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Pathogenic conformational conversion is a general causation of many disease, such as transmissible spon-
giform encephalopathy (TSE) caused by misfolding of prion, sickle cell anemia, and etc. In such structural
changes, misfolding occurs in regions important for the stability of native structure firstly. This destabi-
lizes the normal conformation and leads to subsequent errors in folding pathway. Sites involved in the
first stage can be deemed switch regions of the protein, and are vital for conformational conversion.
Namely it could be a switch of disease at residue level. Here we report an algorithm that can identify such
sites computationally with an accuracy of 93%, by calculating the probability of the native structure of a

short segment jumping to a mistake one. Knowledge of such switch sites could be used to target clinical
therapy, study physiological and pathologic mechanism of protein, and etc.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Structure is the foundation of protein’s role in metabolism. A
misfolding of protein can induce an alteration in its biological func-
tion and properties, and result in conformation disease. A well-
known case is prion disease, which is responsible of transmissible
spongiform encephalopathy (TSE), a group of fatal neurodegenera-
tive diseases in several mammalian species [1]. As a basis of life,
protein takes part in nearly every biological process in life. Conse-
quently, protein misfolding is a general causation of illness, and
can result in various pathologic details. The scope of pathogenic
conversional conversion is not limited to some classical well-
known conformation diseases, but responsible for a large number
of cases related to health.

Hydrophobic residues are tend to be blocked in the inner core of
the native state of globular proteins [2], so that free energy of a system
is minimized. As thus, protein structure is normally stable. An initial
structural conversion usually occurs in the region significant for pro-
tein stability. It destabilizes the normal conformation and gives the
opportunities to subsequent errors in folding pathway. Such initiali-
zation sites can be deemed switch regions of the protein, which face
directly the key problem of misfolding—the origin of pathogenic
structural conversion. If the initial misfolding can be controlled or
prohibited, many physical process in the consequent misfolding will
not happen. Therefore, investigations conducted on such regions
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would not give any chance for the unnecessary enlargement of the
complicacy of research, such as misfolding pathway and the problems
arising in subsequent refolding process. As vital for pathology, it
should be significant in researches of corresponding diseases.

Another motivation of the present work is to optimize the
knowledge contributed by clinical reports. Although many efforts
have been made to uncover the nature of conformational disease,
the large amount of sites reported by literature may confuse an
inexpert, especially when some reports conflict with each other.
The present independent judgment could lead a research to a path-
way, which is suggested to be correct and significant in an aspect of
physics. In any case, such insight is advantageous for the investiga-
tions in conformational diseases. Due to the drastic decrease of
hardness and knowledge threshold, such work would be valuable
particularly for interdisciplinary sciences.

Here we report an algorithm that can predict switch regions of
pathogenic conformational changes using protein structural infor-
mation, and affirm some significant sites in classical conforma-
tional disease regarding physics. It achieved successes in
predicting diverse proteins that were believed to be responsible
for conformational diseases. Both sensitivity and specificity are
about 93%. The crucial sites for pathogenic structural change were
successfully identified to be in a window about 15 residues. Only
one tenth of the residues in test set were predicted to be vital for
conformational conversion. Such high accuracy turns the algorithm
into a practical tool of protein analysis.

2. Method

As the CDs come forth under the selection pressure of evolution,
studying the start of disease-related misfolding is hard and a big
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challenge because the two tough problems—protein stability and
protein evolution must be jointly considered. After hundreds of
million years of evolution, many unstable protein mutants have
been excluded by the selection pressure of evolution. Hardness of
a proper representation of the selection pressure, together with
stability feature, hampers the attempt. As thus, to the best of our
knowledge, the special algorithm for this subject is still in absence.
A former work focusing on the topological feature of homolo-
gous relationships among polypeptides provides us an opportunity
in solving the problem. In order to characterize the homologous
relationships of short residue segments in the whole universe of
non-membrane protein, we have presented a graph of polypeptide
relationship (GPR) [3]. By sliding a 15-residue window along se-
quences, protein was treated as successive residue segments. Each
15-residue polypeptide served as a node of the graph. An edge was
drawn between two nodes if the corresponding polypeptides are
remote homologues. As thus, the GPR is a knowledge system de-
rived from evolutionary information. We applied topological tran-
sitions to vital subgraphs of GRP by grouping homologous
polypeptides together, and found that the phase space of polypep-
tide is composed of two nearly separated regions, a helix-donut
zone and a strand-arc zone. Members of helix-donut zone are
mainly helix segments and N- and C-terminal helix caps. The
strand-arc is composed of B-sheet segments and N- and C-terminal
strand caps. These two regions are sparsely connected by edges
emanating from bridge nodes, shown on the right of Fig. 1A.
There are two traits in GPR. Firstly, the structures of the two
zone are quite different. Once a polypeptide alters its state from
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Fig. 1. Flow chart of the algorithm. As shown in the top-right graph, the whole
universe of non-membrane residue segment contains two major regions: helix-
donut zone (most members are helix segments and N/C-terminal helix caps) and
strand-arc zone (mainly comprising B-sheet segments and N/C-terminal strand
caps). (A) Identify remote-homologs of a query segment in the graph of polypeptide
relationship (GPR). A query protein is treated as successive 15-residue segments.
For each query segment, the remote-homologs in GPR are collected. Due to the
obvious character in secondary structure, it is easy to indicate the region that a
segment belongs to (with structural information). As thus, in step (B), the collected
homologous segments are grouped according to their secondary structure (i.e.
location in GPR; on the left of (B)), and then used to calculate the probabilities of the
query segment belonging to the helix-donut zone and to the strand-arc zone. Such
probabilities obtained in step B are then used to calculate the interchange
probability of the query segment. As shown in (C), if the native state of a query
segment is helix-donut/strand-arc, we calculate the probability in jumping to the
strand-arc/helix-donut state.

one zone to another, there will be a structural change. Secondly,
the selection pressure of evolution has been characterized by
homologous relationship of the nodes of GPR. Therefore, the two
obstacles for switch site prediction are overridden together by
GPR. It provides a necessary foundation of present work.

