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The potential energy in materials is well approximated by pair functional which is composed of pair 
potentials and embedding energy. During calculating material potential energy, the orientational com-
ponent and the volumetric component are derived respectively from pair potentials and embedding 
energy. The sum of energy of all these two kinds of components is the material potential. No matter how 
microstructures change, damage or fracture, at the most level, they are all the changing and breaking 
atomic bonds. As an abstract of atomic bonds, these components change their stiffness during dam-
aging. Material constitutive equations have been formulated by means of assembling all components’ 
response functions. This material model is called as the component assembling model. Theoretical 
analysis and numerical computing indicate that the proposed model has the capacity of reproducing 
some results satisfactorily, with the advantages of great conceptual simplicity, physical explicitness, 
and intrinsic induced anisotropy, etc. 
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The material microstructures change under external ac-
tions[1－4]. With loads continually increasing, microde-
fects such as microcracks and microvoids begin to nu-
cleate and grow, and material mechanical properties de-
grade accordingly. With external loads continually in-
creasing, these microdefects begin to join and their 
number increases continuously, the macrocrack emerges, 
and finally, material fails. The material degrading proc-
ess is called damaging process, and damage occurrence 
and its evolution lead material mechanical performance 
to directional preference——anisotropy.  
  The process of material degrading has been explored 
by damage mechanics. Beginning with Kachanov[5] 
proposing the conception about damage factor, damage 
mechanics has gotten great success in the past fifty years, 
and a lot of theoretical models have been proposed to 
handle different types of damaging, such as, Lemaitre- 
Chaboche’s plastic damage theory[2－9], Kachanov’s 
creep damage theory[3,5,8－10], Rousselier’s damage one[3], 

Gurson’s model[6], critical cavity expansion ratio[3], Mu-
rakami-Ohno’s creep damage[2,3,7,9], Chaboche’s anisot-
ropic damage[6], Krajcinovic’s vectorial damage theory[4], 
and Sidoroff’s anisotropic damage theory[3,8], etc. These 
theoretical models are mainly based on continuum me-
chanics[12,13] (Gurson model and critical cavity expan-
sion ratio are based on mesomechanics). However, con-
tinuum damage theories have some drawbacks. Firstly, 
damage’s definition isn’t unique, and all these phe-
nomenological definitions aren’t physically sound. Sec-
ondly, every damage evolution equation is based on a 
supposed dissipation function, and the corresponding 
function is artificial to some extent. It’s important that 
continuum damage formulations are very complicated, 
the adopted symmetrization treatment techniques are 
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short of physical basics, and it is particularly evident in 
anisotropic damage theories. 

Material made up of a large number of atoms is re-
garded as a many-body system, and the binding forces 
among atoms determine the material structures and its in-           
trinsic mechanical and electromagnetic properties[14－16]. 
An exact treatment of this many-body problem would 
require the formulation and solution of Schrodinger 
wave equation for all atoms considered, accounting for 
the interactions among the charged constituents (nuclei, 
electrons) and their kinetic energies. However, by using 
the adiabatic Born-Oppenheimer hypothesis[14,16], the 
wave function is split into one part to describe the dy-
namics of the light electrons and the other part to de-
scribe the dynamics of the heavy nuclei. It is proper that 
a quasi-classical treatment of the atomic interactions and 
the resulting dynamics in terms of potentials and the 
classical equation of motion is consistent, which means 
the simulation of atomic configurations with instanta-
neously equilibrated electrons in their ground state 
merely requires an adequate incorporation of the forces 
among the atoms, expressed as derivatives of more or 
less empirical interatomic potential functions. The un-
derlying potentials reflect the interaction among the at-
oms and are usually quantified in terms of the relative 
position of two or more atoms, and the parameters oc-
curring in these potential expressions are obtained by 
fitting potential functions to material parameter such as, 
elastic constants, lattice parameter, cohesive energy, and 
stacking fault energy.  

