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In the hybrid approach of large-eddy simulation (LES) and Lighthill’s acoustic analogy
for turbulence-generated sound, the turbulence source fields are obtained using an LES
and the turbulence-generated sound at far fields is calculated from Lighthill’s acoustic
analogy. As only the velocity fields at resolved scales are available from the LES, the
Lighthill stress tensor, serving as a source term in Lighthill’s acoustic equation, has to
be evaluated from the resolved velocity fields. As a result, the contribution from the
unresolved velocity fields is missing in the conventional LES. The sound of missing
scales is shown to be important and hence needs to be modeled. The present study
proposes a kinematic subgrid-scale (SGS) model which recasts the unresolved velocity
fields into Lighthill’s stress tensors. A kinematic simulation is used to construct the
unresolved velocity fields with the imposed temporal statistics, which is consistent with
the random sweeping hypothesis. The kinematic SGS model is used to calculate sound
power spectra from isotropic turbulence and yields an improved result: the missing
portion of the sound power spectra is approximately recovered in the LES.

Keywords: large-eddy simulation; turbulence-generated sound; kinematic simulation

1. Introduction

The numerical prediction of the sound radiated from turbulent flows is a challenge problem
for computational fluid dynamics. Recently, a hybrid approach of large-eddy simulation
(LES) and Lighthill’s acoustic analogy has been developed for this problem. In the hybrid
approach [1], the computation of turbulent flows is decoupled from the computation of the
noise: the Navier–Stokes equations are solved using an LES and the Lighthill’s acoustic
equation is numerically integrated. As only the velocity fields at resolved scales are available
from LES, the Lighthill stress tensor, serving as a source term in Lighthill’s acoustic
equation, has to be evaluated from the resolved velocity fields, and thus a subgrid-scale
(SGS) model for the Lighthill stress tensor is needed. The objective of this study is to
develop a kinematic SGS model for the Lighthill stress tensor in the hybrid approach.

To understand this problem, we decompose the simplest form of Lighthill’s stress tensors
in incompressible flows into the following three components [1,2]:

Tij = ρ0uiuj︸ ︷︷ ︸
Resolved stress

+ ρ0(uiuj − uiuj )︸ ︷︷ ︸
SGS residual stress

+ ρ0(uiuj − uiuj )︸ ︷︷ ︸
Unresolved stress

(1)

∗Corresponding author. E-mail: hgw@lnm.imech.ac.cn or guoweihe@yahoo.com

ISSN: 1468-5248 online only
C© 2009 Taylor & Francis

DOI: 10.1080/14685240903032725
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
Y
a
l
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
4
:
3
3
 
1
1
 
S
e
p
t
e
m
b
e
r
 
2
0
0
9



2 H.-D. Yao and G.-W. He

where the overbar denotes a spatial filtering and ρ0 a constant density. In Equation (1),
the first term represents the resolved stress tensor, which can be directly calculated from
LES; the second term represents an SGS residual stress tensor, which can be modeled
using the resolved velocity fields in LES; and the third term represents an unresolved
stress tensor, which is completely missing in LES. In the recent assessments of LES-based
sound radiation calculation, Seror et al. [2] found that the SGS residual stress cannot be
neglected and thus an SGS model is required to recover its contributions to acoustic fields.
In their calculation, the scale-similarity SGS model is used for this purpose and yields
better results than the eddy-viscosity-type SGS models. Bodony and Lele [3,4] indicate
that high-frequency spectral components in jet noise are highly annoying to the ear and
heavily weighted in noise regulation. These components are associated with the unresolved
stresses at missing scales and are not captured by the current LES grid. Therefore, an SGS
noise model of missing scales is important and needs to be developed.