In present work, we treat a query protein as successive 15-residue
segments. For each query segment i, we identity its remote homo-
logues in GPR using the method described in Section 3.1 of reference
[3].Nodes that connect directly (by one edge) to these remote homo-
logues are collected as set {W;}. Since homologous polypeptides have
similar biological properties, we can characterize the probability of
the query polypeptide i being in zone ¢ by that of its remote homo-
logues: P{(0) = X;0(0,0"(wy))/%;1, where ¢’(wy) = 0 if a member w;; of
set {W;} belongs to helix-donut zone and ¢’(wy) = 1 if wy; is in strand-
arc zone, step function §(x,y) equals 1 for x =y and 5(x,y) = 0 other-
wise, ¢ is 0 and 1 for the helix-donut zone and the strand-arc zone
respectively. In the aspect of physics, every query segment can be-
long to both of the two states, but in different probabilities. Native
structure is only one of its choices. A native state can jump to the
other state, the pathogenic one with certain interchange probability.
According to the secondary structure of a query protein, we can iden-
tify the native state ¢'(i) of a query segment i with the method de-
scribed in Section 3.1 of reference [3]. The interchange probability
can be evaluated as Q; = (1 —P;_1(d’(i)))Pi(0'(i))(1 — Piy1(0'(i))),
where 0'(i) =1 — 6(0'(i), 1) represent to the pathogenic state. Q; is
set to O if both helix and B-sheet exist in the residues of segment
set{i—4,i—3,i—2,i—1,i,i+1,i+2,i+3,i+4}.If there are both
helix and B-sheet residues in an enlarged segment, the two types
of secondary structures could be interchangeable around segment
i under normal thermal motion. Such facile interchange of the two
state should not cause disease, and should be filtered. Then the poly-
peptides with a high value of Q; are predicted to be switch region.

In our analysis, each residue is covered by at most 15 successive
segments. To evaluate the significance of each residue site, we
scored the interchange probability per site using the maximum
interchange probability for the corresponding 15 polypeptides.
Residues with the highest interchange probabilities, and their
nearby residues that have interchange probabilities higher than
1.25 times of the overall probability at all position, are predicted
to be switch region of corresponding protein.

3. Results

The clinical reports of actual cases of conformational diseases
that are confirmed by definite nosogenesis are very scarce. Refs.
[1,4-7] describe a total of 31 proteins responsible for various confor-
mational diseases. Twenty-two of these have usable structural infor-
mation. Since our method is based on knowledge of non-membrane
proteins, this restricts the scope of the application, and five mem-
brane or membrane-associated proteins are unsuitable for our
method (amyloid-B precursor protein, cystic fibrosis transmem-
brane conductance, o-ketoacid dehydrogenase complex, B-hexosa-
minidase, o-synuclein). In Ref. [3], prion has ever been
investigated toillustrate feasibility of our scheme. Here we analyzed
all other classical proteins that are believed to be responsible for dif-
ferent conformational diseases, and identified regions that cover sig-
nificant sites for pathogenic structural changes. Switch regions
predicted are shown in red in Figs. 2-15, and marked by « at corre-
sponding probability cutoff. The conformational diseases involved
in our test can be classified as blood disorders, cardiovascular dis-
ease, cerebrovascular disease, neuropathy, encephalopathy, cancer,
blindness, and kidney disease, among others. For fibrinogen and
fibrillin-1, we could not find any clinical reports regarding the resi-
dues involved in the PDB database. It was difficult to evaluate the
predictions for these proteins and hence the results are not reported.
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Fig. 2. Results of insulin (PDBID: 1ai0_A, 21 residues in length). (A) Structure of
insulin. Cysteines responsible for disulfide bonds conserved in refolding are shown
in bonds (6 yellow, 7 green, 11 blue and 20 magenta). (B) The three native disulfide
bonds(gold) shown in insulin structure and topology diagram [9]. (C) Interchange
probability for each 15-residue segment indexed by its central residue. (D) The
interchange probability for each residue site. In (A) and (D), switch regions
predicted are shown in red. This region involves every donor of disulfide bonds
which act as constraints to refolding and contribute to initial aggregation of insulin.
(For interpretation of color mentioned in this figure the reader is referred to the
web version of the article.)

Initial sites of conformational changes should be the region
where the switch role is evident. For some proteins, there are many
residue sites for which disease-related mutations are clinically ob-
served, i.e. where disease is induced. For a region dominating the
initiation of pathogenic structural conversion, such disease-related
site should be abundant. Consequently, it is rational to define a
switch region according to density of disease-related site. Switch
regions of low-density lipoprotein, apolipoprotein Al, superoxide
dismutase, crystallins, and hemoglobin were identified in this
way. As there are too many such sites, and differences in density
are not obvious, only sites corresponding to highly unstable dis-
ease-related mutants were used in identifying switch sites of
hemoglobin. For the other proteins, each switch region we defined
is widely accepted in literatures.

3.1. Insulin

Insulin is a peptide hormone with extensive effects on metabo-
lism and many body systems. Insulin injection is used medically to
treat some forms of diabetes mellitus. Under solution conditions
where the native state is destabilized, this largely helical polypep-
tide hormone can readily aggregate to form amyloid fibrils with a
characteristic cross-p structure. Consequently, it is associated with
a clinical syndrome, injection-localized amyloidosis [8].