                                              

In this paper, the component assembling model 
(CAM) has been proposed and applied to damages. Po-

tential energy owing to deformations has been expressed 
in the form of the sum of pair-functional potentials, in 
which, pair potentials have been computed according to 
discrete directions which are determined by the interac-
tions among atoms, and the corresponding orientational 
component has been established, i.e., the sum of pair 
potentials parallel to the specified direction is the energy 
of the corresponding orientational component and the 
stiffness contribution of this part of atomic bonds is its 
stiffness. As a typical one-dimensional component, the 
orientational one bears tensile or compressive loading. 
Meanwhile, the other kind of component——the volu-
metric one has also been set up from embedding energy. 
For the density of electronic gas is only related to vol-
ume, the volumetric component is a typical 
three-dimensional one and it bears hydrostatic stress. As 
macroscopic phenomena of the change and break of 
atomic bonds, damage and fracture have been reflected 
by the change of stiffness and state of these components. 
Particularly, anisotropy has been expressed naturally by 
the concept of component. The constitutive equations 
considering damage have been formulated by assem-
bling these two kinds of components’ response func-
tions. 

The potential concept enables the researchers to carry 
out nanoscale molecular dynamics[14,15,18] simulations 
with as many as 109 atoms. Such quantities do not allow 
a full mesoscale treatment of materials, which would 
involve about 1023 atoms. Moreover, confined by com-
puter’s capability, the computational time interval is 
very small. There is a long way for engineering applica-
tion. Considering respectively the difficulties and merits 
in continuum mechanics and interatomic potentials, 
many researchers began to set up macroscopic constitu-
tive models directly from interatomic potentials or com-
bine these two theories, such as, the quasi-continuum 
(QC) model[19,20], the relations between molecular dy-
namics and micromorphic theories[21,22], and the virtual 
internal bond (VIB) model[23]. 

1  Devivation of CAM 

The principal view of pair-functional is that the cohesive 
energy of an atom is determined by the local electron 
density at the site, where the atom is placed[14－16]: 
 embedding ( ),E F ρ=  (1) 

where ( )F ρ  is referred to as the embedding energy 
(function), modeling the attractive interaction as a func-
tion of the local electron density ρ into where the con-
sidered atom is placed. Here, the electron density is 
given by 

 ( ).
j i

i
j

ijf Rρ
≠

= ∑  (2) 

This function is interpreted as the charge at the ith nu-
cleus owing to the spherical symmetric electronic charge 
densities ( )f R  of the neighboring atoms. Hence, the 

function ( )f R  evaluated at the distance ijR =  
( , ) ,i j

i j R− =R R  (i j)≠  tells us exactly how much 

electronic density bleeds off from the site j onto its 
neighbors, where  denotes the position of the ith iR
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nuclear. The embedded atom method posits a total en-
ergy of the form: 
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where the term ( )ijRφ  describes a pairwise isotropic 

interatomic potential function which is essentially repul-
sive and depends only on the atomic spacing ijR  and 

 denotes the position of the nth electron. nr
In practice, our interest is in excursions about the 

equilibrium positions, and it is convenient to define zero 
of energy at the initial equilibrium positions. Expanded 
eq. (8) by Taylor series, further progress can be made in 

trimming down the first term totE
δ

∂
⋅

∂
R

R
 by recogniz-

ing that the expansion is built around the equilibrium 
configuration, and the first term can be eliminated since 

at equilibrium tot 0.
E

δ
∂

⋅ ≡
∂

R
R

 Thus, potential energy 

due to deformation (strain energy) is expressed in the 
form (the third and higher derivatives excluded): 
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While the total of pair potentials is computed, the 
number of pair potentials is larger than that of atoms in 
the selected material element, yet the number of direc-
tions of interatomic bonds is smaller than that of atoms 
owing to periodic crystal configurations. Therefore, pair 
potentials are grouped according to directions, micro-
structures and their evolutions are embodied on energy 
changing in different directions. It is the essential idea of 
component assembling model. Concretely, to an ap-
pointed unit direction m, an orientational component is 
set up accordingly. m denotes the direction of this com-
ponent and the sum of pair potentials parallel to m in 
material is the energy of this orientational one: 