A turbulent velocity field can be decomposed into a resolved part and an unresolved
one, using a filtering operator, such as

u = ū + u′, (2)

where ū is a resolved velocity field and u
′
an unresolved one. In LES, the resolved velocity

ū is explicitly computed and the effect of the unresolved velocity u
′

on the resolved one
ū is modeled. Many SGS models, such as the eddy-viscosity-type SGS models, have been
developed for this purpose [5]. However, in such a problem as turbulence-generated sound,
the unresolved velocity is essentially important to the sound in far fields by itself and its
function cannot be represented by the currently existing SGS models for the SGS residual
stress. Therefore, we propose to use a kinematic simulation (KS) to explicitly construct
the unresolved velocity fields with the required statistic properties in both space and time.
Kinematic simulation [6] is an approach to synthesize turbulent flows without explicitly
solving the Navier–Stokes equations. This approach has been used to simulate turbulent
dispersion [7] and turbulence noise [8,9] among others. The new development in this paper
is to apply KS only to the unresolved velocity fields, with the required time correlations.
This requirement is consistent with the random sweeping hypothesis [10,11] and guarantees
that the synthesized velocity field at the unresolved scales has the space–time correlations
consistent with the resolved velocity fields in LES. The KS serves as an SGS model to
represent the velocity fields at unresolved scales. Accordingly, it will be referred to as a
kinematic SGS model or simply a KS SGS model. This paper is organized as follows: In
Section 2, the hybrid approach of LES and Lighthill’s acoustic analogy is introduced. The
kinematic SGS model is developed in Section 3. The numerical computation and results
are presented in Section 4, and the discussion and conclusions in Section 5.

2. A hybrid approach of LES and Lighthill’s acoustic analogy

We consider the far-field sound generated by isotropic turbulence. In spirit of Lighthill’s
analogy [12], the acoustic source field can be obtained from an incompressible flow ap-
proximation. Thus, the flow in the near field is governed by the Navier–Stokes equations

∂ui

∂xi

= 0,
∂ui

∂t
+ uj

∂ui

∂xj

= − ∂p

∂xi

+ 1

Re

∂2ui

∂xjxj

. (3)

Here, all variables are dimensionless, with the velocity normalized by a reference velocity
Uref, pressure by ρ0U

2
ref, spatial coordinates by a reference length scale Lref and time by
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Lref/Uref. The density fluctuation due to acoustic wave propagation from the turbulence
source region is governed by the Lighthill acoustic equation. In order to be consistent with
the previous paper [11], we write down the Lighthill acoustic equation in the dimensional
form

∂2ρ

∂t2
− c2

0∇2ρ = ∂2Tij

∂xi∂xj

, (4)

where

Tij = ρuiuj + (
p − c2

0ρ
)
δij − τij (5)

is the Lighthill stress tensor dependent on the fluctuation velocity relative to the mean one.
τij is the viscous stress tensor. Under the assumptions of the isentropic acoustic pressure
fluctuations at lower Mach number and high-Reynolds-number turbulent flows, the Lighthill
tensor can be simplified to Tij = ρuiuj .

The acoustic field can be solved from the Lighthill acoustic equation. In the case of
acoustic far field, the solution of the Lighthill acoustic equation can be expressed by [13]

ρ(x, t) − ρ0 = 1

4πc2
0

xixj

x3

∫
∂2Tij

∂t2

(
y, t − |x − y|

c0

)
d3 y, (6)

where x and y denote the position vectors of an observation point and a source ele-
ment respectively. Accordingly, the radiated fluctuating acoustic pressure is p(x, t) − p0 =
c2

0[ρ(x, t) − ρ0]. Then, the acoustic power spectra can be calculated from

I (ω) = 〈p(x, ω)p(x,−ω)〉/ρ0c0. (7)

When the direct numerical simulation (DNS) is used to solve the Navier–Stokes equa-
tions, the Lighthill stress tensor can be fully calculated and thus Equation (7) is used to
predict the far-field sound. However, when LES is used to solve the Navier–Stokes equa-
tions, the resolved stress is the only one available from the LES. The SGS residual stress
can be partially recovered using an SGS model but the unresolved stress is completely
missing. The SGS residual stress and unresolved stress are mainly dependent on the un-
resolved velocity at missing scales. The unresolved velocity fields are associated with the
high-frequency part of sound power spectra and cannot be represented by any surrogate
at resolved scales. These considerations motivate the present research to synthesize an
unresolved velocity field.