It was revealed by mass spectrometry analysis that there is a
character as insulin forming amyloid fibrils: The disulfide bonds
of the native hormone are retained in the amyloid form, providing
substantial constraints to refolding. Moreover according to the
work of Jiménez et al., a segment donating such disulfide bond
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Fig. 3. Results of low-density lipoprotein receptor (PDBID: 1ajj_A, 37 residues in
length). (A) Structure of low-density lipoprotein receptor. Residue sites related to
pathogenic point mutations are shown in bonds, and colored in green. (B)
Interchange probability for each 15-residue segment indexed by its central residue.
(C) The interchange probability for each residue site. In (A) and (C), switch regions
predicted are shown in red. The region we predicted is a segment with highest
density of disease-related sites, and should be switch region of low-density
lipoprotein receptor. (For interpretation of color mentioned in this figure the reader
is referred to the web version of the article.)

constraints plays a significant role in forming the initial aggregates
of insulin amyloid fibrils, i.e. is a switch region [9]. As shown in
Fig. 2, it coincides with our prediction that segment 6-20 is the
switch region of insulin. Actually this segment is the minimum
window that every cysteine responsible for the aforementioned
disulfide bond constraints is involved, namely our prediction is
very accurate.

3.2. Low-density lipoprotein (LDL) receptor

LDL receptor is a mosaic protein that mediates endocytosis of
cholesterol-rich lipoprotein particles. The amino-terminal region
of LDL receptor, which consists of seven tandemly repeated cys-
teine-rich modules (LDL-A modules), mediates binding to lipopro-
teins. Normally these LDL-A modules extend out into the
extracellular fluid, seize the lipoproteins wherein. Then the lipo-
protein arrested is imported into the cell by receptor-mediated
endocytosis. Mutations of LDL receptor that affect this process re-
sult in failure to clear lipoprotein from the circulation, pathologi-
cally elevated blood cholesterol and premature heart disease.

Many point mutations that cause familial hypercholesterola-
emia map to the fifth LDL-A module of the LDL receptor (LR5). As
the module works far from membrane, largely not in a mem-
brane-like environment, we can predict the switch region of LR5
with our method. As shown in Fig. 3, segment 25-39 is predicted
as the switch region of LR5. This coincides with the observation
that disease-related point mutations mainly map to a cluster of
acidic residues near the carboxy-terminal end of LR5. There are to-
tally eight residue sites for which disease-related point mutations

Biomed Inform (2010), doi:10.1016/j.jbi.2009.12.003
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Fig. 4. Results of apolipoprotein Al (PDBID: 2a01_A, 243 residues in length). (A)
Structure of lipid-free apolipoprotein Al. Helices A:1-43 are vital for structural
stability of lipid-free Apo-Al, and are covered by dots. In helices A, disease-related
sites are shown in bonds (3 magenta, 10 blue, 13 yellow and 26 green). (B) The
elliptical loop formed by the A1-43 structure [11]. (C) Interchange probability for
each 15-residue segment indexed by its central residue. (D) The interchange
probability for each residue site. In (A) and (D), switch regions predicted are shown
in red. Three out of four sites responsible for arising disease are in the region we
predict. (For interpretation of color mentioned in this figure the reader is referred to
the web version of the article.)

have been observed [10], i.e. illness is induced. Six of them are in
the region we predicted.

3.3. Apolipoprotein Al

Apolipoprotein Al (Apo-Al) is the major protein component of
high density lipoprotein (HDL) in plasma. The protein promotes
cholesterol efflux from tissues to the liver for excretion. As an
acceptor for sequential transfers of phospholipids, Apo-Al has
two states in vivo (the lipid-free state and the lipid-bound one),
with quite different conformations. The lipid-free Apo-Al is com-
prised of an N-terminal four-helix bundle and two C-terminal heli-
ces. Some mutations of Apo-Al can result in hereditary
amyloidosis, such as familial amyloid polyneuropathy and familial
visceral amyloid [1]. Since the amyloidosis is a consequence of pro-
tein aggregation, the lipid-free Apo-Al should be responsible for
these diseases. Therefore, it is in the scope that we can cope with.

Stability of lipid-free Apo-Al should be vital for defending amy-
logenesis of Apo-Al It is reported that mutations found in human
amyloid deposits appear to occur more frequently at the amino
terminus of Apo-Al This is due to the fact that the N-terminal
four-helix bundle, especially the helices A:1-43 are essential for
the structural stability of lipid-free Apo-Al [11]. Structure of trun-
cated protein A1-43 is quite different from wild-type fold. In con-
sequent, there should be some residues in helices A governing the
stability of native fold of lipid-free Apo-Al In helices A, some point
mutations at sites 3,10, 13, and 26 result in various clinical
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Fig. 5. Results of calcitonin (PDBID: 1byv_A, 32 residues in length). (A) Structure of
calcitonin. Segment 15-21, shown in dots, governs fibril forming and bio-chemical
properties of calcitonin. Wherein, the crucial residues 18 and 19 are shown in
bonds, and colored in green and blue respectively. (B) Interchange probability for
each 15-residue segment indexed by its central residue. (C) The interchange
probability for each residue site. Sites related to the non-amyloidogenic analogue of
human calcitonin, namely vital sites in inhibiting the pathogenic refolding are
marked in yellow. In (A) and (C), switch regions predicted are shown in red. (For
interpretation of color mentioned in this figure the reader is referred to the web
version of the article.)
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Fig. 6. Results of cystatin C (PDBID: 1g96_A, 111 residues in length). (A) Structure
of cystatin C. In clinic reports, the most important site is at 68, shown in bonds and
green. Mutation L68Q is associated with a severe conformational disease and causes
massive amyloidosis, cerebral haemorrhage and death in young adults. (B)
Interchange probability for each 15-residue segment indexed by its central residue.
(C) The interchange probability for each residue site. In (A) and (C), switch regions
predicted are shown in red. (For interpretation of color mentioned in this figure the
reader is referred to the web version of the article.)
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Fig. 7. Results of haemoglobin (PDBID: 1xz2_B, 146 residues in length). (A)
Structure of haemoglobin B-chain. (B) Interchange probability for each 15-residue
segment indexed by its central residue. (C) The interchange probability for each
residue site. The 43 residue sites for which hemolytic anemia related point
mutations have been observed are marked in green. Wherein the highly unstable
mutants related sites are shown in various colors (60 blue, 110 yellow, 115 cyan,
127 magenta). In (A) and (C), switch regions predicted are shown in red. The highly
unstable mutations are prone to occur in or close to the region we predicted.
Therefore, disease-related stability of hemoglobin B-chain should be highly
sensitive to the region we predicted. (For interpretation of color mentioned in this
figure the reader is referred to the web version of the article.)