( )( ) ( )

( )

( ), // 2, ,

,

1
4
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α β

α β α β

α β
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⎭

 (5) 

Run over all directions of the interactive atoms and 
set up the orientational components accordingly. Then, 
the change of pair potentials Up owing to deformation is 
denoted by these orientational components: 
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Therefore, strain energy (density) is written as follows: 
( )( ) ( ) ( )( ) ( )
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Cauchy-Born hypothesis[14－16,24－29] builds a bridge 
between microscopic movements and macroscopic de-
formations. The hypothesis asserts that the lattice has 
been subjected to homogeneous deformation locally, as 
illustrates in Figures 1 and 2. Notes 
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Substitution of eq. (8) into (7) and consideration about 
Cauchy-Born hypothesis, yields the expression: 
 

 
 

Figure 1  Un-deformed plane lattice. 
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Figure 2  Deformed plane Lattice (Cauchy-Born Hypothesis). 
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where  is the mth component of vector m. By en-
ergy-equivalence and comparing with continuum me-
chanics, yields the result: 

im
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(10) 
The first item on the right of eq. (10) is derived from 
pair potentials, and the last two are from embedding en-
ergy. In fact,  is the elastic modulus of the orien-
tational component parallel to m. Similarly, the next 
kind of component—the volumetric one is introduced to 
represent the contribution of embedding energy, and its 
bulk modulus is given by 

H ( )m

 ( )( ) ( )( ) ( )( ) ( )2
.K F Fα α α

α α
ρ ρ ρ ρ′′ ′= −∑ ∑ α  (11) 

Therefore, the elasticity tensor is rewritten by 
pair-functional potentials, and it matches Voigt symme-
try,  Going further, eq. (10) is 

rewritten as follows: 

.ijkl klij ijlk jiklC C C C= = =

 .ijkl i j k l ij klC H m m m m Kδ δ= +∑ ( )m

m
 (12) 

Eqs. (10) and (12) are sound for all materials that are 
modeled by Cauchy-Born approximation. In addition, 

for introducing the volumetric component, it overcomes 
the constraint of the Cauchy relation, .  In-

vestigating eq. (10), we find that there are 16 independ-
ent components. Considering 13 independent constants 
in materials with one symmetric face, we deduce that 
CAM can be used to model many materials. 

ijkl ikjlC C=

2  CAM’s parameters and comparation 
with other models 

2.1  CAM’s parameter calibrating 

Once the formula of pair-functional potentials is speci-
fied and the lattice configuration is known, the crystal 
properties can be derived directly. Actually, all materials 
are inhomogeneous and anisotropic, but lots of materials 
demonstrate macroscopic isotropy, such as most met-
als[1,15]. In particular, for homogeneous materials (the 
observing length is much larger than the characteristic 
length), the directions between nucleus spread all over 
the space, and the electron density is treated as a con-
stant, that is, it admits the representation: 

( )( , ) , sinH Hθ ϕ Ω θ ϕ ϕ θ ϕΔ = Δ Δ  
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(13) 
where ΔΩ is a little solid angle around the direction 
( ), ,θ ϕ  and 

( ) ( )( ) ( )( ) ( )( ) ( )2
, .K F Fα α α

α α
θ ϕ ρ ρ ρ ρ′′ ′= +∑ ∑ α  (14) 

Because the changes of electronic density do only re-
late to volumetric strain, and infinitesimal deformation 
is considered, thus eq. (14) becomes 
 ( ), coK Kθ ϕ = ≡ nst.  (15) 