3. A kinematic SGS model

The kinematic SGS model is based on the KS approach [6] for isotropic turbulence,
where the approach is designed to be applied only to unresolved velocity fields in LES.
It provides the unresolved velocity fields with the space–time correlations consistent with
the resolved velocity fields. In the present study, (1) the random sweeping hypothesis is
used to determine the decorrelation timescales of the unresolved velocity fields; (2) the
energy spectra at unresolved scales are extrapolated from the resolved velocity fields using
a spectral model; (3) the wave numbers at unresolved scales are taken to be distributed in
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4 H.-D. Yao and G.-W. He

a linear ratio. This is consistent with the DNS and the fast Fourier transformation (FFT) in
the present simulation, which is different from the previous methods [6].

We propose to kinematically construct a turbulent velocity field at unresolved scales.
The unresolved velocity field is obtained by a summation of Fourier modes with the wave
numbers larger than the cutoff one kc, with |knm| ≥ kc:

u
′
i(x, t) =

N∑
|n|=kc

M∑
m=1

[ainm cos(knm · x + ωnmt) + binm sin(knm · x + ωnmt)] . (8)

The sin and cosine expressions can be combined into a simple exponential form

u
′
i(x, t) =

N∑
|n|=kc

M∑
m=1

cinm exp [i(knm · x + ωnmt)] =
N∑

|n|=kc

M∑
m=1

û
′
inm(knm, t) exp [i(knm · x)] .

(9)
Here, knm denotes the mth wave number vector on the nth wave shell with its magnitude
|knm| = kn. The frequency ωnm corresponds to the wave number vector knm. û

′
nm denotes

the Fourier mode corresponding to the wave number vector knm with its ith component
û

′
inm. Similarly, the vectors anm = {ainm}, bnm = {binm} and cnm = {cinm} correspond to

the wave number vector knm, such that

cinm = ainm − ibinm

2
,

ci(−n)m = ainm + ibinm

2
. (10)

As a result, we have the Fourier modes of the velocity components,

û
′
inm(knm, t) = cinm exp (iωnmt) . (11)

If M = 1, Equation (9) is the one used in [6]. It is noted that knm, ainm, binm and ωnm in
Equation (9) need to be determined.

The wave number vector knm is taken to be randomly distributed on a spherical shell
| knm | = kn, that is to say,

knm = kn (sin θm cos φm, sin θm sin φm, cos θm) , (12)

where the angles θm ∈ [0, 2π ] and φm ∈ [0, π ] are the random numbers of uniform dis-
tribution. Therefore, there are in total M wave vectors on each wave shell. In practice, M

should be chosen to be appropriately large to ensure statistic convergence. To facilitate the
discrete FFT package in the current numerical simulation, the wave vector magnitudes kn

are taken to be linearly distributed, such that

kn+1 = kn + δkn, kn ∈ (kc, kmax), δkn = 1, (13)

where kc is the cutoff wave number in LES and kmax is the maximum wave number in DNS.
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The amplitude vectors anm and bnm are taken as follows:

ainm =
(

δij − kinmkjnm

| knm |2
)

a′
jnm, (14)

binm =
(

δij − kinmkjnm

| knm |2
)

b′
jnm, (15)

where

a′
nm = A(sin θ ′

m cos φ′
m, sin θ ′

m sin φ′
m, cos θ ′

m), (16)

b′
n,m = A(sin θ ′′

m cos φ′′
m, sin θ ′′

m sin φ′′
m, cos θ ′′

m). (17)

Here, θ ′
m, θ ′′

m ∈ [0, 2π ] and φ′
m, φ′′

m ∈ [0, π ] are the uncorrelated random numbers of uni-
form distribution. Consequently, a′

inm and b′
inm are also uncorrelated with zero means. The

constant A is given by

A = 〈| anm |2〉 = 〈| bnm |2〉 = 2

M
E(kn)δkn. (18)