consequences [12]. These sites should be in switches in destabiliz-
ing native fold of lipid-free Apo-Al. As shown in Fig. 4, the switch
region predicted, #1-15 is an inbuilt segment of helices A. Three
out of four aforementioned disease-related sites are in the pre-
dicted region. It means our result is correct.

3.4. Calcitonin

Calcitonin is a 32-residue peptide hormone that is being pro-
duced by the C-cells of the thyroid and is mainly known for its
hypocalcemic effects and the inhibition of bone resorption. Amy-
loid fibrils of human calcitonin were found to be associated with
medullary carcinoma of the thyroid. Calcitonin has little secondary
structure at room temperature. However, with a conformational
conversion, calcitonin fibrils were found to be highly ordered, con-
sisting of both helix and strand elements.

Recent work indicates a critical role of residue 15-21 for fibril
forming and bioactivity of calcitonin [13,14]. In particular, the con-
formation and the topological features of side chains of residue 18
and 19 are strongly associated with the self-assembly state, bind-
ing affinity and the in vivo hypocalcemic potency of human calci-
tonin. Another interrelated report is that joint mutations: Y12L,
N17H, A26N, 127T, A31T hamper the pathogenic refolding, and re-
sult in a non-amyloidogenic analogue of human calcitonin [15]. All
the aforementioned sites are important for the disease-related sta-
bility of calcitonin. As shown in Fig. 5, segment 16-31 is identified
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Fig. 8. Results of gelsolin (PDBID: 1rgi_A, 346 residues in length). (A) Structure of
gelsolin. N-terminus or C-terminus of residue 243 is the cleavage site of gelsolin.
The vital residue M243 in triggering amyloidogenesis is shown in bond and colored
in green. (B) Interchange probability for each 15-residue segment indexed by its
central residue. (C) The interchange probability for each residue site. In (A) and (C),
switch regions predicted are shown in red. Triggering site 243 is accurately
predicted in gelsolin. (For interpretation of color mentioned in this figure the reader
is referred to the web version of the article.)

B
w ‘
1 | « D67H
F 14
- | « T7ON
: |
§ 4 .i il
i |
\ L +',1 1 s 1
‘-\% EM*‘qﬁW
o 0 w © =
O’% Resicue number
> s
= a
32 02 C
T >
°c 8
20 01
53
c n
R
S 0.0
Q- T T T T T T T T T T T T T
E ‘G 0 20 40 60 80 100 120
Site index of central residue of 15-residue polypeptide
2
3 D
gy 02
3
>
o£ o1
g 3 —_— overall probability
E 0.0 ﬂ u
= -
0 20 40 60 80 100 120
Site index

Fig. 9. Results of lysozyme (PDBID: 1w08_A, 130 residues in length). (A) Structure
of lysozyme. According to Johnson et al., sites around 45-51, in green should be
switch region of lysozyme. (B) A comparison of the crystallographic C* atom
deviations for T70N (green, PDB 1W08) and D67H (black, PDB 1LYY) variants, from
their positions in the wild-type protein (PDB 1JSF) [22]. (C) Interchange probability
for each 15-residue segment indexed by its central residue. (D) The interchange
probability for each residue site. In (A) and (D), switch regions predicted are shown
in red. Disease associated sites (56 cyan and 57 orange) involved in the switch
region predicted are also shown in bonds. (For interpretation of color mentioned in
this figure the reader is referred to the web version of the article.)
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Fig. 10. Results of B, microglobulin (PDBID: 2vb5_A, 99 residues in length). (A)
Structure of B, microglobulin. Amyloidogenic core fragment of B, microglobulin,
21-31 is shown in dots. The vital residue N17 is shown in bond and colored in
green. (B) Interchange probability for each 15-residue segment indexed by its
central residue. (C) The interchange probability for each residue site. In (A) and (C),
switch regions predicted are shown in red. There are three overlapped residues
between the switch region predicted and the amyloid core. Residue N17 is
important for the pathological mechanism of amyloid formation of wild-type B,
microglobulin. (For interpretation of color mentioned in this figure the reader is
referred to the web version of the article.)

as switch region in our prediction. This coincide with the afore-
mentioned researches very well.

3.5. Cystatin C

Wild-type human cystatin C is a high-affinity inhibitor of some
human cysteine proteases that belong to the papain family, such as
cathepsins B, H, K, L, and S. In pathological processes, it forms part
of the amyloid deposits in brain arteries that lead to cerebral angi-
opathy. Patients usually die in their teens from cerebral hemor-
rhage. The formation of amyloid cystatin C is claimed to be due
to conformational changes in the monomer and subsequent do-
main swapping in the B-fibril structure [16].