The summation form in eq. (10) or (14) is rewritten in 
an integral form 

( ) ( ) ( ) ( ) ( )
π π
2

0 0
, , , , ,

          sin d d .
ijkl i j k l

ij kl

C H m m m m

K

θ ϕ θ ϕ θ ϕ θ ϕ θ ϕ

θ θ ϕ δ δ

=

× +
∫ ∫

 

The above equation is the constitutive equation for ho-
mogeneous materials. Conveniently, the integral of eq. 
(16) would be transformed to discrete summation for 
numerical computing, and the selected directions turned 
into the orientational components’ directions. After 
analyzing and computing, we have found that 12 repre-
sentative directions for planar and 46 for spatial are 

(16) 
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enough, as displayed representatively in Figures 3 and 4. 
The discretized orientational component’s stiffness is 
expressed as 
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Figure 3  Planar discrete orientational components. 
 

 
 

Figure 4  Spatial discrete orientational components. 
 
Material constitutive equation has the same form as 

eq. (10) or (12). In particular, for homogeneous and iso-
tropic materials, there stands 

( ), coH Hθ ϕ = = nst.  

Integrating eq. (16) on the up half unit sphere yields 

(2π 2π .
15 15ijkl ij kl ik jl il jkC H K Hδ δ δ δ δ δ⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
)  (18) 

Comparing with traditional continuum mechan-
ics[12,13], yields the result: 

 
15 ,
2

,

H μ

Κ λ μ

⎧ =⎪
π⎨

⎪ = −⎩

 (19) 

where λ and μ denote Lame’s coefficients.  

Here it needs to be stressed that the adopted Cauchy- 
Born rule is limited, but it can be overcome if we em-
ploy the modified Cauchy-Born hypothesis[24－29], such 
as the integral mean value based[24] and high-order[26] 
Cauchy-Born hypothesis, which have succeeded in de-
scribing inhomogeneous deformation in quasicontinuum 
model, such as dislocation dynamics, plastic slip and 
nano-indentation[19,20]. The exponent Cauchy-Born hy-
pothesis[29] has been used in shape-distortion of the 
thin-wall carbon nanotubes. The Cauchy-Born hypothe-
sis which considers temperature’s effect[29] is used in 
temperature changing significantly. It’s worth noting that 
Chen et al.[21,22] proved that molecular dynamics was 
related to continuum theory if atom’s deformation mac-
roscopically obeyed deformation gradient in statistical 
average. 

2.2  Comparation with other models 

QC, VIB and the component assembling model have the 
same physical foundation, and they are all from intera-
tomic potentials. In QC, the atoms are grouped accord-
ing to the quantities of interatomic potentials, by com-
bining with continuum mechanics (QC is used near 
crack tips or in slip bands and continuum mechanics is 
used in other regions). In component assembling model, 
the atoms are grouped according to the directions. VIB 
model is derived from pair potentials and has a simple 
form. In which, owing to not considering the embedding 
energy, it is constrained by the Cauchy relation, ijklC =  

 .ikjlC

Just like microplane model[30－33], the basic research 
element is not RVE. The basic element in microplane 
model is discrete microplanes, and the stress-strain rela-
tions are defined independently of planes of all possible 
orientations in the microstructure, regardles of elasticity, 
plasticity and damage. Moreover, the microplane 
stresses or strains are constrained kinematically or stati-
cally to the macroscopic stress or strain tensors in a 
weak sense. There are three basic research elements in 
the component assembling model, and they are respec-
tively the orientational component, the volumetric and 
slip ones. Actually, these components are re-divisions of 
RVE according to different deformation mechanisms, in 
which, as a 1D bar, the orientational component only 
bears the tensile or compressive loads. As a typical 2D 
component, the slip one bears shear loads. The 3D 
volumetric component bears the hydrostatic stresses. 
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Material is treated as a component assembly, and its 
constitutive equations have been formulated by assem-
bling all kinds of components’ response functions. Ani-
sotropy has been incorporated naturally via component 
concept. Meanwhile, material damage and yield have 
been reflected via different components. 