It is easily verified that the velocity fields thus obtained satisfy the incompressible condition

anm · knm = bnm · knm = 0. (19)

The mode frequency ωnm can be chosen such that the unresolved velocity field satisfies
the random sweeping hypothesis. This suggests

ωnm = vmkn, (20)

where the random variable vm is normally distributed with zero mean and the variance being
V . The variance V is the r.m.s. of fluctuating velocity at resolved scales. Furthermore, the
random variable vm is required to be uncorrelated with the amplitudes ainm and binm and
the wave number ωinm.

One has to verify that this procedure could generate a turbulent field which features the
required statistic properties. For example, we can calculate the time correlations of velocity
modes

〈û′
inm(knm, t)û

′
inm(−knm, t + τ )〉δkn

= 〈û′
inm(knm, t)û

′
inm(−knm, t)〉〈exp(ivmkn)〉δkn

=
[

3∑
i=1

M∑
m=1

〈
a2

inm

〉 + 〈
b2

inm

〉
4

]
exp

(
−1

2
V 2k2

nτ
2

)
δkn

= E(kn) exp

(
−1

2
V 2k2

nτ
2

)
. (21)

As a result, the velocity field indeed exhibits the energy spectra E(kn) and the decorrelation
timescale (V kn)−1.
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6 H.-D. Yao and G.-W. He

Table 1. Relevant parameters and statistical quantities in DNS.

Case Method Nodes kc Reλ urms L λ ξ CFL no.

1 DNS 5123 170 206.58 0.810 1.469 0.238 1.432 0.208
2 LES 643 21
3 LES 1283 42
4 LES 2563 85
5 LES+KS 643 21
6 LES+KS 1283 42
7 LES+KS 2563 85

Note: Here kc is the cutoff wave number, Reλ the Taylor-scale Reynolds number, L the integral length scale, λ the
Taylor microscale. ξ = kmaxη indicates the spatial resolution; urms is the root-mean-square of velocity fluctuations.

4. Numerical results

A test of the kinematic SGS model was carried out to determine the accuracy of the model
in prediction of sound power spectra. The test was performed using the DNS database
of isotropic turbulence. The DNS for isotropic turbulence was obtained using a pseudo-
spectral method. The computational domain is a box of length 2π on each side, where the
periodic boundary conditions are applied. To keep the turbulence stationary, an external
force f (k) is imposed on the first two shells of wave numbers k = 1, 2. Aliasing errors are
removed through the two-thirds truncation rule. The Adams–Bashforth scheme is used for
time advance. Five cases are run in the present study: Case 1 is the DNS with Reλ = 206.58
on a 5123 grid; Case 2, Case 3 and Case 4 are the LES on grid size 643, 1283 and 2563,
respectively, without the kinematic SGS model; Case 5, Case 6 and Case 7 are the LES on
the same grid size as Case 2, Case 3 and Case 4, respectively, using the kinematic SGS
model. The relevant parameters for all cases are listed in Table 1.

In high-Reynolds-number turbulent flows, the high wave number portion of the energy
spectra exhibits a universal form. The von Karman spectrum is a simple model for the
universal form. We will use the von Karman spectrum to reconstruct the unresolved velocity
fields in LES. The von Karman spectrum [14] has the general form of

E(k) = Cε2/3k−5/3

(
kL[

(kL)2 + cL

]1/2

)5/3+p0

exp
{ − β

{[
(kη)4 + c4

η

]1/4 − cη

}}
, (22)

where the constant p0 = 4 is taken to ensure the energy spectrum E(k) varying as k4

for small wave numbers k; the constant β = 5.2 is determined by the experiment [15];
cL = 6.78 and cη = 0.4 are fixed by the turbulent kinetic energy and the energy dissipation
rate. The remaining parameters are determined from the LES: C = 1.5 is taken to match the
energy level; the integral length scale L = 1.5π〈u2

i 〉−1
∫ kc

0 k−1E(k)dk and the dissipation
length scale η = (ν/ε)1/4, with ε = δE being the added energy at each time step [16].