According to clinical reports on cystatin C, the most important
mutation is at 68 Leu — Gln, which is associated with a severe con-
formational disease and causes massive amyloidosis, cerebral
hemorrhage and death in young adults [17,18]. Our analysis
showed that a peak in interchange probability occurs at window
67 (Fig. 6). This means that residues 51-74 around site 68 are crit-
ical in this conformational disease, and are related to the initiation
of structural changes in view of the double-zone feature of the
polypeptide phase space.

3.6. Hemoglobin

Hemolytic anemia is a disorder in which destruction of red
blood cells is faster than their production by bone marrow. Many
cases of this disease are believed to be due to the presence of
unstable hemoglobin that can change its structure and result in
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Fig. 11. Results of Cu/Zn type superoxide dismutase (PDBID: 2c9v_A, 153 residues
in length). (A) Structure of Cu/Zn SOD enzyme. (B) Interchange probability for each
15-residue segment indexed by its central residue. (C) The interchange probability
for each residue site. In (A) and (C), switch regions predicted are shown in red.
Disease-related sites are marked in (C), and in green. The density in segment 37-48
is at least 150% of those of other regions. (For interpretation of color mentioned in
this figure the reader is referred to the web version of the article.)

disorder. There are various causes of hemoglobin instability, such
as single-point mutations, insertion or deletion of amino-acids,
frame shifts, etc. Unstable hemoglobin molecules lead to varying
degrees of hemolysis [19].

Here we analysed the B-chain of human hemoglobin that is be-
lieved to be responsible for several hemolytic anemia. The detailed
results are shown in Fig. 7. Two successive peaks for the inter-
change probability occur at windows 107 and 118. The two poly-
peptides overlap and have much higher interchange probabilities
(at least two-fold) than the other sites. This means that the switch
region for hemoglobin is greater than 15 residues and should be
extended. Thus, residues 99-125 were predicted to be prone to
conformational changes leading to disorder. This result coincides
with clinical reports. According to the database in reference [20],
there are totally 43 residue sites for which hemolytic anemia re-
lated point mutations have been observed. These sites are inter-
spersed along the 146-residue sequence. In all the corresponding
variants, there are four highly unstable mutants (V60OE, L110P,
A115D, Q127R). Three out of the four are in or close to the region
we predicted. It means that the switch region predicted is signifi-
cant for the structural stability of hemoglobin B-chain.

3.7. Gelsolin

Gelsolinis an actin-binding protein that is a key regulator of actin
filament assembly and disassembly. Wild-type gelsolin is not asso-
ciated with any amyloid pathology; however, inheritance of some
types of mutations, e.g. D187N or D187Y, confers 100% penetrance
of Finnish hereditary systemic amyloidosis which is characterized
by extensive skin, arterial, neurologic, and ophthalmologic amyloid
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Fig. 12. Results of transthyretin (PDBID: 1dvq_A, 115 residues in length). (A)
Structure of transthyretin. (B) Interchange probability for each 15-residue segment
indexed by its central residue. (C) The interchange probability for each residue site.
In (A) and (C), switch regions predicted are shown in red. Site 55 in green is the
most important site according to clinic reports. Mutation 55 Leu — Pro is the most
notorious mutant, and cause early-onset familial amyloidotic polyneuropathy with
onset of clinical disease appearing approximately 20 years of age. (For interpreta-
tion of color mentioned in this figure the reader is referred to the web version of the
article.)

deposition. Unlike some disease-related proteins which undergo
amyloidogenic conformational changes in native fold, gelsolin is
associated with amyloidosis due to aberrant cleavage of its precursor
protein, i.e. the formation of 70- and 71-residue amyloidogenic
gelsolin fragment found in patients. Abnormal cleavage is a direct
causation of the disease.

As shown in Fig. 8, segment 243-264 is predicted to be switch
region of gelsolin. It means that disease-related mutation should
confer region 243-264 a notable conformational change which
produce a sufficient condition for aberrant cleavage, e.g. peptide
unique to hydrolase digest. This coincides with the discovery of
Page et al. that gelsolin amyloidogenesis is triggered by metalloen-
doprotease cleavage [21]. The cleavage site is fitly either A24>-M?43
or M243_L244

3.8. Lysozyme

Lysozyme is an antibacterial protein for which mutations are
associated with familial visceral amyloidosis in the liver, spleen,
kidneys, and other internal organs. There are five known mutations
in the human lysozyme gene that give rise to six variant proteins,
56 Ile - Thr, 57 Phe — Ile, 64 Trp — Arg, 67 Asp — His, 70
Thr — Asn, and the double mutation F57I& T70N. All the variants
apart from T70N have been detected in association with amyloid
deposits in various human patients.

There are two candidate switch regions, around sites 57 and 67.
As shown in Fig. 9B, compared with structure of wild-type protein,
mutation T70N can result in considerable structural rearrangement
at sites 68-75 [22] without causing conformational disease. There-
fore, the second site is likely not important for the initiation of
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Fig. 13. Results of tumor suppressor protein p53 (PDBID: 2fej_A, 204 residues in
length). (A) Structure of p53. (B) Interchange probability for each 15-residue
segment indexed by its central residue. (C) The interchange probability for each
residue site. We found p53 is extremely complicated: (A mass of sites are sensitive
to p53’s biological activity) The twenty sites for which the activity of mutants
decreases more than half of that of wild-type protein are marked in yellow. Some
variants of zero biological activity are produced by point mutation at sites marked
in green. (Nearly every site corresponds to some disease-related point mutations
respectively) Magenta points show sites of the top six most frequently mutated
residues in human cancer [38]. (Various regions are significant for the disease-
related stability of p53) Blue points are sites corresponding to the highly
destabilizing mutants reported in [40]. Positions related to the top five most highly
destabilizing variants are marked in cyan. In (A) and (C), switch regions predicted
are shown in red. (For interpretation of color mentioned in this figure the reader is
referred to the web version of the article.)

pathogenic structural changes and can be excluded. In fact, accord-
ing Fig. 9B, there is some structural rearrangement at sites 45-51
in the T70N variant, but this is not large enough to cause conforma-
tional disease. However the structural rearrangement in this region
is very strong for the disease-related mutant D67H, the amyloid
donor. This indicates that sites 45-51 correspond to a switch re-
gion for lysozyme. As shown in Fig. 9, successive peaks for the
interchange probability occur at windows 48-50, so that polypep-
tide 41-57 should be significant in the initiation of structural
changes, in agreement with previous research.