Cohesive zone model[34－37] has been used to simulate 
fracture process extensively. Material fracture work is 
expressed by cohesive zone models constitutive. Actu-
ally, material damage and fracture processes are atom-
istic bonds change and continuous break, and the cohe-
sive zone models constitutive can be gotten from intera-
tomic potentials. Cohesive zone model constitution is 
gotten from components response functions by means of 
energy equivalence. Actually, material damage and its 
microstructure evolutions occur in space but not plane. 

3  Quasi-brittle damage 

Fracture of engineering structures is often preceded by 
considerable changes in the microstructures of the mate-
rial they are made of. Examples are microcracking in 
concrete, fibre pull-out or delamination in composites 
and the formation of voids in ductile metals. Accurate 
failure predictions can only be obtained if this micro-
structural damage is taken into account in the fracture 
modeling. This requirement has led to the development 
of so-called local or continuum approaches to fracture, 
in which fracture is regarded as the ultimate conse-
quence of the material degradation process. In these 
methods, the degradation is often modeled by using con-
tinuum damage mechanics. Continuum damage theories 
introduce a set of field variables (damage variables) 
which explicitly describe the local loss of material in-
tegrity. A crack is represented by the part of the material 
domain in which the damage has become critical, where 
the material cannot sustain stress anymore. Redistribu-
tion of stresses results in the concentration of deforma-
tion and damage growth in a relatively small region in 
front of crack tip. It is the growth of damage in this 
process zone which determines in which direction and at 
which rate the crack will propagate. Crack initiation and 
growth thus follow naturally from the standard contin-
uum theory, instead of from separate fracture criteria. 

It is true that, on though microstructures change and 
damage and fracture, they are all the changing and break 
of atomic bonds. The orientational component is an ab-
stract of atomic bonds. When atomic debonding emerges, 

the corresponding orientational component changes their 
mechanical properties, such as stiffness. The more 
atomic debonding occurs, the more stiffness changes: 

 
0

1 HD
H

= − ,  (20) 

where  and 0H H  denote respectively the initial and 
instantaneous (damaged) secant stiffness of the compo-
nent, D its damage factor and  A scalar 
value is enough for a 1-D component, it is a microscopic 
value (however, for material element, its constitution is a 
typical fourth order tensor, as eq. (16) shows). Meantime, 
as a typical 1-D component, the orientational one has 
simple constitutive relation, and it is expressed as fol-
lows: 

0 D≤ ≤1.

 ( ) 01m mH D H ,mσ ε= = − ε  (21) 

 

 
 

Figure 5  Configuration of the orientational component’s damage. 
 
where mσ  denotes the stress of the component m and 

mε  is strain. There is 

  (22) .m ij i jm mε ε=

where ijε  denotes the strain. Without loss of generality, 

we consider tension-induced damage as well as com-
pression-induced damage but no same damage evolution 
laws. For 1-D simple orientational component, its dam-
age factor must be the function of the maximum strain 
and / or the minimum strain, damage thresholds are de-
noted as crε+  and crε−  which change along with 
damage, and then, damage evolution equation has the 
following form: 
  (23) 1 cr 2 cr( ) ( )D D Dε ε+= = .−

To the whole deformation history , there are ( )ij tε

( )( ) ( )( )cr max maxm ijt tε ε ε+ = = i jm m  and crε− =  
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min( ( )) min( ( ) ).m ijt t mε ε= i jm

) ,

 Therewith, the orienta-

tional component’s damage is expressed as 

  (24) ( )( ,D D= mQ ε

where  denotes the kinetic tensor, and ⊗=Q m m
( )mε  the corresponding orientational component’s ei-

gen-strain (internal variable). Different components have 
different  yet there always has ( ) ,mε ( )

cr: ε+=mQ ε  
 Correspondingly, damage condition is ( cr .ε−= )

  (25) cr
cr

cr

0, tension,
( , )

