle and bottom domain of the specimen,
there are seldom distributed micro failures. However, case 1
shows the completely different feature: macro cracks become
extremely irregular due to the inclusion of aggregates and a
large amount of local cracks form around aggregates because
stress concentrations happen under external loads.

Then the direction of shear deformation crack bands is dis-
cussed. In case 7, two shear deformation crack bands form
an angle of 120◦ with each other. Similar phenomena have
been discussed in literature. For example, Gao and Klein [15]
simulated the crystalline material by using the virtual inter-
nal bond (VIB) model which is a kind of regular triangular
lattice in nature [10,11], and showed highly localized shear
deformation bands emanating at roughly ±60◦ to the orig-
inal direction of crack propagation. This kind of localized
shear deformation does not represent the action of plasticity
since the employed VIB materials are all purely elastic, but
the results do highlight the effects of deformation induced
elastic anisotropy.

Our explanation for the regular direction ±60◦ of shear
deformation crack bands in this homogeneous case is the
adoption of regular triangular lattice. The first author, Liu,
who investigated the truss lattice model several years ago,
finds that lattices of different geometries produce different
directions of shear deformation bands. For triangular lattice,
the direction is around ±60◦; for the lattice shown in Fig. 16;
however, the direction becomes ±45◦.

However, this kind of cracking directional dependency on
the geometry of lattices will not influence the effectiveness
of GB lattice for simulating heterogeneous media such as

Fig. 16 A lattice apt to fail along ±45◦

concrete. Concrete is highly heterogeneous due to inclusion
of aggregates and is never the homogeneous material such
as crystalline. The path of cracks depends almost completely
on randomly distributed aggregates and initial micro frac-
tures throughout concrete. The particle structure will deflect
the crack direction or hamper the extension of cracks tem-
porarily, leading to extremely irregular paths of macro cracks,
which can be found from the crack patterns of all above six
heterogeneous cases, that is, case 1–6.

5 Conclusions

To extend the practical application of the GB lattice model, a
novel algorithm for simulating compressive failures was pro-
posed by adopting the Mohr–Coulomb strength criterion and
the event-by-event detecting technique. Furthermore, this
algorithm was implemented in a finite element code. The pos-
sible events considered here can be the compression-induced
tensile failure, the failure due to combined action of shear
and normal stress, the failure due to compression, contact/
separation of crack surfaces. The smooth-contact assumption
was adopted, but it is not a too rough approximation because
numerical tests showed that the interlocking is the dominant
toughening mechanism and hampers the extension of shear
deformation crack bands frequently.

Numerical tests were conducted on a concrete plate sub-
jected to compression. Results of the uniaxial compression
case were compared with those of uniaxial tension. Fur-
thermore, influences of lateral confinement, friction angle,
stiffness of loading platen, inclusion of aggregates on failure
behaviors were respectively analyzed in detail.
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In the case study, specimens with exactly the same micro
structure as well as macro sizes were employed. Due to this
reason, the influence of micro structures can be excluded
when analyses of some special influence factor such as the
friction angle or lateral confinements are conducted. This
kind of case study can hardly be implemented completely
in physical experiments. Even though physical experimental
techniques are adequately satisfactory, it is almost impos-
sible to produce two specimens of the same micro struc-
ture. As a result, the comparative analyses like those in this
paper are hampered by the considerable influence of micro
structures, especially for heterogeneous media such as con-
crete and rock. This is a common advantage of all numerical
models.
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