3.9. B> microglobulin

B> microglobulin is a non-polymorphic light chain of the class I
major histocompatibility complex (MHC-I) that plays an important
role in the immune system, autoimmunity, and reproductive suc-
cess [23]. As part of its normal catabolic cycle, B, microglobulin
dissociates from MHC-I and is transported in serum to the kidneys,
where the majority of the protein is degraded. If there is renal fail-
ure whereby B, microglobulin does not pass through the dialysis
membrane, then its clearance from serum is disrupted. This results
in an increase in B, microglobulin. When a high blood level is
maintained for more than 10 years, the protein then self-associates
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Fig. 14. Results of serpins (PDBID: 1e04_A, 386 residues in length). (A) Structure of
serpins. (B) Interchange probability for each 15-residue segment indexed by its
central residue. (C) The interchange probability for each residue site. In (A) and (C),
switch regions predicted are shown in red. Site 381, in green plays an important
role in stabilising native, inserted, and activated state of serpins. (For interpretation
of color mentioned in this figure the reader is referred to the web version of the
article.)

to form amyloid fibrils, causing dialysis-related amyloidosis
[24,25].

It is believed that the formation of amyloid fibrils of B, micro-
globulin accompanies a significant conformational change. There
are two successive peaks for the interchange probability at central
sites 14 and 16 in Fig. 10, indicating that sites 7-23 are likely in-
volved in the initiation of structural changes in B, microglobulin.
This should correlate with the observation that fragment 21-31
is the well-known amyloidogenic core fragment of B, microglobu-
lin [26-28]. Different from some other proteins, the wild-type B,
microglobulin can aggregate due to the influence of ageing. In such
process, acidification, e.g. in site 17(N — D), is necessary to form
amyloid fibrils from both wild-type B, microglobulin and its vari-
ants [29]. It means residues around 17 is significant in triggering
pathogenic refolding for both wild-type microglobulin and its
variants.

3.10. Superoxide dismutase, SOD

The enzyme superoxide dismutase is metalloprotein which cat-
alyzes the dismutation of superoxide into oxygen and hydrogen
peroxide. Therefore, it is an important antioxidant defense in
nearly all cells exposed to oxygen. There are three major families
of superoxide dismutase, depending on the metal cofactor: Cu/Zn
type, Fe/Mn type, and Ni type. Some mutations in Cu/Zn SOD en-
zyme can cause familial amyotrophic lateral sclerosis.

According to reference [30], there are totally 26 residue sites for
which disease-related point mutations have ever been reported. As
shown in Fig. 11, segment 37-48 is the region with the highest
density of the 26 residue sites. This coincides with our prediction
that segment 30-46 should be switch region of pathogenic struc-
tural changes for Cu/Zn SOD enzyme.
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Fig. 15. Results of crystallin (pdbid:1hk0_X, 173 residues in length). (A) Structure of
human gamma-D crystallin. The five disease-related sites are shown in bonds (14
yellow, 23 blue, 36 green, 58 magenta, and 106 cyan). (B) Interchange probability
for each 15-residue segment indexed by its central residue. (C) The interchange
probability for each residue site. In (A) and (C), switch regions predicted are shown
in red. (For interpretation of color mentioned in this figure the reader is referred to
the web version of the article.)

3.11. Transthyretin

Transthyretin (TTR) is a serum and cerebrospinal fluid carrier of
the thyroid hormone thyroxine. It also acts as a carrier of retinol
(vitamin A) through an association with retinol binding protein.
Amyloid deposition of TTR is associated with several diseases, such
as senile systemic amyloidosis, familial amyloid neuropathy, and
familial cardiac amyloid [1]. The fibrillar structure resulting from
self-association of an abnormal conformation of TTR is thought to
be the causative agent in these disorders. The majority of TTR-asso-
ciated amyloidoses are due to single amino-acid substitutions. In
senile systemic amyloidosis, the non-mutated protein is present
in amyloid fibrils [31]. However, the mechanism that by which
normally soluble TTR tetramers are converted into insoluble amy-
loid fibrils remains largely unknown.

Here we analyzed normal human TTR to identify sites involved
in the initial structural changes in this protein. As shown in Fig. 12,
polypeptide 46-69 (central residue corresponding to the two suc-
cessive peaks at sites 53 and 62) was identified as the switch re-
gion for conformational changes in TTR. Clinical data
demonstrated that the mutation 55 Leu — Pro can cause early-on-
set familial amyloidotic polyneuropathy [32]. According to clinical
reports, L55P is the most notorious mutant, with onset of clinical
disease appearing approximately 20 years of age. In comparison,
the age of onset is approximately 30 years for V30M carriers and
80 years for wild-type subjects. Analysis based on the crystal struc-
ture of the L55P mutant showed that site 55 is important site in the
pathway for TTR polymerization to amyloid fibrils [33]. Amyloido-
genic regions experimentally determined to date are 10-19 [34]
and 105-115 [35], but no segments covering site 55 have been
identified so far. As shown in this example, amyloid-related
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mutations are not necessarily involved in aggregation-prone re-
gions. So it is still not clear whether switch sites occur in hot spots
of aggregation [36,37] or not.