0, compression.
m

m
m

f
ε ε

ε ε
ε ε

+

−

−   ⎧
= ⎨ −   ⎩

≤

≤

Damage threshold has always the same symbol with 
its current strain, cr crε ε+=  and cr cr .ε ε−=  In addition, 
there is Kuhn-Tucker condition: 
 ( ) ( )cr cr0, , 0, , 0.m mD f Dfε ε ε ε      =≥ ≤  (26) 
If crack closure effect is excludable, damage threshold 
evolution is given as  

 cr
cr

d .
d

DD ε
ε

=  (27) 

Damage’s consistence condition is 
  (28) ( ) ( )cr cr, 0, when  ,m mDf fε ε ε ε=    = 0.

For infinitesimal displacement, differentiating eq.  
(21) and considering eq. (22), there is 

 
( )
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1
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D H m m H D

DD H H m m

σ ε ε
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⎩ ⎭
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The stress contribution of the single orientational 
component to the whole stress field is given as 
  (30) ,ij m i jm mσ σ=

The stiffness of volumetric componentis relates to 
volume changes and its change is omitted for infinitesi-
mal strain. Assembly all components, then get the rate 
form of constitutive relations: 

( ) 0 0
1 cr

d1
d

       .

sM
s s s s s s s s
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Correspondingly, its quasi-brittle tangent tensor is  
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in the above two equations, and damage induced stiff-

ness is 0
cr

d ,
dm

DH ε
ε

⎛ ⎞
⎜
⎝ ⎠

⎟  which only occurs as damage 

continuingly. Here, it is stressed that damage at material 
representative volume element (RVE) is anisotropic 
though every component’s damage is a scalar. Addition-
ally, eq. (32) also describes component inconsistent 

damage evolution laws, and it implies that 
cr

d
d

D
ε

⎛ ⎞
⎜
⎝ ⎠

⎟

iiK K

 is 

different. 
The aforementioned just considers the orientational 

components’ damage, and the stiffness change of volu-
metric component in-negligible as displacement is com-
paratively large. Embedding potential is essentially 
Coulomb’s potential, and it is proportional to electric 
charge. As volume increasing and electron density de-
creasing, the volumetric component’s stiffness decreases 
correspondingly and vice versa. 

 .( )ε=  (33) 

Elastic damage stiffness tensor is rewritten as 

( )ed
0 0

1 cr

d1
d

.

sM
s s s s s s s

ijkl n i j k l
s

qq ij kl
pp

DC D H H m m

KK

ε
ε

ε δ δ
ε

=

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥= − −⎨ ⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎛ ⎞∂ ⎪+ +⎜ ⎟ ⎬⎜ ⎟∂ ⎪⎝ ⎠ ⎭

∑ sm m

 

(34) 

 

The above just considers the quasi-unilateral condi-
tion. Actually, it is easy to consider the crack closure for 
the orientational component has only two states——

tension and compression. Denotes orientational compo-
nent closure coefficient: 

 
1,  0,

,  0,
ε

α
α ε

⎧
= ⎨ <⎩

≥
 (35) 

and eq. (32) changes as follows: 

m m  

( )ed
0 0

1 cr

d1
d

.

sM
s s s s s s

ijkl n
s

s s s s
i j k l qq ij kl

pp

DC D H H

Km m m m K

α α ε
ε

ε δ δ
ε

=

⎧ ⎡ ⎤⎛ ⎞⎪ ⎢ ⎥= − −⎨ ⎜ ⎟
⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎩

⎫⎛ ⎞∂ ⎪× + +⎜ ⎟ ⎬⎜ ⎟∂ ⎪⎝ ⎠ ⎭

∑

(36)
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4  Numerical method and examples 

The equations of equilibrium is 
  (37) , 0,ij j iFσ + =

where F denotes external force. The appropriate bound-
ary conditions are exerted during solving by using FEM: 

 ,  ,
,  ,

b
u

σ

Γ
Γ

⎧ = ∈⎪
⎨

= ⋅ ∈⎪⎩

u u u
t n tσ

 (38) 