Figure 1 shows the energy spectra from the DNS, the LES without the kinematic SGS
model and the LES with the kinematic SGS model. The kinematic SGS model does extend
the energy spectra from the maximum wave number of the LES to the maximum one of the
DNS. The recovered energy spectra for the unresolved velocity fields become better closer
to the DNS one as the cutoff wave number kc is increased. However, the recovered portions
still decay faster than those in the DNS, since the energy spectra in LES decay faster at
larger resolved wave numbers than those in the DNS.
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Figure 1. Energy spectra for the DNS on a 5123 grid and the LES on three grids: 643, 1283 and 2563

with and without the kinematic SGS model.

4.1. Time correlations

The performance of the kinematic SGS model will be evaluated in terms of the time
correlations. This can be achieved by comparing the time correlations from DNS with
the ones from the LES with the kinematic SGS model. The random sweeping hypothesis
implies that the decorrelation timescales of small-scale eddies are mainly determined by
a sweeping velocity, which is the r.m.s. of fluctuating velocities. As a result, the time
correlations of the DNS should collapse into one single curve with the time axis rescaled
by the sweeping velocity. If the kinematic SGS model could generate an unresolved velocity
field with the correct timescales, the time correlations of velocity modes at both resolved
and unresolved scales should collapse together. Therefore, we can evaluate the performance
of the kinematic SGS model in terms of (1) the collapse of the time correlations of velocity
modes in the LES with the ones from the KS SGS model and (2) the approximation of
collapsed curves from LES to the ones from DNS.

The normalized time correlation coefficients can be calculated as follows:

Cu(kn, τ ) = 〈ûi(kn,m, t)ûi(−kn,m, t + τ )〉
〈ûi(kn,m, t)ûi(−kn,m, t)〉

= 〈ûinm(knm, t)ûinm(−knm, t + τ )〉
〈ûinm(knm, t)ûinm(−knm, t)〉 , (23)

where the ensemble average is performed over the wave number shell k = |k| and the
different start times. The number of modes at each wave shell should be large enough to
suppress statistic errors. For example, M = 40, 000 for Case 5 and Case 6 and M = 4000
for Case 7. The start time t in Equation (23) is chosen from 0.0 to 2.0 eddy turnover time
with an increment of 0.25. According to the random sweeping hypothesis, the sweeping
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Figure 2. Time correlations vs time lag normalized by the sweeping velocity. The curves with letters
are from the DNS, the curves with symbols from the LES and the symbols from the LES with the
kinematic SGS model. The DNS is performed on a 5123 grid and the LES on a 643 grid.

velocity is the r.m.s. of the fluctuating velocity. Therefore, the sweeping velocity in the
KS SGS model is approximately the square root of total energy in LES. Alternatively, the
sweeping velocity can be taken as the average of the decorrelation timescales of the mode
correlations at resolved scales in LES.

Figure 2 plots the time correlations of velocity modes for k = 10, 15, 20, 30, 90 and 150
from Case 1, Case 2 and Case 5. The time separations here are rescaled using the different
sweeping velocities in DNS and LES respectively. It is observed that the time correlations
from Case 3 and Case 5 collapse into one curve, which verifies that the velocity modes
from the kinematic SGS model share the same decorrelation timescales with the ones from
the LES. The time correlations in the DNS also collapse into one single curve as shown in
Figure 2. It is easily seen that the collapsed curves in LES are virtually close to the ones
in DNS with a slightly slower decay, since the sweeping velocity in DNS is slightly larger
than the one in LES.

Figures 3 and 4 display the mode correlations versus the rescaled time separation in
DNS and LES on the 1283 and 2563 grids, respectively. Again, the mode correlations
from the LES and kinematic SGS model collapse into one single curve while the mode
correlations from the DNS collapse into another one. Although the collapsed curves from
the LES and kinematic SGS model decay slower than the ones from DNS, their differences
are very small. The LES becomes better as the resolution in LES is increased.