3.12. Tumor suppressor protein p53

p53 is a transcription factor in multicellular organisms, where it
regulates the cell cycle and thus functions as a tumor suppressor in
preventing cancer. As such, p53 has been described as “the guard-
ian of the genome”, referring to its role in conserving stability by
preventing genome mutation. In about 50% of human cancers,
p53 is inactivated as a result of missense mutation in the p53 gene.

Actually, p53 is the most complicated molecule we have ever
coped with. As shown in Fig. 13, there are totally twenty sites for
which the activity of mutants decreases more than 50% [38]. Such
sites are interspersed along the 289-residue fold. All mutants with-
out biological activity locate in the N-terminal half (site index
>195) of p53 sequence. Moreover, five of the top six amino-acid
residues that are most frequently mutated in human cancer are
in the N-terminal half (Arg-175, Gly-245, Arg-248, Arg-249, Arg-
273, and Arg-282). It means the N-terminal half is significant for
conserving the activity of p53 (this is largely due to the property
conservation of DNA-binding core domain [39]). We predicted re-
gion 187-205 to be switch region of p53. The peaks in the N-termi-
nal half are higher than those of the other half. This fits with the
aforementioned knowledge qualitatively. Whereas, features in
the stability of p53 is extremely complicated. In Fig. 13, there are
several peaks with similar standards of interchange probability.
Each of them involves several sites for which the highly destabiliz-
ing mutants have been reported [40]. As such, there should be sev-
eral switch regions in p53, interfering accuracy of our method by
unsuitable basic hypothesis (we suppose there is only one switch
region in protein).

3.13. Serpins

Serpins are a family of proteins that inhibit proteases via a pro-
found conformational change that irreversibly locks the protease
and serpin together. The normal physiological functions of serpins
are based on such highly specific transitions in the natural confor-
mation. Premature conversion of the protein structure will result
in a deficiency or dysfunction of the inhibition of proteases, then
fibril formation and quite different disease consequences such as
emphysema, cirrhosis, and thromboembolic disease [1].

Table 1

Results of our analysis were shown in Fig. 14. Initiation sites for
serpins are predicted to be around site 379 (polypeptide 372-386),
in agreement with the results of Johnson et al., who reported that
wild-type residue Glu-381 plays an important role in stabilising
the native, inserted, and activated states of serpin proteins [41].
Actually the predicted region is on the N-terminus of reactive loop
of serpins which is vital for the biological properties of the protein.

3.14. Crystallin

Crystallin is a water-soluble structural protein found in the lens
of the eye. It is the major protein of the eye lens, accounting for the
transparency of lens. Mutations and aging of crystallins cause cat-
aracts, the predominant cause of blindness in the world. In human
gamma-D crystallin, there are totally five residue sites for which
mutants associated with congenital cataracts have ever reported,
i.e. R14, P23, R36, R58, and E106. Three of the five are in the seg-
ment 14-36 which we predicted as switch region of gamma-D
crystallin (Fig. 15). Moreover, the threonine substitution in site
23 is reported as the cause of pivotal local conformational and dy-
namic differences in human gamma-D crystallin [42]. All these evi-
dences prove our result is correct.

3.15. Summary of results

Here we identify the significant residue positions in an indepen-
dent aspect, physics that would be helpful in optimizing the
knowledge contributed by clinical reports. As shown in most of
the above examples, the prediction results match clinical reports
very well. Besides the neutral prediction for the extremely compli-
cated p53, 14 out of 15 proteins (including prion) were correctly
predicted, both sensitivity and specificity achieved 93% for proteins
in body fluid. As we aim to identify the significant regions of pro-
teins, provide a guide of in-depth investigation, the evaluation of
accuracy at segment level is reasonable. There are a total of 2196
residues in the test set. Only 12 percentages residues (264) were
predicted as residues in switch regions. Therefore, the algorithm
is highly sensitive and specific.

Another method of evaluation is to estimate the statistical sig-
nificance of the predictions for residues that are tightly associated
with conformational diseases (RTACD). For a N residues protein, if
the m residues of the switch region predicted are randomly se-
lected, the probability of covering u out of the U RTACDs can be cal-
culated as y = C;Cy_;;/Cx- As shown in Table 1, such probability is

Statistical analysis of the predictions. U is the total number of residues that are tightly associated with conformational diseases (RTACD). u is the counts of RTACD that are in the

region predicted.

Proteins Sequence  Length of switch RTACD coverage of the Prediction Probability of the prediction Coverage of the
length, N region predicted, unpredicted & predicted coverage of estimated by the coverage of unproved pre
m(®) regions, Y=L & & RTACD, § RTACD, x dictions, ™2t
Insulin 21 15 (0.71) 0 027 4/4=1) 023 0.73
LDL receptor 37 15 (0.41) 0.091 0.4 6/8=0.75 0.03 0.6
Apo-Al 243 15 (0.06) 0.0044 0.2 3/4=0.75 0.00073 0.8
Calcitonin 32 16 (0.50) 0 0.13 2/2=1 0.25 0.875
Cystatin C 111 24 (0.22) 0 0.042 1/1=1 0.22 0.96
Hemoglobin 147 27 (0.18) 0.0083 0.11 3/4=0.75 0.018 0.89
Gelsolin 346 22 (0.06) 0 0.045 1/1=1 0.064 0.95
Lysozyme 130 17 (0.13) 0.018 0.12 2/4=05 0.074 0.88
Bomicroglobulin 99 17 (0.17) 0 0.059 1/1=1 0.17 0.94
SOD 152 15 (0.10) 0.15 0.4 6/26 =0.23 0.018 0.6
Transthyretin 115 24 (0.21) 0.011 0.042 1/2=0.5 0.33 0.96
p53 204 19 (0.09) 0.022 0.053 1/5=0.2 0.33 0.95
Serpins 386 15 (0.04) 0 0.067 11=1 0.038 0.93
Crystallin 173 23 (0.13) 0.013 0.13 3/5=0.6 0.016 0.87
Sum Sum (mean # sd) Mean + sd Mean+sd Mean*sd Mean * sd Mean + sd
2196 264 (0.22 £0.19) 0.022 £0.043 0.15+x0.13 0.73+0.29 0.13+0.12 0.85+0.13
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about 13 percentages. It means that the present algorithm can
identify the significant signal in approximately eight times of the
ability of random dicing.