We do weighted S integrate at whole domain Ω, and 
get the weak form of control equations:  

 (39) ( ), d 0i ij j iS F
Ω

σ Ω+ =∫ .  

d .t

Integrating by parts, utilizing divergence theorem and 
considering boundary conditions (eq. (38)), there is 

 , d di j ij i i i iS S F S
Ω Ω Γ

σ Ω Ω= +∫ ∫ ∫ Γ  (40) 

Displacement field u is discretized in the following:  

, ,

,

,
i ij j

i k ij k j

u N d

u N d

=⎧⎪
⎨ =⎪⎩

 

where d is nodal displacement vector, and N shape func-
tion. According to the Bubnov-Galerkin method[33], the 
corresponding weighted function is discretized as fol-
lows:  

, ,

,

,

s
i ij j

s
i k ij k j

S N d

S N d

⎧ =⎪
⎨

=⎪⎩
 

The ultimate equations must satisfy all nodal permissible 
displacement .sd  Concretely, there is  

 , d dij k ik ij i ij iN N F N
Ω Ω Γ

d .tσ Ω Ω= +∫ ∫ ∫ Γ  (41) 

In order to construct consistent incremental ——

iterative process, we have to linearize eq.(31). For itera-
tive step i, the nodal displacement is rewritten in the 
form: 

1 ,i i
j j jd d d−= + Δ  

which leads to the stress at an integral point having the 
form: 

1 .i i
kl kl klσ σ σ−= + Δ  

Similarly, there are 

( )

1

, ,

,
1 .
2

i i
st st st

st sj t tj sN N d

ε ε ε

ε

−⎧ = + Δ
⎪
⎨

Δ = + Δ⎪⎩ j

 

It is pointed out that the superscript i implies incre-
mental or iterative step and subscript i the component of 

tensor. Considering the above three equations and (31), 
we have the following result:  

 
( ), , ,

1
,

1   
2 Ω

d

d d d .

ed
ij k ikst sp t tp s p

i
ij i ij i ij k ik

N C N N d

N F N t N
Ω Γ Ω

Ω

Ω Γ σ Ω−

+ Δ

= + −∫ ∫ ∫

∫
 

(42)
 

Rewrite eq. (42) into matrix form: 

]{ } { } { } { }ext in, 1 ,iK d F F R−Δ = − =  (43) [ 

where {R} denotes the nodal residual force, and the 
other matrixes and column vectors are defined as fol-
lows:  

( )ed
, , ,

1 d ,
2jp ij k ikst sp t tp sK N C N N

Ω
Ω= +∫  

ext d dj ij i ij iF N F N t
Ω Γ

,Ω Γ= +∫ ∫  

in, 1 1
, d .i i

j ij k ikF N
Ω

σ Ω− −= ∫  

We calibrate orientational component’s response 
function by fitting experimental data. Figure 6 illustrates 
the unit length element under monodirectional stretching, 
and Figures (7a) and (7b) are the corresponding 
stress-strain and response function curves, in which, 
Young’s modulus is 21400 GPaE =   and Poisson’s 
ratio 0.2.v =  Only the orientational component’s ten-
sion-induced damage is considered, and its spatial dis-
tribution is illustrated in Figure 4. The initial stiffnesses 
of orientational and volumetric components are respec-

tively 
( )0

15 2 2907.6 MPa
2 2 1 46

EH
v

π
=

π +
and K  

4458.3 MPa.− . 
The axial damaged Young’s modulus E  is defined 

by axial tension: 

( )( ) ( ) ( ) ( ) ( ) ( )

11

0 1 1
1

11

1

.