4.2. Sound power spectra

The intensity of a sound radiation is usually measured by sound power spectra, defined as a
Fourier transformation of pressure correlation in time. A brute-force calculation of sound
power spectra using DNS data needs a large amount of samples [17,18], which is not easily
obtained from the current simulation. One solution is to perform the ensemble average over
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Figure 3. Time correlations vs time lag normalized by the sweeping velocity. The curves with letters
are from the DNS, the curves with symbols from the LES and the symbols from the LES with the
kinematic SGS model. The DNS is performed on a 5123 grid and the LES on a 1283 grid.

different observation points. It is known [19] that, at the boundary of computation domain,
the sudden termination of the Lighthill stress terms may cause strongly spurious noise. This
requires that the observation points should be symmetric about the computational domain,
so that the spurious noise can be canceled with each other [2,20,21]. However, this is not
possible for the present simulation of isotropic turbulence, where the computational domain
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Figure 4. Time correlations vs time lag normalized by the sweeping velocity. The curves with letters
are from the DNS, the curves with symbols from the LES and the symbols from the LES with the
kinematic SGS model. The DNS is performed on a 5123 grid and the LES on a 2563 grid.
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is a box without sufficiently symmetric observation points available. Another solution is
to make a correction using the Taylor frozen flow hypothesis [19]. However, for isotropic
turbulence, the Taylor frozen flow hypothesis is not valid.

Proudman’s classic analysis [22] yields an analytical expression for the sound power
spectra at far fields. This expression relates the sound power spectra to the space–time
correlations of fluctuating velocities, where the quasi-normality assumption is used. The
quasi-normality assumption breaks up a quadruple correlation into the product of the
double correlations in space and time. It is shown that the quasi-normality assumption
is a satisfactory approximation in isotropic turbulence. Rubinstein and Zhou [23] further
simplify Proudman’s expression using the compact source assumption, which gives

I (ω) = 2ρ0ω
4

15πc5
0

∫ +∞

0

E2(k)

k2
ĉ(k, ω)dk. (24)

Here, ĉ(k, ω) is the Fourier transformation of the squared space–time correlation c2(k, τ ),
given by

ĉ(k, ω) =
∫ +∞

−∞
c2(k, τ )e−iωτ dτ, (25)

where c(k, τ ) is the time correlations of velocity modes without normalization, different
from the normalized correlations shown in Equation (23). A separation of the contribution
of resolved velocity from the one of the unresolved velocity leads to

I (ω) = 2ρ0ω
4

15πc5
0

(∫ kc

kmin

E2(k)

k2
ĉ(k, ω)dk +

∫ kmax

kc

E2(k)

k2
ĉ(k, ω)dk

)
, (26)

where kmin is the minimum wave number and kmax the maximum wave number in the DNS.
kc is the cutoff wave number in the LES. The second term in the bracket is computed by
the KS SGS model, and thus it vanishes in the DNS, or kc = kmax. The stationary isotropic
turbulence is sustained by freezing the kinetic energy at the first two wave numbers.
Hence, the artificial forcing may influence the fluctuating velocity at small wave numbers
at moderate Reynolds numbers. For the sake of avoiding the artificial contamination, the
lower limit of the first integral in Equation (26) is taken to be larger than 2, such as kmin = 4.

We will use the time correlation of velocity mode to calculate the sound power spectra
in terms of Equation (26). Each term in the expression can be accordingly calculated from
the DNS and two LES with and without the KS SGS model. Here, the time correlations are
calculated using the ensemble average over wave shells and the results obtained are shown
to be accurate as in the previous subsection.

Figure 5 plots the sound power spectra calculated from the DNS on a 5123 grid and
the LES on three grids: 643, 1283 and 2563. It is observed that the LES under-predicts the
sound power spectra at moderate frequencies and attenuates the sound power spectra at high
frequencies, while it predicts the part at low frequencies well. Increasing grid improves the
prediction of LES on sound power spectra. It suggests that the missing scales have important
contributions to the sound power spectra at moderate and high frequencies. These results
are in agreement with previous observations such as [2,11,24].