Although per residue prediction is beyond the scope of the pres-
ent work, we found that the RTACDs are abundant in the region
predicted. The coverage of RTACDs is about 73% in our prediction,
that is, most RTACDs are covered by the region predicted, where
about 15% residues are RTACDs. But in the other regions, the ratio
decreases into 2.2% approximately. There are about 85% sites pre-
dicted, but unproved for their vital role. It provides further oppor-
tunity of in-depth research.

In an aspect of evolution, the interchange probability evaluates
incidence of a disease under selection pressure. As shown in
Fig. 16, a graph of the interchange probability of switch regions
for different proteins reveals that cases with low interchange prob-
abilities are highly fatal (expect injection-localized amyloidosis in-
duced artificially). For prion, cystatin C and hemoglobin, without
clinical treatment, patients die at a very young age and usually
have no opportunity to transmit their genes to offspring. As abun-
dantly expressed in vital tissues, these proteins must be very sta-
ble. Once misfolding occurs the result is fatal. Protein evolution
ensures such stability by low interchange probability.

4. Discussions

In this work, we present a prediction scheme that points out the
most important sites for the source of pathogenic structural
change. Such original place could provide ideal target for clinical
therapy, serve as probe binding site for high sensitive detect, and
etc. Moreover, it can evaluate the incidence, i.e. risk level of disease
arisen by a protein from an evolutionary point of view. Due to its
ability in clarifying target sites, filtering secondary factors, decreas-
ing the scope of in-depth study, this algorithm would aid CD
research drastically.

Protein aggregation which often results in tissue deposition is
one of the well-known pathogenesis of conformational disease. It
is a consequence of the initial misfolding at switch sites. To inves-
tigate mechanism of the formation of amyloid, many efforts were
made. It was found that some sequences are much more amyloido-
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genic than others, and there are aggregation-prone regions, “hot
spots” of fibril-forming, which are considered to be responsible
for aggregation [36,37]. These data has inspired a number of algo-
rithms and models in the prediction of aggregation propensities of
protein [43-52]. While, it is still obscure whether switch sites lie in
hot spots of aggregation or not. As shown in the example of trans-
thyretin, amyloid-related mutations are not necessarily involved in
aggregation-prone regions. Compared with the small counts of
switch sites, aggregation-prone sites are abundant in disease-re-
lated proteins. Consequently, according to de Groot et al. [47], at
least one-third of residues are involved in predicted hot spots.
Therefore, switch site is more specific. To the best of our knowl-
edge, the present work is the first algorithm that can predict switch
regions for various conformational diseases.

As shown by the above results, this method is very suitable for
proteins in body fluid. However, for membrane and membrane-
associated protein, the predictions are less satisfactory. There are
two possible reasons. Firstly, our method is based on knowledge
of non-membrane proteins and may thus be unsuitable for solving
problems related to membrane. Secondly, the membrane environ-
ment is more complicated than that of body fluid for proteins.
Interactional effects between proteins and the membrane environ-
ment complicate the problem. To overcome this issue, our future
research will focus on knowledge based on membrane systems.

Many proteins are caused by structural change. Besides of those
identified by clinical analysis, there are also lots of unknown cases.
As a prerequisite for in-depth research, clinical information is very
important. However, as sophisticated techniques and trained
researchers are necessary for experiments in identifying disease-
related proteins, clinical information is not sufficient and is diffi-
cult to obtain. As thus a systematic study of conformational dis-
eases is beyond the scope of previous technical approaches.
While, in combination with medical research, our work could have
a profound impact to such situation. For example, a mutation oc-
curs in switch region means a potential causation of conformation
disease. Therefore, the algorithm enlarges the research scope by
identifying more highly suspect but unknown disease-related pro-
teins and diminishes the residue counts for in-depth investigation,
namely improves CD research in strategic and in tactical simulta-
neously. Health of human being will potentially be boosted. Due
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Fig. 16. Interchange probability for the switch region predicted for different proteins. Most cases with low interchange probability are highly fatal. Since the interchange
probability can approximately characterize the incidence of a disease from an evolutionary point of view, this means that fatal cases are filtered due to the selection pressure

of evolution.
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to the high success rate, present algorithm is a powerful tool in
coping with some urgent and knowledge lack cases in human
health, such as the highly pathogenic avian (H5N1) flu and 2009
A (H1N1) influenza [53].

In modern bioscience, scientists are compelled to deal with a
mass of candidate molecules. There is hot demand for efficient
method to help them discarding unnecessary studies, and grasping
something essential. This method fits such desirability, and would
attract many users. Since key residues are pointed out with the
algorithm, it also provides useful entry in performing interdisci-
plinary researches for the scientists outside of the field.

To ensure a healthy development of modern biology, a patent is
applied for corresponding method. We encourage pure scien-
tific research. Contact authors when the method is to be used.
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