M

kl klk l

F A

A D H m m m m K

E A

α α α α αα

α

σ

δ ε

ε
=

=

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
≈

∑  

(44) 

 
 

Figure 6  Configuration of element and its boundary conditions. 
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Figure 7  (a) The stress-strain curve[106]; (b) The response function. 
 
then, 

( )( ) ( ) ( ) ( ) ( ) ( )

11

11 11

0 1 1
1 11

1 .
M

kl
klk l

FE
A

D H m m m m Kα α α α αα

α

σ
ε ε

ε
δ

ε=

≈ =

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
∑

 

(45) 
In a similar way, the changing Poisson’s ratio  is 

expressed as  
v

 
secant

22 2211
secant

11 1111

.Sv
S

ε
ε

= = −  (46) 

Figure 8 is the equivalent transverse Poisson’s ratio- 
axial strain curve. 
 

 
 

Figure 8  Equivalent transverse Poisso’s ratio  vs. axial strain ε11. v

 
Model’s validity is proven by comparing with ex-

periments. The wedge equipment and its assembling are 
illustrated in Figure 9, and specimen is illustrated in 
Figure 10. Specimen thickness t = 97 mm. Material ini-
tial modulus is E = 12400 MPa, and Poisson’s ratio v = 

0.3. 46 Conponents’ spatial distribution is the same as 

displayed in Figure 4. The initial stiffnesses of orienta-
tional and volumetric components are  

 
( )

( )
( )( )

15 2π 15 1555.2 MPa,
2π 46 92 1

4 1
2384.6 MPa.

2 1 1 2

EH
v

v E
K

v v

μ

λ μ

⎧ = ⋅ =⎪ +⎪
⎨ −⎪ = − =⎪ + −⎩

 (47) 

The stiffness change of volumetric component can be 
ignored under small deformation. Compressive strength 
of concrete is much larger than its tensile strength, and it 
is rational to only consider compressive damage.  

Figure 11 illustrates the component strain-stress rela-
tion, in which its constitution is approximated respec-
tively by two-line and three-line. Figures 12 and 13 are 
the load-displacement curves according to different con-
stitutive relations. Compared with experimental results 
(indicated by discrete circles), three-line constitution 

 

 
 

Figure 9  Configuration of wedge instrument[34]. 
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Figure 10  The geometrical configuration of concrete specimen[34]. 

 

 
 

Figure 11  Orientational component’s constitutive curves. 

 

 
 

Figure 12  The numerical results of two-line constitutive. 

 
 

 
 

Figure 13  The numerical results of three-line constitutive. 
 

matches better, and it indicates that we can get better 
result if we adopt more complicated constitution. The 
numerical results by using “cohesive-zone” model[34] 
have also been presented in Figures 12 and 13. It is ob-
vious that CAM and cohesive-zone model have high 
precision and predict peak loads accurately. After Past 
peak value, the results by CAM decline allegretto.  

5  Conclusion 

CAM has been set up based on pair functional, in which, 
two kinds of components——the orientational and volu-
metric ones have been derived respectively from pair 
potentials and embedding energy. As a typical 1-D 
component, the orientational component can only bear 
tensile or compressive load. However, the volumetric 
component is a typical 3-D one and it can only bear hy-
drostatic pressure. Material has been treated as a com-
ponent assembly, and its constitutive equations have 
been formed by assembling all components’ response 
functions. Theoretical analysis indicates that the pro-
posed method has the capacity of re-expressing the gen-
eralized Hooke’s Law (eq. (3)) and reproducing some 
results satisfactorily. 

The proposed model has been developed for quasi- 
brittle damage, in which, anisotropy and its evolution 
have been incorporated appropriately via the component 
concept. Theoretical and preliminary numerical com-
puton indicates that the proposed model has the capacity 
of re-expressing the generalized Hooke’s Law and re-
producing some results satisfactorily, with the advan-
tages of great conceptual simplicity, physical explicit-
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ness[38－41], and intrinsic induced anisotropy, etc. In addi-
tion, the proposed model has the capacity of eliminating 

mesh sensitivity just as non-local[42－44], strain gradi-
ent[33,42,44－48] and Cosserat[49,50] models do.  
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