Figure 6 shows the comparisons between the sound power spectra obtained from the
DNS on a 5123 grid and two LES on a coarse grid size 643 with and without the kinematic
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Figure 5. Sound power spectra from the DNS on a 5123 grid and the LES on three grids: 643

(kc = 21), 1283 (kc = 42) and 2563 (kc = 85).

SGS model. The sound power spectrum from the LES with the kinematic SGS model
is closer to the one from the DNS than the LES without the kinematic SGS model at
moderate frequencies. Moreover, the KS SGS model recovers the sound power spectra
at high frequencies, which is completely missing in the LES without the kinematic SGS
model. However, there still exist some differences between the DNS and the LES. That is
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Figure 6. Sound power spectra from the DNS on a 5123 grid and the LES on a 643 grid (kc = 21)
with and without the KS SGS model.
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Figure 7. Sound power spectra from the DNS on a 5123 grid and the LES on a 1283 grid (kc = 42)
with and without the KS SGS model.

because the grid ratio of the LES to the DNS here is 1:8, where the resolution in the LES
is much lower than the one in the DNS.

Figure 7 displays the sound power spectra from the DNS on a 5123 grid and two LES on
a 1283 grid with and without the kinematic SGS model. The LES with the kinematic SGS
model does improve the prediction of the sound power spectra at moderate frequencies and

ω
101 102 10310−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

DNS
LES
LES + KS SGS model

kc = 85

I(
ω

)

Figure 8. Sound power spectra from the DNS on a 5123 grid and the LES on a 2563 grid (kc = 85)
with and without the KS SGS model.
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better recovers the sound power spectra at high frequencies. The grid ratio here is 1:4. The
discrepancies between the 1283 LES and the DNS are less than the one between the 643

LES and the DNS. The LES with kinematic SGS model yields a reasonable approximation
to the DNS result.

Figure 8 compares the sound power spectra from the DNS on a 5123 grid with the
one from the LES on a 2563 grid with and without the kinematic SGS model. The results
from the LES with the kinematic SGS model almost match those from the DNS, while the
LES without the kinematic SGS model misses the portion of sound power spectra at higher
frequencies. Therefore, the kinematic SGS model does recover the sound component at
missing scales, even though a high resolution is used in the present LES.

5. Discussions and conclusions

The present work develops a kinematic SGS model, which reconstructs a random velocity
field as an approximation to the unresolved velocity field in LES, using the KS approach.
The random velocity field is reconstructed to be consistent with the required space–time
correlations: an extrapolation of the energy spectrum of the resolved velocity in LES using
the von Karman energy spectrum, and an imposition of the time correlations of the velocity
modes using the sweeping velocity in LES. The velocity field is the sum of the resolved
velocity in LES and the random velocity field obtained from the kinematic SGS model.
They are used to evaluate the Lighthill stress tensor in the hybrid approach of LES and
Lighthill’s acoustic analogy. Comparison between the DNS and the LES with the kinematic
SGS model indicates that the latter can predict the low-frequency spectra and approximately
recover the high-frequency spectra, which is missing in the conventional LES without the
kinematic SGS model.

It is possible to extend the kinematic SGS model to more complex flows that include
shear effects and nonperiodic boundary conditions: (1) The random sweeping hypothesis
used in the present kinematic SGS model is not suitable for turbulent shear flows, where
shear adds another timescale to the unresolved velocity fields in addition to the sweeping
velocity. The recently developed elliptic model [25] may be appropriate to incorporate the
unsteadiness of the resolved velocity into the unresolved ones in LES; (2) The Fourier
representation used in the present kinematic SGS model is not suitable for a nonperiodic
boundary condition. A new representation for the random velocity fields in nonperiodic
domains needs to be found for the unresolved velocity fields, such as wavelet functions.
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